Abstract
Background: Excessive insulin is the leading cause of metabolic syndromes besides hyperinsulinemia. Insulin-lowering therapeutic peptides have been poorly studied and warrant urgent attention.
Objectives: The main purpose of this study, was to introduce a novel peptide COX52-69 that was initially isolated from the porcine small intestine and possessed the ability to inhibit insulin secretion under high-glucose conditions by modulating large conductance Ca2+-activated K+ channels (BK channels) activity.
Methods and Results: Enzyme-linked immunosorbent assay results indicate that COX52-69 supressed insulin release induced by high glucose levels in pancreatic islets and animal models. Furthermore, electrophysiological data demonstrated that COX52-69 can increase BK channel currents and hyperpolarize cell membranes. Thus, cell excitability decreased, corresponding to a reduction in insulin secretion.
Conclusion: Our study provides a novel approach to modulate high glucose-stimulated insulin secretion in patients with hyperinsulinemia.
Graphical Abstract
[http://dx.doi.org/10.1038/s41467-022-34391-6] [PMID: 36335114]
[http://dx.doi.org/10.1530/JOE-16-0449] [PMID: 28052999]
[http://dx.doi.org/10.1007/s11892-017-0955-3] [PMID: 29058131];
(b) Poirier, P.; Giles, T.D.; Bray, G.A.; Hong, Y.; Stern, J.S.; Pi-Sunyer, F.X.; Eckel, R.H. Obesity and cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss. Circulation, 2006, 113(6), 898-918.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.171016] [PMID: 16380542];
(c) Hamano, K.; Akita, K.; Takeuchi, Y.; Suwa, T.; Takeda, J.; Dodo, S. Glucose-responsive Insulinoma with Insulin Hypersecretion Suppressed by Metformin. Intern. Med., 2019, 58(24), 3563-3568.
[http://dx.doi.org/10.2169/internalmedicine.3318-19] [PMID: 31462593]
[http://dx.doi.org/10.1016/j.trecan.2019.12.003] [PMID: 32061306]
[http://dx.doi.org/10.1038/s41574-020-0329-9] [PMID: 32127696]
[http://dx.doi.org/10.1002/ardp.202100034] [PMID: 33913195];
(b) Dahiya, R.; Dahiya, S.; Fuloria, N.K.; Mourya, R.; Dahiya, S.; Fuloria, S.; Kumar, S.; Shrivastava, J.; Saharan, R.; Chennupati, S.V.; Patel, J.K. Natural Bridged Bicyclic Peptide Macrobiomolecules from Celosia argentea and Amanita phalloides. Mini Rev. Med. Chem., 2022, 22(13), 1772-1788.
[http://dx.doi.org/10.2174/1389557522666220113122117] [PMID: 35049431];
(c) Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov., 2021, 20(4), 309-325.
[http://dx.doi.org/10.1038/s41573-020-00135-8] [PMID: 33536635]
[http://dx.doi.org/10.1007/978-1-4939-2999-3_5] [PMID: 26424261];
(b) Chan, W. C.; White, P. D. Fmoc Solid-Phase Peptide Synthesis: A Practical Approach., 2000.
[http://dx.doi.org/10.1111/j.1432-1033.1988.tb14088.x] [PMID: 3289918]
[http://dx.doi.org/10.1016/j.regpep.2004.04.013] [PMID: 15256280];
(b) Wang, J.; Zeng, Y.; Yan, D.; Lu, J.; Chen, Z.; Li, C. Purification and characterization of novel truncated fragments of bioactive proteins from porcine intestine with effects on insulin secretion. Sci. Res. Essays, 2012, 7(34), 3026-3031.
[http://dx.doi.org/10.5897/SRE12.033]
[http://dx.doi.org/10.1016/S0016-5085(98)70209-4] [PMID: 9679048];
(b) Velasco, M.; Larqué, C.; Díaz-García, C.M.; Sanchez-Soto, C.; Hiriart, M. Rat pancreatic beta-cell culture. Methods Mol. Biol., 2018, 1727, 261-273.
[http://dx.doi.org/10.1007/978-1-4939-7571-6_20] [PMID: 29222788]
[http://dx.doi.org/10.1210/en.2005-0803] [PMID: 16109783];
(b) Houamed, K.M.; Sweet, I.R.; Satin, L.S. BK channels mediate a novel ionic mechanism that regulates glucose-dependent electrical activity and insulin secretion in mouse pancreatic β-cells. J. Physiol., 2010, 588(18), 3511-3523.
[http://dx.doi.org/10.1113/jphysiol.2009.184341] [PMID: 20643769]
[http://dx.doi.org/10.1096/fj.15-270553] [PMID: 25808537]
[http://dx.doi.org/10.1007/978-90-481-3271-3_7] [PMID: 20217497];
(b) Göpel, S.O.; Kanno, T.; Barg, S.; Weng, X.G.; Gromada, J.; Rorsman, P. Regulation of glucagon release in mouse α-cells by K ATP channels and inactivation of TTX-sensitive Na + channels. J. Physiol., 2000, 528(3), 509-520.
[http://dx.doi.org/10.1111/j.1469-7793.2000.00509.x] [PMID: 11060128];
(c) Remedi, M.S.; Rocheleau, J.V.; Tong, A.; Patton, B.L.; McDaniel, M.L.; Piston, D.W.; Koster, J.C.; Nichols, C.G. Hyperinsulinism in mice with heterozygous loss of KATP channels. Diabetologia, 2006, 49(10), 2368-2378.
[http://dx.doi.org/10.1007/s00125-006-0367-4] [PMID: 16924481]
[http://dx.doi.org/10.1507/endocrj.K08E-172] [PMID: 18845907];
(b) Yamato, E.; Tashiro, F.; Miyazaki, J. Microarray analysis of novel candidate genes responsible for glucose-stimulated insulin secretion in mouse pancreatic β-cell line MIN6. PLoS One, 2013, 8(4), e61211.
[http://dx.doi.org/10.1371/journal.pone.0061211] [PMID: 23560115]
[http://dx.doi.org/10.1152/physrev.00001.2016] [PMID: 27807200];
(b) Shangjian, L.; Zhengrong, D.; Liqiang, W.; Lei, L.; Wenting, A.; Xiling, S.; Xinyi, C. Reduction of large-conductance Ca2+-activated K+ channel with compensatory increase of nitric oxide in insulin resistant rats. Diabetes Metab. Res. Rev., 2011, 27(5), 461-469.
[http://dx.doi.org/10.1002/dmrr.1196] [PMID: 21425425];
(c) Neves, C.; Milton, G.; Cesaretti, M.; Kohlmann, N.; Agostinho, T.; Zanella, M.T.; Ribeiro, A.B.; Osvaldo, K. Am. J. Hypertens., (S1), A218-A218.;
(d) Chamberlain, L.H.; Shipston, M.J.; Gould, G.W. Regulatory effects of protein S-acylation on insulin secretion and insulin action. Open Biol., 2021, 11(3), 210017.
[http://dx.doi.org/10.1098/rsob.210017] [PMID: 33784857]
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0157] [PMID: 20947488];
(b) Dev, R.; Bruera, E.; Dalal, S. Insulin resistance and body composition in cancer patients. Ann. Oncol., 2018, 29, ii18-ii26.
[http://dx.doi.org/10.1093/annonc/mdx815]