Generic placeholder image

Journal of Current Toxicology and Venomics

Editor-in-Chief

ISSN (Print): 2950-5704
ISSN (Online): 2950-5712

Research Article

Identification and Phylogenetic Analysis of Venom Allergens from Transcriptome of Hemiscorpius lepturus Scorpion

Author(s): Fatemeh Kazemi-Lomedasht*, Delavar Shahbazzadeh and Mahdi Behdani

Volume 4, 2024

Published on: 29 November, 2023

Article ID: e291123224010 Pages: 11

DOI: 10.2174/0126661217183829231108105708

Price: $65

Abstract

Introduction: Venom allergens have been identified in the venom of scorpion, snake, bee, wasp, etc. Some allergy reactions in humans may refer to the venom allergens.

Aim: Phylogenetic analysis of venom allergens from the transcriptome of Hemiscorpius lepturus scorpion was the main aim of the study.

Methods: Seven venom allergens: HLAllergen1, HLAllergen2, HLAllergen3, HLAllergen4, HLAllergen5, HLAllergen6, and HLAllergen7 have been identified in the venom of Hemiscorpius lepturus scorpion using venom gland transcriptome analysis. Primary, secondary and tertiary structures of the identified venom allergens were predicted using ExPASy ProtParam, PSIPRED, and SWISS MODEL servers. Phylogenetic tree was constructed using MEGA 11 software through neighbor-joining method with 1000 bootstraps.

Results: Structure analysis of identified venom allergens showed a molecular weight of between 46 to 52 kDa. Tertiary structure results showed that all predicted 3-D structures were in a normal range. Phylogenetic tree analysis showed that HLAllergen 3, 4 and 5 were formed single clades and HLAllergen 1, 2, 7, and 6 other clades.

Conclusion: However, further studies using proteomic analysis of H. lepturus are needed to confirm and compare with transcriptome data.

[1]
Chippaux JP, Goyffon M. Epidemiology of scorpionism: A global appraisal. Acta Trop 2008; 107(2): 71-9.
[http://dx.doi.org/10.1016/j.actatropica.2008.05.021] [PMID: 18579104]
[2]
Jalali A, Pipelzadeh MH, Sayedian R, Rowan EG. A review of epidemiological, clinical and in vitro physiological studies of envenomation by the scorpion Hemiscorpius lepturus (Hemiscorpiidae) in Iran. Toxicon 2010; 55(2-3): 173-9.
[http://dx.doi.org/10.1016/j.toxicon.2009.09.012] [PMID: 19799924]
[3]
Pipelzadeh MH, Jalali A, Taraz M, Pourabbas R, Zaremirakabadi A. An epidemiological and a clinical study on scorpionism by the Iranian scorpion Hemiscorpius lepturus. Toxicon 2007; 50(7): 984-92.
[http://dx.doi.org/10.1016/j.toxicon.2007.07.018] [PMID: 17854855]
[4]
Seyedian R, Pipelzadeh MH, Jalali A, et al. Enzymatic analysis of Hemiscorpius lepturus scorpion venom using zymography and venom-specific antivenin. Toxicon 2010; 56(4): 521-5.
[http://dx.doi.org/10.1016/j.toxicon.2010.05.008] [PMID: 20493200]
[5]
Hanafi-Bojd AA, Sharififard M, Jahanifard E, Navidpour S, Vazirianzadeh B. Presence probability of Hemiscorpius lepturus Peters, 1861 using maximum entropy approach in the western areas of Zagros Mountains, Iran. Vet World 2020; 13(2): 296-303.
[http://dx.doi.org/10.14202/vetworld.2020.296-303] [PMID: 32255972]
[6]
Rodríguez de la Vega RC. Schwartz EF, Possani LD. Mining on scorpion venom biodiversity. Toxicon 2010; 56(7): 1155-61.
[http://dx.doi.org/10.1016/j.toxicon.2009.11.010] [PMID: 19931296]
[7]
Dizaji R, Sharafi A, Pourahmad J, Vatanpour S, Hosseini MJ, Vatanpour H. The effects of Hemiscorpius lepturus induced-acute kidney injury on PGC-1α gene expression: From induction to suppression in mice. Toxicon 2020; 174: 57-63.
[http://dx.doi.org/10.1016/j.toxicon.2019.12.154] [PMID: 31887316]
[8]
Shahbazzadeh D, Srairi-Abid N, Feng W, et al. Hemicalcin, a new toxin from the Iranian scorpion Hemiscorpius lepturus which is active on ryanodine-sensitive Ca2+ channels. Biochem J 2007; 404(1): 89-96.
[http://dx.doi.org/10.1042/BJ20061404] [PMID: 17291197]
[9]
Srairi-Abid N, Shahbazzadeh D, Chatti I, et al. Hemitoxin, the first potassium channel toxin from the venom of the Iranian scorpion Hemiscorpius lepturus. FEBS J 2008; 275(18): 4641-50.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06607.x] [PMID: 18699777]
[10]
Borchani L, Sassi A, Ben Yekhlef R, Safra I, El Ayeb M. Heminecrolysin, a potential immunogen for monospecific antivenom production against Hemiscorpius lepturus scorpion. Toxicon 2011; 58(8): 681-8.
[http://dx.doi.org/10.1016/j.toxicon.2011.09.010] [PMID: 21967811]
[11]
Kazemi-Lomedasht F, Khalaj V, Bagheri KP, Behdani M, Shahbazzadeh D. The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus. Toxicon 2017; 125: 123-30.
[http://dx.doi.org/10.1016/j.toxicon.2016.11.261] [PMID: 27914888]
[12]
Jahdasani R, Jamnani FR, Behdani M, et al. Identification of the immunogenic epitopes of the whole venom component of the Hemiscorpius lepturus scorpion using the phage display peptide library. Toxicon 2016; 124: 83-93.
[http://dx.doi.org/10.1016/j.toxicon.2016.11.247] [PMID: 27845058]
[13]
King TP, Spangfort MD. Structure and biology of stinging insect venom allergens. Int Arch Allergy Immunol 2000; 123(2): 99-106.
[http://dx.doi.org/10.1159/000024440] [PMID: 11060481]
[14]
Hoffman DR. Hymenoptera venom allergens. Clin Rev Allergy Immunol 2006; 30(2): 109-28.
[http://dx.doi.org/10.1385/CRIAI:30:2:109] [PMID: 16645223]
[15]
Pondehnezhadan E, Chamani A, Salabi F, Soleimani R. Identification, characterization, and molecular phylogeny of scorpion enolase (Androctonus crassicauda and Hemiscorpius lepturus). Toxin Rev 2023; 42(1): 228-41.
[http://dx.doi.org/10.1080/15569543.2022.2080223]
[16]
Almaaytah A, Albalas Q. Scorpion venom peptides with no disulfide bridges: A review. Peptides 2014; 51: 35-45.
[http://dx.doi.org/10.1016/j.peptides.2013.10.021] [PMID: 24184590]
[17]
Gao B, Harvey PJ, Craik DJ, Ronjat M, De Waard M, Zhu S. Functional evolution of scorpion venom peptides with an inhibitor cystine knot fold. Biosci Rep 2013; 33(3): e00047.
[http://dx.doi.org/10.1042/BSR20130052] [PMID: 23721518]
[18]
Luna-Ramírez K, Quintero-Hernández V, Juárez-González VR, Possani LD. Whole transcriptome of the venom gland from Urodacus yaschenkoi scorpion. PLoS One 2015; 10(5): e0127883.
[http://dx.doi.org/10.1371/journal.pone.0127883] [PMID: 26020943]
[19]
Santibáñez-López C, Cid-Uribe J, Batista C, Ortiz E, Possani L. Venom gland transcriptomic and proteomic analyses of the enigmatic scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with insights on the evolution of its venom components. Toxins 2016; 8(12): 367.
[http://dx.doi.org/10.3390/toxins8120367] [PMID: 27941686]
[20]
Cid Uribe JI, Jiménez Vargas JM, Ferreira Batista CV. Zamudio Zuñiga F, Possani LD. Comparative proteomic analysis of female and male venoms from the Mexican scorpion Centruroides limpidus: Novel components found. Toxicon 2017; 125: 91-8.
[http://dx.doi.org/10.1016/j.toxicon.2016.11.256] [PMID: 27889600]
[21]
Hu Y, Yang L, Yang H, He S, Wei JF. Identification of snake venom allergens by two-dimensional electrophoresis followed by immunoblotting. Toxicon 2017; 125: 13-8.
[http://dx.doi.org/10.1016/j.toxicon.2016.11.251] [PMID: 27867095]
[22]
Murray J, Gregory WF, Gomez-Escobar N, Atmadja AK, Maizels RM. Expression and immune recognition of Brugia malayi VAL-1, a homologue of vespid venom allergens and Ancylostoma secreted proteins. Mol Biochem Parasitol 2001; 118(1): 89-96.
[http://dx.doi.org/10.1016/S0166-6851(01)00374-7] [PMID: 11704277]
[23]
Yang H, Xu X, Ma D, Zhang K, Lai R. A phospholipase A1 platelet activator from the wasp venom of Vespa magnifica (Smith). Toxicon 2008; 51(2): 289-96.
[http://dx.doi.org/10.1016/j.toxicon.2007.10.003] [PMID: 18023835]
[24]
Tsai M, Starkl P, Marichal T, Galli SJ. Testing the ‘toxin hypothesis of allergy’: Mast cells, IgE, and innate and acquired immune responses to venoms. Curr Opin Immunol 2015; 36: 80-7.
[http://dx.doi.org/10.1016/j.coi.2015.07.001] [PMID: 26210895]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy