Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

First Display of Haloalkane Dehalogenase LinB on the Surface of Bacillus subtilis Spore

Author(s): Fuli Wang, Xiujie Liu, Tianyu Song, Chengxin Pei, Qibin Huang, Hui Jiang* and Hailing Xi*

Volume 30, Issue 11, 2023

Published on: 08 November, 2023

Page: [959 - 965] Pages: 7

DOI: 10.2174/0109298665238177231020044054

Price: $65

conference banner
Abstract

Background: LinB, as a Haloalkane dehalogenase, has good catalytic activity for many highly toxic and recalcitrant compounds, and can realize the elimination of chemical weapons HD in a green non-toxic mode.

Objectives: In order to display Haloalkane dehalogenase LinB on the surface of Bacillus subtilis spore.

Methods: We have constituted the B. subtilis spore surface display system of halogenated alkanes dehalogenase LinB by gene recombination.

Results: Data revealed that LinB can display on spore surface successfully. The hydrolyzing HD analogue 2-chloroethyl ethylsulfide (2-CEES) activity of displayed LinB spores was 4.30±0.09 U/mL, and its specific activity was 0.78±0.03U/mg. Meanwhile, LinB spores showed a stronger stress resistance activity on 2-CEES than free LinB. This study obtained B. subtilis spores of LinB (phingobium japonicum UT26) with enzyme activity that was not reported before.

Conclusion: Spore surface display technology uses resistance spore as the carrier to guarantee LinB activity, enhances its stability, and reduces the production cost, thus expanding the range of its application.

Graphical Abstract

[1]
Janssen, D.B. Evolving haloalkane dehalogenases. Curr. Opin. Chem. Biol., 2004, 8(2), 150-159.
[http://dx.doi.org/10.1016/j.cbpa.2004.02.012] [PMID: 15062775]
[2]
Marques, S.M.; Dunajova, Z.; Prokop, Z.; Chaloupkova, R.; Brezovsky, J.; Damborsky, J. Catalytic cycle of haloalkane dehalogenases toward unnatural substrates explored by computational modeling. J. Chem. Inf. Model., 2017, 57(8), 1970-1989.
[http://dx.doi.org/10.1021/acs.jcim.7b00070] [PMID: 28696117]
[3]
Fibinger, M.P.C.; Davids, T.; Böttcher, D.; Bornscheuer, U.T. A selection assay for haloalkane dehalogenase activity based on toxic substrates. Appl. Microbiol. Biotechnol., 2015, 99(21), 8955-8962.
[http://dx.doi.org/10.1007/s00253-015-6686-y] [PMID: 25998660]
[4]
Nagata, Y.; Ohtsubo, Y.; Tsuda, M. Properties and biotechnological applications of natural and engineered haloalkane dehalogenases. Appl. Microbiol. Biotechnol., 2015, 99(23), 9865-9881.
[http://dx.doi.org/10.1007/s00253-015-6954-x] [PMID: 26373728]
[5]
Nagata, Y.; Prokop, Z.; Sato, Y.; Jerabek, P.; Kumar, A.; Ohtsubo, Y.; Tsuda, M.; Damborský, J. Degradation of β-Hexachlorocyclohexane by Haloalkane Dehalogenase LinB from Sphingomonas paucimobilis UT26. Appl. Environ. Microbiol., 2005, 71(4), 2183-2185.
[http://dx.doi.org/10.1128/AEM.71.4.2183-2185.2005] [PMID: 15812056]
[6]
Bala, K.; Geueke, B.; Miska, M.E.; Rentsch, D.; Poiger, T.; Dadhwal, M.; Lal, R.; Holliger, C.; Kohler, H.P.E. Enzymatic conversion of ε-hexachlorocyclohexane and a heptachlorocyclohexane isomer, two neglected components of technical hexachlorocyclohexane. Environ. Sci. Technol., 2012, 46(7), 4051-4058.
[http://dx.doi.org/10.1021/es204143x] [PMID: 22385211]
[7]
Heeb, N.V.; Zindel, D.; Geueke, B.; Kohler, H.P.E.; Lienemann, P. Biotransformation of Hexabromocyclododecanes (HBCDs) with LinB-an HCH-converting bacterial enzyme. Environ. Sci. Technol., 2012, 46(12), 6566-6574.
[http://dx.doi.org/10.1021/es2046487] [PMID: 22578084]
[8]
Heeb, N.V.; Zindel, D.; Graf, H.; Azara, V.; Bernd Schweizer, W.; Geueke, B.; Kohler, H.P.E.; Lienemann, P. Stereochemistry of LinB-catalyzed biotransformation of δ-HBCD to 1R,2R, 5S,6R,9R,10S-pentabromocyclododecanol. Chemosphere, 2013, 90(6), 1911-1919.
[http://dx.doi.org/10.1016/j.chemosphere.2012.10.019] [PMID: 23177717]
[9]
Tang, X.; Zhang, R.; Li, Y.; Zhang, Q.; Wang, W. Enantioselectivity of haloalkane dehalogenase LinB on the degradation of 1,2-dichloropropane: A QM/MM study. Bioorg. Chem., 2017, 73, 16-23.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.015] [PMID: 28527381]
[10]
Prokop, Z.; Opluštil, F.; DeFrank, J.; Damborský, J. Enzymes fight chemical weapons. Biotechnol. J., 2006, 1(12), 1370-1380.
[http://dx.doi.org/10.1002/biot.200600166] [PMID: 17136732]
[11]
Wang, F.; Song, T.; Jiang, H.; Pei, C.; Huang, Q.; Xi, H. Bacillus subtilis spore surface display of haloalkane dehalogenase DhaA. Curr. Microbiol., 2019, 76(10), 1161-1167.
[http://dx.doi.org/10.1007/s00284-019-01723-7] [PMID: 31278426]
[12]
Dai, X.; Liu, M.; Pan, K.; Yang, J. Surface display of OmpC of Salmonella serovar Pullorum on Bacillus subtilis spores. PLoS One, 2018, 13(1), e0191627.
[http://dx.doi.org/10.1371/journal.pone.0191627] [PMID: 29370221]
[13]
Wang, H.; Wang, Y.; Yang, R. Recent progress in Bacillus subtilis spore-surface display: Concept, progress, and future. Appl. Microbiol. Biotechnol., 2017, 101(3), 933-949.
[http://dx.doi.org/10.1007/s00253-016-8080-9] [PMID: 28062973]
[14]
Chen, H.; Ullah, J.; Jia, J. Progress in Bacillus subtilis spore surface display technology towards environment, vaccine development, and biocatalysis. J. Mol. Microbiol. Biotechnol., 2017, 27(3), 159-167.
[PMID: 28605732]
[15]
Iwanicki, A.; Piątek, I.; Stasiłojć, M.; Grela, A.; Łęga, T.; Obuchowski, M.; Hinc, K. A system of vectors for Bacillus subtilis spore surface display. Microb. Cell Fact., 2014, 13(1), 30.
[http://dx.doi.org/10.1186/1475-2859-13-30] [PMID: 24568122]
[16]
Wang, N.; Chang, C.; Yao, Q.; Li, G.; Qin, L.; Chen, L.; Chen, K. Display of Bombyx mori alcohol dehydrogenases on the Bacillus subtilis spore surface to enhance enzymatic activity under adverse conditions. PLoS One, 2011, 6(6), e21454.
[http://dx.doi.org/10.1371/journal.pone.0021454] [PMID: 21738670]
[17]
Nelson, D.L.; Kornberg, A. Biochemical studies of bacterial sporulation and germination. 18. Free amino acids in spores. J. Biol. Chem., 1970, 245(5), 1128-1136.
[http://dx.doi.org/10.1016/S0021-9258(18)63298-3] [PMID: 4984698]
[18]
Monroe, A.; Setlow, P. Localization of the transglutaminase cross-linking sites in the Bacillus subtilis spore coat protein GerQ. J. Bacteriol., 2006, 188(21), 7609-7616.
[http://dx.doi.org/10.1128/JB.01116-06] [PMID: 16936016]
[19]
Saleem, M.; Brim, H.; Hussain, S.; Arshad, M.; Leigh, M.B.; Zia-ul-hassan Perspectives on microbial cell surface display in bioremediation. Biotechnol. Adv., 2008, 26(2), 151-161.
[http://dx.doi.org/10.1016/j.biotechadv.2007.10.002] [PMID: 18068937]
[20]
Mingmongkolchai, S.; Panbangred, W. Display of Escherichia coli Phytase on the Surface of Bacillus subtilis Spore Using CotG as an Anchor Protein. Appl. Biochem. Biotechnol., 2018, 29(7), 256-267.
[PMID: 30088242]
[21]
Giglio, R.; Fani, R.; Isticato, R.; De Felice, M.; Ricca, E.; Baccigalupi, L. Organization and evolution of the cotG and cotH genes of Bacillus subtilis. J. Bacteriol., 2011, 193(23), 6664-6673.
[http://dx.doi.org/10.1128/JB.06121-11] [PMID: 21984783]
[22]
Kim, J.; Schumann, W. Display of proteins on Bacillus subtilis endospores. Cell. Mol. Life Sci., 2009, 66(19), 3127-3136.
[http://dx.doi.org/10.1007/s00018-009-0067-6] [PMID: 19554258]
[23]
Kim, J.H.; Roh, C.; Lee, C.W.; Kyung, D.; Choi, S.K.; Jung, H.C.; Pan, J.G.; Kim, B.G. Bacterial surface display of GFP(uv) on Bacillus subtilis spores. J. Microbiol. Biotechnol., 2007, 17(4), 677-680.
[PMID: 18051283]
[24]
Rostami, A.; Hinc, K.; Goshadrou, F.; Shali, A.; Bayat, M.; Hassanzadeh, M.; Amanlou, M.; Eslahi, N.; Ahmadian, G. Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide. Pestic. Biochem. Physiol., 2017, 140, 17-23.
[http://dx.doi.org/10.1016/j.pestbp.2017.05.008] [PMID: 28755689]
[25]
Hinc, K.; Isticato, R.; Dembek, M.; Karczewska, J.; Iwanicki, A.; Peszyńska-Sularz, G.; De Felice, M.; Obuchowski, M.; Ricca, E. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb. Cell Fact., 2010, 9(1), 2.
[http://dx.doi.org/10.1186/1475-2859-9-2] [PMID: 20082702]
[26]
Tarahomjoo, S.; Katakura, Y.; Shioya, S. New strategy for enhancement of microbial viability in simulated gastric conditions based on display of starch-binding domain on cell surface. J. Biosci. Bioeng., 2008, 105(5), 503-507.
[http://dx.doi.org/10.1263/jbb.105.503] [PMID: 18558341]
[27]
Lee, S.Y.; Choi, J.H.; Xu, Z. Microbial cell-surface display. Trends Biotechnol., 2003, 21(1), 45-52.
[http://dx.doi.org/10.1016/S0167-7799(02)00006-9] [PMID: 12480350]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy