Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Reduced Tumor Volume and Increased Necrosis of Human Breast Tumor Xenograft in Mice Pretreated by a Cocktail of Three Specific Anti-HER2 scFvs

Author(s): Foroogh Nejatollahi*, Elham Nadimi, Ali Noorafshan, Setareh Moazen, Ali Mohammad Alizadeh, Solmaz Khalighfard and Amirhossein Sahebkar

Volume 25, Issue 5, 2024

Published on: 28 November, 2023

Page: [409 - 418] Pages: 10

DOI: 10.2174/0113892037269645231031095145

Price: $65

Abstract

Purpose: We aimed to assess the effects of a cocktail comprising three specific anti- HER2 scFvs on breast tumor formation in a xenograft mouse model and to evaluate quantitative changes in the tumor using stereological analysis.

Methods: Three specific anti-HER2 phage antibodies were produced from a scFv-library using phage display technology. The cell binding capacities of the antibodies were assessed via FACS analysis. Soluble forms of the antibodies were prepared by infecting HB2151-E. coli cells and purified using a centrifugal ultrafiltration method. The purification process was evaluated by SDSPAGE analysis. Two forms of scFv cocktails were prepared, soluble scFv and phage-scFv cocktail, which contained an equal amount/phage of each of the three antibodies. Inbred female BALB/c mice were pretreated with 5 and 20 mg/kg of the soluble scFv cocktail and 1011 phage-scFv cocktail/ kg. The mice were then injected with 2×106 SKBR-3 human breast cancer cells. Total tumor, inflammatory and non-inflammatory volumes were estimated using the Cavalieri principle after preparing photomicrograph slides.

Results: The anti-HER2 scFvs showed significantly higher binding to SKBR-3 cells compared to the isotype control. SDS-PAGE analysis confirmed the high purification of the scFvs. Stereological analysis revealed that the group pretreated with 20 mg/kg of the soluble scFv cocktail exhibited the highest reductions in total tumor volume, non-inflammatory volume, and inflammatory volume, with reductions of 73%, 78%, and 72%, respectively, compared to PBS-pretreated mice (P-value < 0.0001). The volumetric ratio of necrotic tissue to total tumor volume increased by 2.2-fold and 2- fold in the 20 mg/kg of soluble scFv cocktail and phage-scFv cocktail groups, respectively, compared to the PBS-treated mice (P-value < 0.05).

Conclusion: Pre-treatment with a 20 mg/kg anti-HER2 scFv cocktail resulted in a significant reduction in tumor volume and increased necrotic area in a human breast cancer xenograft model, indicating the remarkable anti-tumor effect of the cocktail in vivo.

Graphical Abstract

[1]
Hart, V.; Gautrey, H.; Kirby, J.; Tyson-Capper, A. HER2 splice variants in breast cancer: Investigating their impact on diagnosis and treatment outcomes. Oncotarget, 2020, 11(46), 4338-4357.
[http://dx.doi.org/10.18632/oncotarget.27789] [PMID: 33245725]
[2]
Ghauri, M.A.; Su, Q.; Ullah, A.; Wang, J.; Sarwar, A.; Wu, Q.; Zhang, D.; Zhang, Y. Sanguinarine impedes metastasis and causes inversion of epithelial to mesenchymal transition in breast cancer. Phytomedicine, 2021, 84, 153500.
[http://dx.doi.org/10.1016/j.phymed.2021.153500] [PMID: 33626427]
[3]
Su, Q.; Wang, J.; Wu, Q.; Ullah, A.; Ghauri, M.A.; Sarwar, A.; Chen, L.; Liu, F.; Zhang, Y. Sanguinarine combats hypoxia-induced activation of EphB4 and HIF-1α pathways in breast cancer. Phytomedicine, 2021, 84, 153503.
[http://dx.doi.org/10.1016/j.phymed.2021.153503] [PMID: 33636580]
[4]
Wu, X.; Yang, H.; Yu, X.; Qin, J.J. Drug-resistant HER2-positive breast cancer: Molecular mechanisms and overcoming strategies. Front. Pharmacol., 2022, 13, 1012552.
[http://dx.doi.org/10.3389/fphar.2022.1012552] [PMID: 36210846]
[5]
García-Aranda, M.; Redondo, M. Immunotherapy: A challenge of breast cancer treatment. Cancers, 2019, 11(12), 1822.
[http://dx.doi.org/10.3390/cancers11121822] [PMID: 31756919]
[6]
Costa, R.L.B.; Czerniecki, B.J. Clinical development of immunotherapies for HER2+ breast cancer: A review of HER2-directed monoclonal antibodies and beyond. NPJ Breast Cancer, 2020, 6(1), 10.
[http://dx.doi.org/10.1038/s41523-020-0153-3] [PMID: 32195333]
[7]
Muñoz-López, P.; Ribas-Aparicio, R.M.; Becerra-Báez, E.I.; Fraga-Pérez, K.; Flores-Martínez, L.F.; Mateos-Chávez, A.A.; Luria-Pérez, R. Single-chain fragment variable: Recent progress in cancer diagnosis and therapy. Cancers, 2022, 14(17), 4206.
[http://dx.doi.org/10.3390/cancers14174206] [PMID: 36077739]
[8]
Zarei, N.; Fazeli, M.; Mohammadi, M.; Nejatollahi, F. Cell growth inhibition and apoptosis in breast cancer cells induced by anti-FZD7 scFvs: Involvement of bioinformatics-based design of novel epitopes. Breast Cancer Res. Treat., 2018, 169(3), 427-436.
[http://dx.doi.org/10.1007/s10549-017-4641-6] [PMID: 29411237]
[9]
Wan, P.K.T.; Fernandes, R.A.; Seymour, L.W. Oncolytic viruses and antibodies: Are they more successful when delivered separately or when engineered as a single agent? J. Immunother. Cancer, 2023, 11(8), e006518.
[http://dx.doi.org/10.1136/jitc-2022-006518] [PMID: 37541690]
[10]
Jin, S.; Sun, Y.; Liang, X.; Gu, X.; Ning, J.; Xu, Y.; Chen, S.; Pan, L. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct. Target. Ther., 2022, 7(1), 39.
[http://dx.doi.org/10.1038/s41392-021-00868-x] [PMID: 35132063]
[11]
Hosseinzadeh, F.; Mohammadi, S.; Nejatollahi, F. Production and evaluation of specific single-chain antibodies against CTLA-4 for cancer-targeted therapy. Rep. Biochem. Mol. Biol., 2017, 6(1), 8-14.
[PMID: 29090224]
[12]
D’Huyvetter, M.; Vos, J.D.; Caveliers, V.; Vaneycken, I.; Heemskerk, J.; Duhoux, F.P.; Fontaine, C.; Vanhoeij, M.; Windhorst, A.D.; Aa, F.; Hendrikse, N.H.; Eersels, J.L.E.; Everaert, H.; Gykiere, P.; Devoogdt, N.; Raes, G.; Lahoutte, T.; Keyaerts, M. Phase I trial of 131 I-GMIB-Anti-HER2-VHH1, a new promising candidate for HER2-targeted radionuclide therapy in breast cancer patients. J. Nucl. Med., 2021, 62(8), 1097-1105.
[http://dx.doi.org/10.2967/jnumed.120.255679] [PMID: 33277400]
[13]
Issafras, H.; Fan, S.; Tseng, C.L.; Cheng, Y.; Lin, P.; Xiao, L.; Huang, Y.J.; Tu, C.H.; Hsiao, Y.C.; Li, M.; Chen, Y.H.; Ho, C.H.; Li, O.; Wang, Y.; Chen, S.; Ji, Z.; Zhang, E.; Mao, Y.T.; Liu, E.; Yang, S.; Jiang, W. Structural basis of HLX10 PD-1 receptor recognition, a promising anti-PD-1 antibody clinical candidate for cancer immunotherapy. PLoS One, 2021, 16(12), e0257972.
[http://dx.doi.org/10.1371/journal.pone.0257972] [PMID: 34972111]
[14]
Zhao, X.; Ning, Q.; Mo, Z.; Tang, S. A promising cancer diagnosis and treatment strategy: Targeted cancer therapy and imaging based on antibody fragment. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3621-3630.
[http://dx.doi.org/10.1080/21691401.2019.1657875] [PMID: 31468992]
[15]
Bates, A.; Power, C.A. David vs. Goliath: The structure, function, and clinical prospects of antibody fragments. Antibodies, 2019, 8(2), 28-59.
[http://dx.doi.org/10.3390/antib8020028] [PMID: 31544834]
[16]
Lu, R.M.; Hwang, Y.C.; Liu, I.J.; Lee, C.C.; Tsai, H.Z.; Li, H.J.; Wu, H.C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci., 2020, 27(1), 1-30.
[http://dx.doi.org/10.1186/s12929-019-0592-z] [PMID: 31894001]
[17]
Landgraf, M.; McGovern, J.A.; Friedl, P.; Hutmacher, D.W. Rational design of mouse models for cancer research. Trends Biotechnol., 2018, 36(3), 242-251.
[http://dx.doi.org/10.1016/j.tibtech.2017.12.001] [PMID: 29310843]
[18]
Matenaers, C.; Popper, B.; Rieger, A.; Wanke, R.; Blutke, A. Practicable methods for histological section thickness measurement in quantitative stereological analyses. PLoS One, 2018, 13(2), e0192879.
[http://dx.doi.org/10.1371/journal.pone.0192879] [PMID: 29444158]
[19]
Deniz, Ö.G.; Altun, G.; Kaplan, A.A.; Yurt, K.K.; von Bartheld, C.S.; Kaplan, S. A concise review of optical, physical and isotropic fractionator techniques in neuroscience studies, including recent developments. J. Neurosci. Methods, 2018, 310, 45-53.
[http://dx.doi.org/10.1016/j.jneumeth.2018.07.012] [PMID: 30048673]
[20]
Eriksen, A.C.; Andersen, J.B.; Kristensson, M.; dePont Christensen, R.; Hansen, T.F.; Kjær-Frifeldt, S.; Sørensen, F.B. Computer-assisted stereology and automated image analysis for quantification of tumor infiltrating lymphocytes in colon cancer. Diagn. Pathol., 2017, 12(1), 65.
[http://dx.doi.org/10.1186/s13000-017-0653-0] [PMID: 28851404]
[21]
Sarma, U.C.; Winship, A.L.; Hutt, K.J. Comparison of methods for quantifying primordial follicles in the mouse ovary. J. Ovarian Res., 2020, 13(1), 121.
[http://dx.doi.org/10.1186/s13048-020-00724-6] [PMID: 33054849]
[22]
Mandarim-de-Lacerda, C.A. Stereological tools in biomedical research. An. Acad. Bras. Cienc., 2003, 75(4), 469-486.
[http://dx.doi.org/10.1590/S0001-37652003000400006] [PMID: 14605681]
[23]
Warille, A.A.; Kocaman, A.; Elamin, A.A.; Mohamed, H.; Elhaj, A.E.; Altunkaynak, B.Z. Applications of various stereological tools for estimation of biological tissues. Anat. Histol. Embryol., 2023, 52(2), 127-134.
[http://dx.doi.org/10.1111/ahe.12896] [PMID: 36562319]
[24]
Kipanyula, M.J.; Sife, A.S. Global trends in application of stereology as a quantitative tool in biomedical research. BioMed Res. Int., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/1825697] [PMID: 30302337]
[25]
Nejatollahi, F.; Asgharpour, M.; Jaberipour, M. Down-regulation of vascular endothelial growth factor expression by anti-her2/neu single chain antibodies. Med. Oncol., 2012, 29(1), 378-383.
[http://dx.doi.org/10.1007/s12032-010-9796-5] [PMID: 21267676]
[26]
Nejatollahi, F.; Jaberipour, M.; Asgharpour, M. Triple blockade of HER2 by a cocktail of anti-HER2 scFv antibodies induces high antiproliferative effects in breast cancer cells. Tumour Biol., 2014, 35(8), 7887-7895.
[http://dx.doi.org/10.1007/s13277-014-1854-8] [PMID: 24828011]
[27]
Nejatollahi, F.; Ranjbar, R.; Younesi, V.; Asgharpour, M. Deregulation of HER2 downstream signaling in breast cancer cells by a cocktail of anti-HER2 scFvs. Oncol. Res., 2013, 20(8), 333-340.
[http://dx.doi.org/10.3727/096504013X13657689382734] [PMID: 23924853]
[28]
Ullah, A.; Aziz, T.; Ullah, N.; Nawaz, T. Molecular mechanisms of sanguinarine in cancer prevention and treatment. Anticancer. Agents Med. Chem., 2023, 23(7), 765-778.
[http://dx.doi.org/10.2174/1871520622666220831124321] [PMID: 36045531]
[29]
Foldager, C.B.; Nyengaard, J.R.; Lind, M.; Spector, M. A stereological method for the quantitative evaluation of cartilage repair tissue. Cartilage, 2015, 6(2), 123-132.
[http://dx.doi.org/10.1177/1947603514560655] [PMID: 26069715]
[30]
Gundersen, H.J.G.; Jensen, E.B. The efficiency of systematic sampling in stereology and its prediction. J. Microsc., 1987, 147(3), 229-263.
[http://dx.doi.org/10.1111/j.1365-2818.1987.tb02837.x] [PMID: 3430576]
[31]
Park, CG; Hartl, CA; Schmid, D; Carmona, EM; Kim, HJ; Goldberg, MS Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci Transl Med., 2018, 10(433), Eaar1916.
[http://dx.doi.org/10.1126/scitranslmed.aar1916]
[32]
Petrelli, F.; Barni, S. Role of HER2-neu as a prognostic factor for survival and relapse in pT1a-bN0M0 breast cancer: A systematic review of the literature with a pooled-analysis. Med. Oncol., 2012, 29(4), 2586-2593.
[http://dx.doi.org/10.1007/s12032-012-0201-4] [PMID: 22415399]
[33]
Criscitiello, C.; Curigliano, G. Immunotherapy of breast cancer. Prog. Tumor Res., 2015, 42, 30-43.
[http://dx.doi.org/10.1159/000437183] [PMID: 26377084]
[34]
Bouwer, N.I.; Steenbruggen, T.G.; van Rosmalen, J.; Rier, H.N.; Kitzen, J.J.E.M.; Van Bekkum, M.L.; Tije, A.J.T.; de Jong, P.C.; Drooger, J.C.; Holterhues, C.; Smorenburg, C.H.; Kofflard, M.J.M.; Boersma, E.; Sonke, G.S.; Levin, M.D.; Jager, A. Cardiotoxicity during long-term trastuzumab use in patients with HER2-positive metastatic breast cancer: Who needs cardiac monitoring? Breast Cancer Res. Treat., 2021, 186(3), 851-862.
[http://dx.doi.org/10.1007/s10549-020-06039-w] [PMID: 33394273]
[35]
Zhang, H.; Wang, Y.; Wu, Y.; Jiang, X.; Tao, Y.; Yao, Y.; Peng, Y.; Chen, X.; Fu, Y.; Yu, L.; Wang, R.; Lai, Q.; Lai, W.; Li, W.; Kang, Y.; Yi, S.; Lu, Y.; Gou, L.; Wu, M.; Yang, J. Therapeutic potential of an anti-HER2 single chain antibody-DM1 conjugates for the treatment of HER2-positive cancer. Signal Transduct. Target. Ther., 2017, 2(1), 17015.
[http://dx.doi.org/10.1038/sigtrans.2017.15] [PMID: 29263918]
[36]
Neo, J.H.; Malcontenti-Wilson, C.; Muralidharan, V.; Christophi, C. Effect of ACE inhibitors and angiotensin II receptor antagonists in a mouse model of colorectal cancer liver metastases. J. Gastroenterol. Hepatol., 2007, 22(4), 577-584.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04797.x] [PMID: 17376054]
[37]
von Hörsten, S.; Helfritz, A.; Kuhlmann, S.; Nave, H.; Tschernig, T.; Pabst, R.; Ben-Eliyahu, S.; Meyer, D.; Schmidt, R.E.; Schmitz, C. Stereological quantification of carboxyfluorescein-labeled rat lung metastasis: a new method for the assessment of natural killer cell activity and tumor adhesion in vivo and in situ. J. Immunol. Methods, 2000, 239(1-2), 25-34.
[http://dx.doi.org/10.1016/S0022-1759(00)00162-9] [PMID: 10821944]
[38]
Santamaría, L.; Ingelmo, I.; Teba, F. Dimensional study of prostate cancer using stereological tools. J. Anat., 2022, 240(1), 145-154.
[http://dx.doi.org/10.1111/joa.13524] [PMID: 34355401]
[39]
Wilson, K.S.; Roberts, H.; Leek, R.; Harris, A.L.; Geradts, J. Differential gene expression patterns in HER2/neu-positive and -negative breast cancer cell lines and tissues. Am. J. Pathol., 2002, 161(4), 1171-1185.
[http://dx.doi.org/10.1016/S0002-9440(10)64394-5] [PMID: 12368191]
[40]
Rosenberg, H.F.; Dyer, K.D.; Foster, P.S. Eosinophils: Changing perspectives in health and disease. Nat. Rev. Immunol., 2013, 13(1), 9-22.
[http://dx.doi.org/10.1038/nri3341] [PMID: 23154224]
[41]
Elmore, S.A.; Dixon, D.; Hailey, J.R.; Harada, T.; Herbert, R.A.; Maronpot, R.R.; Nolte, T.; Rehg, J.E.; Rittinghausen, S.; Rosol, T.J.; Satoh, H.; Vidal, J.D.; Willard-Mack, C.L.; Creasy, D.M. Recommendations from the INHAND Apoptosis/necrosis working group. Toxicol. Pathol., 2016, 44(2), 173-188.
[http://dx.doi.org/10.1177/0192623315625859] [PMID: 26879688]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy