Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

MicroRNA3650 Promotes Gastric Cancer Proliferation and Migration through the PTEN/PI3K-AKT-mTOR and Hippo Pathways

Author(s): Xiansheng Yang*, Juncai Wen, Qingjun He, Shuoshan Wang, Qiang Ruan, Quanxing Liao, Jinfu He, Shuxian Fang, Chang Liu and Hongsheng Tang*

Volume 30, Issue 11, 2023

Published on: 28 November, 2023

Page: [966 - 973] Pages: 8

DOI: 10.2174/0109298665265642231020043809

Price: $65

Abstract

Background: Gastric cancer (GC) is a malignant tumor with seriously poor outcomes. Studies have shown that microRNAs (miRNAs) play an omnifarious regulatory effect in GC. However, the role of miR-3650 in the progression of GC is not well known.

Methods: In this study, miR-3650 expression and its clinical significance were determined using clinical specimens. The biological functions of miR-3650 were determined in gastric cancer cell lines through CCK-8, cell scratch, and transwell experiments. Bioinformatics predictions, combined with Western blot experiments, were employed to explore its downstream molecular targets.

Results: We observed that miR-3650 was overexpressed in GC specimens and most cell lines, i.e., 77.8% (MKN28, SNU1, AGS, MKN45, N87, BGC823 and SGC7901). The overexpression correlated with advanced T-stage, N-stage, M-stage, and TNM-stage. Furthermore, miR-3650 promoted the proliferation and migration of gastric cancer cells, and its overexpression promoted the PI3K-AKT-mTOR pathway and inhibited the PTEN and hippo pathways. The potassium ion signaling pathway was also involved in the biological process of miR-3650 promoting cancer.

Conclusion: Therefore, we concluded that miR-3650/PTEN/PI3K-AKT-mTOR and miR-3650/hippo pathways are vital in the progression of GC and serve as novel targets for GC therapy.

« Previous
Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.T.; Lordick, F. Gastric cancer. Lancet, 2020, 396(10251), 635-648.
[http://dx.doi.org/10.1016/S0140-6736(20)31288-5] [PMID: 32861308]
[3]
Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int. J. Mol. Sci., 2020, 21(11), 4012.
[http://dx.doi.org/10.3390/ijms21114012] [PMID: 32512697]
[4]
Digklia, A.; Wagner, A.D. Advanced gastric cancer: Current treatment landscape and future perspectives. World J. Gastroenterol., 2016, 22(8), 2403-2414.
[http://dx.doi.org/10.3748/wjg.v22.i8.2403] [PMID: 26937129]
[5]
Eusebi, L.H.; Telese, A.; Marasco, G.; Bazzoli, F.; Zagari, R.M. Gastric cancer prevention strategies: A global perspective. J. Gastroenterol. Hepatol., 2020, 35(9), 1495-1502.
[http://dx.doi.org/10.1111/jgh.15037] [PMID: 32181516]
[6]
Song, Z.; Wu, Y.; Yang, J.; Yang, D.; Fang, X. Progress in the treatment of advanced gastric cancer. Tumour Biol., 2017, 39(7) p. 1010428317714626
[http://dx.doi.org/10.1177/1010428317714626] [PMID: 28671042]
[7]
Sexton, R.E.; Al Hallak, M.N.; Diab, M.; Azmi, A.S. Gastric cancer: A comprehensive review of current and future treatment strategies. Cancer Metastasis Rev., 2020, 39(4), 1179-1203.
[http://dx.doi.org/10.1007/s10555-020-09925-3] [PMID: 32894370]
[8]
Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol., 2018, 141(4), 1202-1207.
[http://dx.doi.org/10.1016/j.jaci.2017.08.034] [PMID: 29074454]
[9]
Saliminejad, K.; Khorram, K.H.R.; Soleymani, F.S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol., 2019, 234(5), 5451-5465.
[http://dx.doi.org/10.1002/jcp.27486] [PMID: 30471116]
[10]
Fabian, M.R.; Sonenberg, N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol., 2012, 19(6), 586-593.
[http://dx.doi.org/10.1038/nsmb.2296] [PMID: 22664986]
[11]
Lee, Y.S.; Dutta, A. MicroRNAs in cancer. Annu. Rev. Pathol., 2009, 4(1), 199-227.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092222] [PMID: 18817506]
[12]
Zhang, B.; Pan, X.; Cobb, G.P.; Anderson, T.A. microRNAs as oncogenes and tumor suppressors. Dev. Biol., 2007, 302(1), 1-12.
[http://dx.doi.org/10.1016/j.ydbio.2006.08.028] [PMID: 16989803]
[13]
Lee, Y.R.; Chen, M.; Pandolfi, P.P. The functions and regulation of the PTEN tumour suppressor: New modes and prospects. Nat. Rev. Mol. Cell Biol., 2018, 19(9), 547-562.
[http://dx.doi.org/10.1038/s41580-018-0015-0] [PMID: 29858604]
[14]
Chalhoub, N.; Baker, S.J. PTEN and the PI3-kinase pathway in cancer. Annu. Rev. Pathol., 2009, 4(1), 127-150.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092311] [PMID: 18767981]
[15]
Ma, S.; Meng, Z.; Chen, R.; Guan, K.L. The hippo pathway: Biology and pathophysiology. Annu. Rev. Biochem., 2019, 88(1), 577-604.
[http://dx.doi.org/10.1146/annurev-biochem-013118-111829] [PMID: 30566373]
[16]
Calses, P.C.; Crawford, J.J.; Lill, J.R.; Dey, A. Hippo pathway in cancer: Aberrant regulation and therapeutic opportunities. Trends Cancer, 2019, 5(5), 297-307.
[http://dx.doi.org/10.1016/j.trecan.2019.04.001] [PMID: 31174842]
[17]
Mohajan, S.; Jaiswal, P.K.; Vatanmakarian, M.; Yousefi, H.; Sankaralingam, S.; Alahari, S.K.; Koul, S.; Koul, H.K. Hippo pathway: Regulation, deregulation and potential therapeutic targets in cancer. Cancer Lett., 2021, 507, 112-123.
[http://dx.doi.org/10.1016/j.canlet.2021.03.006] [PMID: 33737002]
[18]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[19]
Balacescu, O.; Sur, D.; Cainap, C.; Visan, S.; Cruceriu, D.; Manzat-Saplacan, R.; Muresan, M.S.; Balacescu, L.; Lisencu, C.; Irimie, A. The impact of miRNA in colorectal cancer progression and its liver metastases. Int. J. Mol. Sci., 2018, 19(12), 3711.
[http://dx.doi.org/10.3390/ijms19123711] [PMID: 30469518]
[20]
Shin, V.Y.; Chu, K.M. MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J. Gastroenterol., 2014, 20(30), 10432-10439.
[http://dx.doi.org/10.3748/wjg.v20.i30.10432] [PMID: 25132759]
[21]
Alessandrini, L.; Manchi, M.; De Re, V.; Dolcetti, R.; Canzonieri, V. Proposed molecular and miRNA classification of gastric cancer. Int. J. Mol. Sci., 2018, 19(6), 1683.
[http://dx.doi.org/10.3390/ijms19061683] [PMID: 29882766]
[22]
Wu, J.; Huang, W.J.; Xi, H.L.; Liu, L.Y.; Wang, S.T.; Fan, W.Z.; Peng, B.G. Tumor-suppressive miR-3650 inhibits tumor metastasis by directly targeting NFASC in hepatocellular carcinoma. Aging (Albany NY), 2019, 11(11), 3432-3444.
[http://dx.doi.org/10.18632/aging.101981] [PMID: 31163018]
[23]
Chakraborty, S.; Nath, D. A study on microRNAs targeting the genes overexpressed in lung cancer and their codon usage patterns. Mol. Biotechnol., 2022, 64(10), 1095-1119.
[http://dx.doi.org/10.1007/s12033-022-00491-3] [PMID: 35435592]
[24]
Ruan, Q.; Yang, X.Z.; Zhu, L.; He, Q.J.; Zhu, S.Y.; Wen, Y.F.; Ma, L. High miR-3650 expression in nasopharyngeal carcinoma and its clinical prognostic values. Pathol. Res. Pract., 2021, 224153506
[http://dx.doi.org/10.1016/j.prp.2021.153506] [PMID: 34091390]
[25]
Xu, W.T.; Yang, Z.; Lu, N.H. Roles of PTEN (Phosphatase and Tensin Homolog) in gastric cancer development and progression. Asian Pac. J. Cancer Prev., 2014, 15(1), 17-24.
[http://dx.doi.org/10.7314/APJCP.2014.15.1.17] [PMID: 24528021]
[26]
Hu, M.; Zhu, S.; Xiong, S.; Xue, X.; Zhou, X. MicroRNAs and the PTEN/PI3K/Akt pathway in gastric cancer (Review). Oncol. Rep., 2019, 41(3), 1439-1454.
[http://dx.doi.org/10.3892/or.2019.6962] [PMID: 30628706]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy