Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Review Article

1,3-Thiazole Derivatives as a Promising Scaffold in Medicinal Chemistry: A Recent Overview

Author(s): Pragati Kushwaha* and Shashi Pandey*

Volume 22, Issue 3, 2023

Published on: 22 November, 2023

Page: [133 - 163] Pages: 31

DOI: 10.2174/0118715230276678231102150158

Price: $65

Abstract

The thiazole ring is a unique heterocyclic motif among heterocyclic compounds. This five-member ring with one nitrogen and one sulphur atom displays a wide array of pharmacological activities, including anti-inflammatory, antimicrobial, anticancer, antidiabetic, antiviral, etc., by acting on several targets. Its broad range of medical applications has inspired us to study this opulent heterocyclic molecule. The current review summarizes synthetic approaches for the preparation of thiazole derivatives in brief and discusses the promising biological activities of this scaffold. This review will be useful to the drug discovery community and will facilitate the synthesis and development of novel and potent thiazole derivatives, which may serve as lead molecules for the treatment of various diseases.

Graphical Abstract

[1]
Wen, X.; Wu, X.; Jin, R.; Lu, X. Privileged heterocycles for DNAencoded library design and hit-to-lead optimization. Eur. J. Med. Chem., 2023, 248, 115079.
[http://dx.doi.org/10.1016/j.ejmech.2022.115079] [PMID: 36669370]
[2]
Pathania, S.; Narang, R.K.; Rawal, R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem., 2019, 180, 486-508.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.043] [PMID: 31330449]
[3]
Elattar, K.M.; El-Khateeb, A.Y.; Hamed, S.E. Insights into the recent progress in the medicinal chemistry of pyranopyrimidine analogs. RSC Med. Chem., 2022, 13(5), 522-567.
[http://dx.doi.org/10.1039/D2MD00076H] [PMID: 35694689]
[4]
Kabir, E.; Uzzaman, M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem., 2022, 4, 100606.
[http://dx.doi.org/10.1016/j.rechem.2022.100606]
[5]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[6]
(a) Singh, A.; Malhotra, D.; Singh, K.; Chadha, R.; Bedi, P.M.S. Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. J. Mol. Struct., 2022, 1266, 133479.
[http://dx.doi.org/10.1016/j.molstruc.2022.133479];
(b) Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, 97, 699-718.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.015] [PMID: 25934508]
[7]
Upadhyay, M.P.; West, E.P.; Sharma, A.P. Keratitis due to Aspergillus flavus successfully treated with thiabendazole. Br. J. Ophthalmol., 1980, 64(1), 30-32.
[http://dx.doi.org/10.1136/bjo.64.1.30] [PMID: 6766732]
[8]
Zbinden, G. Molecular Modification in the Development of Newer Anti-infective Agents. Adv. Chem. Ser., 1964, 45(3), 25-38.
[http://dx.doi.org/10.1021/ba-1964-0045.ch003]
[9]
Jian, W.U.; Chun-hui, W.; Song, L.; Zhi-bing, Z. Synthesis of febuxostat, an anti gout drug. Zhongguo Yaowu Huaxue Zazhi, 2008, 4, 259-262.
[10]
Lindauer, M.; Hochhaus, A. Dasatinib. Recent Results Cancer Res., 2014, 201, 27-65.
[http://dx.doi.org/10.1007/978-3-642-54490-3_2] [PMID: 24756784]
[11]
Tricot, G.; Jayaram, H.N.; Weber, G.; Hoffman, R. Tiazofurin: Biological effects and clinical uses. Int. J. Cell Cloning, 1990, 8(3), 161-170.
[http://dx.doi.org/10.1002/stem.5530080303] [PMID: 2189014]
[12]
De Clercq, E. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int. J. Antimicrob. Agents, 2009, 33(4), 307-320.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.010] [PMID: 19108994]
[13]
Pfaller, M.A.; Messer, S.A.; Hollis, R.J.; Jones, R.N. Antifungal activities of posaconazole, ravuconazole, and voriconazole compared to those of itraconazole and amphotericin B against 239 clinical isolates of Aspergillus spp. and other filamentous fungi: report from SENTRY Antimicrobial Surveillance Program, 2000. Antimicrob. Agents Chemother., 2002, 46(4), 1032-1037.
[http://dx.doi.org/10.1128/AAC.46.4.1032-1037.2002] [PMID: 11897586]
[14]
White, A.C. Jr Nitazoxanide: an important advance in anti-parasitic therapy. Am. J. Trop. Med. Hyg., 2003, 68(4), 382-383.
[http://dx.doi.org/10.4269/ajtmh.2003.68.382] [PMID: 12875283]
[15]
(a) Lednicer, D.; Mitscher, L.A.; George, G.I. Org Chem Drug Synth., 1990, 4, 95-97.;
(b) Rehman, M.Z.; Anwar, C.J.; Ahmad, S. An Efficient Synthesis of 2-Alkyl-4-hydroxy-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxides. Bull. Korean Chem. Soc., 2005, 26(11), 1771-1775.
[http://dx.doi.org/10.5012/bkcs.2005.26.11.1771]
[16]
Kiuchi, Y.; Isobe, Y.; Kijima, H.; Muramatsu, M.; Otomo, S. effect of the new ANTI-ULCER drug SU-840 on prostaglandin metabolism in rat gastric mucosa. Jpn. J. Pharmacol., 1994, 64(1), 281.https://eurekamag.com/research/031/119/031119566.php http://dx.doi.org/10.1016/S0021-5198(19)50759-4
[17]
Nauen, R.; Ebbinghaus-Kintscher, U.; Salgado, V.L.; Kaussmann, M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol., 2003, 76(2), 55-69.
[http://dx.doi.org/10.1016/S0048-3575(03)00065-8]
[18]
Borelli, C.; Schaller, M.; Niewerth, M.; Nocker, K.; Baasner, B.; Berg, D.; Tiemann, R.; Tietjen, K.; Fugmann, B.; Lang-Fugmann, S.; Korting, H.C. Modes of action of the new arylguanidine abafungin beyond interference with ergosterol biosynthesis and in vitro activity against medically important fungi. Chemotherapy, 2008, 54(4), 245-259.
[http://dx.doi.org/10.1159/000142334] [PMID: 18587237]
[19]
Matsueda, K.; Hongo, M.; Tack, J.; Aoki, H.; Saito, Y.; Kato, H. Clinical trial: dose-dependent therapeutic efficacy of acotiamide hydrochloride (Z-338) in patients with functional dyspepsia - 100 mg t.i.d. is an optimal dosage. Neurogastroenterol. Motil., 2010, 22(6), 618-e173.
[http://dx.doi.org/10.1111/j.1365-2982.2009.01449.x] [PMID: 20059698]
[20]
Bakris, G.; Bank, A.; Kass, D.; Neutel, J.; Preston, R.; Oparil, S. Advanced glycation end-product cross-link breakersA novel approach to cardiovascular pathologies related to the aging process. Am. J. Hypertens., 2004, 17(12), S23-S30.
[http://dx.doi.org/10.1016/j.amjhyper.2004.08.022] [PMID: 15607432]
[21]
Worlock, A. Barbiturate poisoning treated with amiphenazole and bemegride. BMJ, 1956, 2(5001), 1099-1101.
[http://dx.doi.org/10.1136/bmj.2.5001.1099] [PMID: 13364395]
[22]
Reilly, T.M. Physiological dependence on, and symptoms of withdrawal from, chlormethiazole. Br. J. Psychiatry, 1976, 128(4), 375-378.
[http://dx.doi.org/10.1192/bjp.128.4.375] [PMID: 1260235]
[23]
Yahav, D.; Paul, M.; Fraser, A.; Sarid, N.; Leibovici, L. Efficacy and safety of cefepime: a systematic review and meta-analysis. Lancet Infect. Dis., 2007, 7(5), 338-348.
[http://dx.doi.org/10.1016/S1473-3099(07)70109-3] [PMID: 17448937]
[24]
Humphries, T.J.; Merritt, G.J. Review article: drug interactions with agents used to treat acid‐related diseases. Aliment. Pharmacol. Ther., 1999, 13(s3)(Suppl. 3), 18-26.
[http://dx.doi.org/10.1046/j.1365-2036.1999.00021.x] [PMID: 10491725]
[25]
Gras, J. Mirabegron for the treatment of overactive bladder. Drugs Today (Barc), 2012, 48(1), 25-32.
[http://dx.doi.org/10.1358/dot.2012.48.1.1738056] [PMID: 22384458]
[26]
DeBattista, C.; Solvason, H.B.; Breen, J.A.H.; Schatzberg, A.F. Pramipexole augmentation of a selective serotonin reuptake inhibitor in the treatment of depression. J. Clin. Psychopharmacol., 2000, 20(2), 274-275.
[http://dx.doi.org/10.1097/00004714-200004000-00029] [PMID: 10770475]
[27]
Kitamura, Y.; Kosaka, T.; Kakimura, J.I.; Matsuoka, Y.; Kohno, Y.; Nomura, Y.; Taniguchi, T. Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl-4-phenylpyridinium-induced apoptotic death in human neuroblastoma SH-SY5Y cells. Mol. Pharmacol., 1998, 54(6), 1046-1054.
[http://dx.doi.org/10.1124/mol.54.6.1046] [PMID: 9855633]
[28]
Strosberg, AM. The cardiovascular pharmacology and hemodynamic activity of tazolol, a selective myocardial beta-stimulant. Arch Int. Pharmacodyn. Ther., 1976, 222(2), 200-215.
[29]
Atmaca, M.; Kuloglu, M.; Tezcan, E.; Ustundag, B.; Kilic, N. Nizatidine for the treatment of patients with quetiapine-induced weight gain. Hum. Psychopharmacol., 2004, 19(1), 37-40.
[http://dx.doi.org/10.1002/hup.477] [PMID: 14716710]
[30]
Hantzsch, A.; Weber, J.H. Ueber Verbindungen des Thiazols (Pyridins der Thiophenreihe). Ber. Dtsch. Chem. Ges., 1887, 20(2), 3118-3132.
[http://dx.doi.org/10.1002/cber.188702002200]
[31]
Aguilar, E.; Meyers, A.I. Reinvestigation of a modified Hantzsch thiazole synthesis. Tetrahedron Lett., 1994, 35(16), 2473-2476.
[http://dx.doi.org/10.1016/S0040-4039(00)77147-4]
[32]
Guernon, J.M.; Wu, Y.J. 3-Bromocyclohexane-1,2-dione as a useful reagent for Hantzsch synthesis of thiazoles and the synthesis of related heterocycles. Tetrahedron Lett., 2011, 52(28), 3633-3635.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.028]
[33]
Beyzaei, H.; Aryan, R; Molashahi, H. MgO nanoparticle-catalyzed, solvent-free Hantzsch synthesis and antibacterial evaluation of new substituted thiazoles. J Iran chem Soc., 2017, 14, 1023-1031.
[http://dx.doi.org/10.1007/s13738-017-1052-x]
[34]
Prieschl, M.; Sedelmeier, J.; Püntener, K.; Hildbrand, S.; Williams, J.D.; Kappe, C.O. Rediscovering cyanogen gas for organic synthesis: Formation of 2-Cyanothiazole derivatives. J. Org. Chem., 2023, 88(13), 9594-9598.
[http://dx.doi.org/10.1021/acs.joc.3c01110] [PMID: 37339330]
[35]
Liu, L.; Zhang, J. KI/K 2 S 2 O 8 Mediated Cascade C(sp 3)−H/C(sp 2)−H Thiolation for the Synthesis of Multi‐Substituted Thiazoles. Eur. J. Org. Chem., 2022, 2022(17), e202200161.
[http://dx.doi.org/10.1002/ejoc.202200161]
[36]
Cheng, X.; Qin, D.B.; Dong, Z.B. Three component synthesis of 4-Aryl-2-aminothiazoles under transition-metal free conditions. Eur. J. Org. Chem., 2023, 26(39), e202300817.
[http://dx.doi.org/10.1002/ejoc.202300817]
[37]
Philips, A.; Arumugam, A.; Eswaramoorthy, Y.; Boominathan, S.S.K.; Senadi, G.C. Iodine-mediated three-component strategy to synthesize 2-aminothiazoles from β-diketones/β-ketoesters, arylamines and ammonium thiocyanate. Eur. J. Org. Chem., 2022, 2022(46), e202201233.
[http://dx.doi.org/10.1002/ejoc.202201233]
[38]
Tang, X.; Yang, J.; Zhu, Z.; Zheng, M.; Wu, W.; Jiang, H. Access to Thiazole via Copper-Catalyzed [3+1+1]-Type Condensation Reaction under Redox-Neutral Conditions. J. Org. Chem., 2016, 81(22), 11461-11466.
[http://dx.doi.org/10.1021/acs.joc.6b02124] [PMID: 27768296]
[39]
Wang, X.; Qiu, X.; Wei, J.; Liu, J.; Song, S.; Wang, W.; Jiao, N. Cu-Catalyzed Aerobic Oxidative Sulfuration/Annulation Approach to Thiazoles via Multiple Csp 3 –H Bond Cleavage. Org. Lett., 2018, 20(9), 2632-2636.
[http://dx.doi.org/10.1021/acs.orglett.8b00840] [PMID: 29659292]
[40]
Swaroop, T.R.; Rangappa, K.S.; Sadashiva, M.P.; Kiran, K.R.; Rajeev, N.; Anil, S.M. Cyclization of Active Methylene Isocyanides with α-Oxodithioesters Induced by Base: An Expedient Synthesis of 4-Methylthio/Ethoxycarbonyl-5-acylthiazoles. Synthesis, 2020, 52(9), 1444-1450.
[http://dx.doi.org/10.1055/s-0039-1690821]
[41]
Chen, K.; Zhao, B.; Liu, Y.; Wan, J.P. Thiazole-5-carbaldehyde Synthesis by Cascade Annulation of Enaminones and KSCN with Dess–Martin Periodinane Reagent. J. Org. Chem., 2022, 87(21), 14957-14964.
[http://dx.doi.org/10.1021/acs.joc.2c01881] [PMID: 36260927]
[42]
Liu, Y.; Zhang, T.; Wan, J.P. Ultrasound-Promoted Synthesis of α-Thiocyanoketones via Enaminone C═C Bond Cleavage and Tunable One-Pot Access to 4-Aryl-2-aminothiazoles. J. Org. Chem., 2022, 87(12), 8248-8255.
[http://dx.doi.org/10.1021/acs.joc.2c00708] [PMID: 35616657]
[43]
Lavi, Y.; Kogan, N.M.; Topping, L.M.; Liu, C.; McCann, F.E.; Williams, R.O.; Breuer, A.; Yekhtin, Z.; Ezra, A.F.; Gallily, R.; Feldmann, M.; Mechoulam, R. Novel synthesis of C-methylated phytocannabinoids bearing antiinflammatory properties. J. Med. Chem., 2023, 66(8), 5536-5549.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01988] [PMID: 37057997]
[44]
Chahal, S.; Rani, P. Kiran; Sindhu, J.; Joshi, G.; Ganesan, A.; Kalyaanamoorthy, S.; Mayank; Kumar, P.; Singh, R.; Negi, A. Design and development of COX-II inhibitors: uurrent scenario and future perspective. ACS Omega, 2023, 8(20), 17446-17498.
[http://dx.doi.org/10.1021/acsomega.3c00692] [PMID: 37251190]
[45]
Stiller, C.O.; Hjemdahl, P. Lessons from 20 years with COX‐2 inhibitors: Importance of dose–response considerations and fair play in comparative trials. J. Intern. Med., 2022, 292(4), 557-574.
[http://dx.doi.org/10.1111/joim.13505] [PMID: 35585779]
[46]
Oniga, S.; Pacureanu, L.; Stoica, C.; Palage, M.; Crăciun, A.; Rusu, L.; Crisan, E.L.; Araniciu, C. COX Inhibition Profile and Molecular Docking Studies of Some 2-(Trimethoxyphenyl)-Thiazoles. Molecules, 2017, 22(9), 1507.
[http://dx.doi.org/10.3390/molecules22091507] [PMID: 28891941]
[47]
Geronikaki, A.A.; Lagunin, A.A.; Hadjipavlou-Litina, D.I.; Eleftheriou, P.T.; Filimonov, D.A.; Poroikov, V.V.; Alam, I.; Saxena, A.K. Computer-aided discovery of anti-inflammatory thiazolidinones with dual cyclooxygenase/lipoxygenase inhibition. J. Med. Chem., 2008, 51(6), 1601-1609.
[http://dx.doi.org/10.1021/jm701496h] [PMID: 18311898]
[48]
Said, E.G.; El-Saadi, M.T.; Abdelazeem, A.H.; El-Moghazy, S.M. Exploring the Anticancer and Anti-Inflammatory Activities of Novel Diphenylthiazole-Amino Acid Conjugates. J. Appl. Pharm. Sci., 2017, 7(07), 212-217.
[http://dx.doi.org/10.7324/JAPS.2017.70731]
[49]
Hawash, M.; Jaradat, N.; Sabobeh, R.; Abualhasan, M.; Qaoud, M.T. New Thiazole Carboxamide Derivatives as COX Inhibitors: Design, Synthesis, Anticancer Screening, In silico Molecular Docking, and ADME Profile Studies. ACS Omega, 2023, 8(32), 29512-29526.
[http://dx.doi.org/10.1021/acsomega.3c03256] [PMID: 37599929]
[50]
Kamble, R.D.; Meshram, R.J.; Hese, S.V.; More, R.A.; Kamble, S.S.; Gacche, R.N.; Dawane, B.S. Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents. Comput. Biol. Chem., 2016, 61, 86-96.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.01.007] [PMID: 26844536]
[51]
Khloya, P.; Kumar, S.; Kaushik, P.; Surain, P.; Kaushik, D.; Sharma, P.K. Synthesis and biological evaluation of pyrazolylthiazole carboxylic acids as potent anti-inflammatory–antimicrobial agents. Bioorg. Med. Chem. Lett., 2015, 25(6), 1177-1181.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.004] [PMID: 25702850]
[52]
Sharma, R.N.; Xavier, F.P.; Vasu, K.K.; Chaturvedi, S.C.; Pancholi, S.S. Synthesis of 4-benzyl-1,3-thiazole derivatives as potential antiinflammatory agents: An analogue-based drug design approach. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 890-897.
[http://dx.doi.org/10.1080/14756360802519558] [PMID: 19469712]
[53]
Johnson, A.R.; Marletta, M.A.; Dyer, R.D. Slow-binding inhibition of human prostaglandin endoperoxide synthase-2 with darbufelone, an isoform-selective antiinflammatory di-tert-butyl phenol. Biochemistry, 2001, 40(25), 7736-7745.
[http://dx.doi.org/10.1021/bi002343f] [PMID: 11412128]
[54]
Maghraby, M.T.E.; Abou-Ghadir, O.M.F.; Abdel-Moty, S.G.; Ali, A.Y.; Salem, O.I.A. Novel class of benzimidazole-thiazole hybrids: The privileged scaffolds of potent anti-inflammatory activity with dual inhibition of cyclooxygenase and 15-lipoxygenase enzymes. Bioorg. Med. Chem., 2020, 28(7), 115403.
[http://dx.doi.org/10.1016/j.bmc.2020.115403] [PMID: 32127262]
[55]
Chen, L.; Chen, H.; Chen, P.; Zhang, W.; Wu, C.; Sun, C.; Luo, W.; Zheng, L.; Liu, Z.; Liang, G. Development of 2-amino-4-phenylthiazole analogues to disrupt myeloid differentiation factor 88 and prevent inflammatory responses in acute lung injury. Eur. J. Med. Chem., 2019, 161, 22-38.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.068] [PMID: 30342423]
[56]
Khamees, H.A.; Mohammed, Y.H.E. S, A.; Al-Ostoot, F.H.; y, S.; Alghamdi, S.; Khanum, S.A.; Madegowda, M. Effect of o-difluoro and p-methyl substituents on the structure, optical properties and anti-inflammatory activity of phenoxy thiazole acetamide derivatives: Theoretical and experimental studies. J. Mol. Struct., 2020, 1199, 127024.
[http://dx.doi.org/10.1016/j.molstruc.2019.127024]
[57]
Liu, X.; Tao, J.; Zhang, S.; Lan, W.; Wang, C.; Ji, Y.; Cao, C. Selective Blockade of Neuronal BK (α + β4) Channels Preventing Epileptic Seizure. J. Med. Chem., 2020, 63(1), 216-230.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01241] [PMID: 31838846]
[59]
Edayadulla, N.; Ramesh, P. Synthesis of 2,6-dicarbethoxy-3,5-diaryltetrahydro-1,4-thiazine-1,1-dioxide derivatives as potent anticonvulsant agents. Eur. J. Med. Chem., 2015, 106, 44-49.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.010] [PMID: 26519928]
[60]
Brodie, M.J.; Kwan, P. Current position of phenobarbital in epilepsy and its future. Epilepsia, 2012, 53(s8)(Suppl. 8), 40-46.
[http://dx.doi.org/10.1111/epi.12027] [PMID: 23205961]
[61]
Farag, A.A.; Abd-Alrahman, S.N.; Ahmed, G.F.; Ammar, R.M.; Ammar, Y.A.; Abbas, S.Y. Synthesis of some azoles incorporating a sulfonamide moiety as anticonvulsant agents. Arch. Pharm. (Weinheim), 2012, 345(9), 703-712.
[http://dx.doi.org/10.1002/ardp.201200014] [PMID: 22696252]
[62]
Heidari, M.R.; Dadollahi, Z.; Mehrabani, M.; Mehrabi, H.; Pourzadeh-Hosseini, M.; Behravan, E.; Etemad, L. Study of antiseizure effects of Matricaria recutita extract in mice. Ann. N. Y. Acad. Sci., 2009, 1171(1), 300-304.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04917.x] [PMID: 19723069]
[63]
Heidari, M.R.; Azad, E.M.; Mehrabani, M. Evaluation of the analgesic effect of Echium amoenum Fisch & C.A. Mey. extract in mice: Possible mechanism involved. J. Ethnopharmacol., 2006, 103(3), 345-349.
[http://dx.doi.org/10.1016/j.jep.2005.08.027] [PMID: 16185831]
[64]
Heidari, M.R.; Khalili, F.; Ghazi-khansari, M.; Hashemi, B.; Zarrindast, M.R. Effect of picrotoxin on antinociception in the formalin test. Pharmacol. Toxicol., 1996, 78(5), 313-316.
[http://dx.doi.org/10.1111/j.1600-0773.1996.tb01381.x] [PMID: 8737966]
[65]
Ghabbour, H.A.; Kadi, A.A.; ElTahir, K.E.H.; Angawi, R.F.; El-Subbagh, H.I. Synthesis, biological evaluation and molecular docking studies of thiazole-based pyrrolidinones and isoindolinediones as anticonvulsant agents. Med. Chem. Res., 2015, 24(8), 3194-3211.
[http://dx.doi.org/10.1007/s00044-015-1371-3]
[66]
Łączkowski, K.Z.; Sałat, K.; Misiura, K.; Podkowa, A.; Malikowska, N. Synthesis and anticonvulsant activities of novel 2-(cyclopentylmethylene)hydrazinyl-1,3-thiazoles in mouse models of seizures. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1576-1582.
[http://dx.doi.org/10.3109/14756366.2016.1158172] [PMID: 27052195]
[67]
Kamiński, K.; Zagaja, M.; Łuszczki, J.J.; Rapacz, A.; Andres-Mach, M.; Latacz, G.; Kieć-Kononowicz, K. Design, synthesis, and anticonvulsant activity of new hybrid compounds derived from 2-(2,5-dioxopyrrolidin-1-yl)propanamides and 2-(2,5-dioxopyrrolidin-1-yl)butanamides. J. Med. Chem., 2015, 58(13), 5274-5286.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00578] [PMID: 26052884]
[68]
Siddiqui, N.; Ahsan, W. Triazole incorporated thiazoles as a new class of anticonvulsants: Design, synthesis and in vivo screening. Eur. J. Med. Chem., 2010, 45(4), 1536-1543.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.062] [PMID: 20116140]
[69]
Siddiqui, A.A.; Partap, S.; Khisal, S.; Yar, M.S.; Mishra, R. Synthesis, anti-convulsant activity and molecular docking study of novel thiazole pyridazinone hybrid analogues. Bioorg. Chem., 2020, 99, 103584.
[http://dx.doi.org/10.1016/j.bioorg.2020.103584] [PMID: 32229345]
[70]
Wang, Y.; Bian, Z.; Wang, Y. Biofilm formation and inhibition mediated by bacterial quorum sensing. Appl. Microbiol. Biotechnol., 2022, 106(19-20), 6365-6381.
[http://dx.doi.org/10.1007/s00253-022-12150-3] [PMID: 36089638]
[71]
Karale, N.N. Antibiofilm activity of thiazole schiff bases. Int. J. Chem. Sci., 2016, 14(4), 2535-2545.
[72]
Mohammad, H.; Mayhoub, A.S.; Cushman, M.; Seleem, M.N. Antibiofilm activity and synergism of novel thiazole compounds with glycopeptide antibiotics against multidrug-resistant Staphylococci. J. Antibiot. (Tokyo), 2015, 68(4), 259-266.
[http://dx.doi.org/10.1038/ja.2014.142] [PMID: 25315757]
[73]
Alrohily, W.D.; Habib, M.E.; El-Messery, S.M.; Alqurshi, A.; El-Subbagh, H.; Habib, E.S.E. Antibacterial, antibiofilm and molecular modeling study of some antitumor thiazole based chalcones as a new class of DHFR inhibitors. Microb. Pathog., 2019, 136, 103674.
[http://dx.doi.org/10.1016/j.micpath.2019.103674] [PMID: 31446042]
[74]
Gondru, R.; Sirisha, K.; Raj, S.; Gunda, S.K.; Kumar, C.G.; Pasupuleti, M.; Bavantula, R. Design, Synthesis, In vitro Evaluation and Docking Studies of Pyrazole‐Thiazole Hybrids as Antimicrobial and Antibiofilm Agents. ChemistrySelect, 2018, 3(28), 8270-8276.
[http://dx.doi.org/10.1002/slct.201801391]
[75]
Alzahrani, A.Y.; Ammar, Y.A.; Abu-Elghait, M.; Salem, M.A.; Assiri, M.A.; Ali, T.E.; Ragab, A. Development of novel indolin-2-one derivative incorporating thiazole moiety as DHFR and quorum sensing inhibitors: Synthesis, antimicrobial, and antibiofilm activities with molecular modelling study. Bioorg. Chem., 2022, 119, 105571.
[http://dx.doi.org/10.1016/j.bioorg.2021.105571] [PMID: 34959177]
[77]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[78]
Turan-Zitouni, G.; Altıntop, M.D.; Özdemir, A.; Kaplancıklı, Z.A.; Çiftçi, G.A.; Temel, H.E. Synthesis and evaluation of bis-thiazole derivatives as new anticancer agents. Eur. J. Med. Chem., 2016, 107, 288-294.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.002] [PMID: 26599534]
[79]
de Santana, T.I.; Barbosa, M.O.; Gomes, P.A.T.M.; da Cruz, A.C.N.; da Silva, T.G.; Leite, A.C.L. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem., 2018, 144, 874-886.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.040] [PMID: 29329071]
[80]
Ansari, M.; Shokrzadeh, M.; Karima, S.; Rajaei, S.; Fallah, M.; Ghassemi-Barghi, N.; Ghasemian, M.; Emami, S. New thiazole-2(3H)-thiones containing 4-(3,4,5-trimethoxyphenyl) moiety as anticancer agents. Eur. J. Med. Chem., 2020, 185, 111784.
[http://dx.doi.org/10.1016/j.ejmech.2019.111784] [PMID: 31669850]
[81]
Chuang, S.H.; Lee, Y.S.E.; Huang, L.Y.L.; Chen, C.K.; Lai, C.L.; Lin, Y.H.; Yang, J.Y.; Yang, S.C.; Chang, L.H.; Chen, C.H.; Liu, C.W.; Lin, H.S.; Lee, Y.R.; Huang, K.P.; Fu, K.C.; Jen, H.M.; Lai, J.Y.; Jian, P.S.; Wang, Y.C.; Hsueh, W.Y.; Tsai, P.Y.; Hong, W.H.; Chang, C.C.; Wu, D.Z.C.; Wu, J.; Chen, M.H.; Yu, K.M.; Chern, C.Y.; Chang, J.M.; Lau, J.Y.N.; Huang, J.J. Discovery of T-1101 tosylate as a first-in-class clinical candidate for Hec1/Nek2 inhibition in cancer therapy. Eur. J. Med. Chem., 2020, 191, 112118.
[http://dx.doi.org/10.1016/j.ejmech.2020.112118] [PMID: 32113126]
[82]
Wang, L.; Guo, C.; Li, X.; Yu, X.; Li, X.; Xu, K.; Jiang, B.; Jia, X.; Li, C.; Shi, D. Design, synthesis and biological evaluation of bromophenol-thiazolylhydrazone hybrids inhibiting the interaction of translation initiation factors eIF4E/eIF4G as multifunctional agents for cancer treatment. Eur. J. Med. Chem., 2019, 177, 153-170.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.044] [PMID: 31132531]
[83]
Aly, A.A.; Mohamed, A.H.; Ramadan, M. Synthesis and colon anticancer activity of some novel thiazole/-2-quinolone derivatives. J. Mol. Struct., 2020, 1207, 127798.
[http://dx.doi.org/10.1016/j.molstruc.2020.127798]
[84]
Abd El-Karim, S.S.; Syam, Y.M.; El Kerdawy, A.M.; Abdelghany, T.M. New thiazol-hydrazono-coumarin hybrids targeting human cervical cancer cells: Synthesis, CDK2 inhibition, QSAR and molecular docking studies. Bioorg. Chem., 2019, 86, 80-96.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.026] [PMID: 30685646]
[85]
Mohamed, T.K.; Batran, R.Z.; Elseginy, S.A.; Ali, M.M.; Mahmoud, A.E. Synthesis, anticancer effect and molecular modeling of new thiazolylpyrazolyl coumarin derivatives targeting VEGFR-2 kinase and inducing cell cycle arrest and apoptosis. Bioorg. Chem., 2019, 85, 253-273.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.040] [PMID: 30641320]
[86]
George, R.F.; Samir, E.M.; Abdelhamed, M.N.; Abdel-Aziz, H.A.; Abbas, S.E.S. Synthesis and anti-proliferative activity of some new quinoline based 4,5-dihydropyrazoles and their thiazole hybrids as EGFR inhibitors. Bioorg. Chem., 2019, 83, 186-197.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.038] [PMID: 30380447]
[87]
Ivasechko, I.; Yushyn, I.; Roszczenko, P.; Senkiv, J.; Finiuk, N.; Lesyk, D.; Holota, S.; Czarnomysy, R.; Klyuchivska, O.; Khyluk, D.; Kashchak, N.; Gzella, A.; Bielawski, K.; Bielawska, A.; Stoika, R.; Lesyk, R. Development of Novel Pyridine-Thiazole Hybrid Molecules as Potential Anticancer Agents. Molecules, 2022, 27(19), 6219.
[http://dx.doi.org/10.3390/molecules27196219] [PMID: 36234755]
[88]
Lin, S.Y.; Chang, C.F.; Coumar, M.S.; Chen, P.Y.; Kuo, F.M.; Chen, C.H.; Li, M.C.; Lin, W.H.; Kuo, P.C.; Wang, S.Y.; Li, A.S.; Lin, C.Y.; Yang, C.M.; Yeh, T.K.; Song, J.S.; Hsu, J.T.A.; Hsieh, H.P. Drug-like property optimization: Discovery of orally bioavailable quinazoline-based multi-targeted kinase inhibitors. Bioorg. Chem., 2020, 98, 103689.
[http://dx.doi.org/10.1016/j.bioorg.2020.103689] [PMID: 32171993]
[89]
Zhang, J.; Li, S.; Dong, Y.; Tang, H.; He, Y.; Hu, H.; Feng, J. Synthesis and biological evaluation of glucagon-like peptide-1 analogs with the C-terminal helix 3 of albumin-binding domain 3. Bioorg. Med. Chem., 2022, 62, 116725.
[http://dx.doi.org/10.1016/j.bmc.2022.116725] [PMID: 35358863]
[90]
Pola, S.; Shah, S.R.; Pingali, H.; Zaware, P.; Thube, B.; Makadia, P.; Patel, H.; Bandyopadhyay, D.; Rath, A.; Giri, S.; Patel, J.H.; Ranvir, R.K.; Sundar, S.R.; Patel, H.; Kumar, J.; Jain, M.R. Discovery of a potent G-protein-coupled receptor 119 agonist for the treatment of type 2 diabetes. Bioorg. Med. Chem., 2021, 35, 116071.
[http://dx.doi.org/10.1016/j.bmc.2021.116071] [PMID: 33611013]
[91]
Maccari, R.; Wolber, G.; Genovese, M.; Sardelli, G.; Talagayev, V.; Balestri, F.; Luti, S.; Santi, A.; Moschini, R.; Del Corso, A.; Paoli, P.; Ottanà, R. Designed multiple ligands for the treatment of type 2 diabetes mellitus and its complications: Discovery of (5-arylidene-4-oxo-2-thioxothiazolidin-3-yl)alkanoic acids active as novel dualtargeted PTP1B/AKR1B1 inhibitors. Eur. J. Med. Chem., 2023, 252, 115270.
[http://dx.doi.org/10.1016/j.ejmech.2023.115270] [PMID: 36934484]
[92]
Gao, H.D.; Liu, P.; Yang, Y.; Gao, F. Sulfonamide-1,3,5-triazine–thiazoles: discovery of a novel class of antidiabetic agents via inhibition of DPP-4. RSC Advances, 2016, 6(86), 83438-83447.
[http://dx.doi.org/10.1039/C6RA15948F]
[93]
Sravanthi, T.V.; Sajitha Lulu, S.; Vino, S.; Jayasri, M.A.; Mohanapriya, A.; Manju, S.L. Synthesis, docking, and evaluation of novel thiazoles for potent antidiabetic activity. Med. Chem. Res., 2017, 26(6), 1306-1315.
[http://dx.doi.org/10.1007/s00044-017-1851-8]
[94]
Zuo, Z.; Chen, M.; Shao, X.; Qian, X.; Liu, X.; Zhou, X.; Xiang, J.; Deng, P.; Li, Y.; Jie, H.; Liu, C.; Cen, X.; Xie, Y.; Zhao, Y. Design and biological evaluation of tetrahydropyridine derivatives as novel human GPR119 agonists. Bioorg. Med. Chem. Lett., 2020, 30(4), 126855.
[http://dx.doi.org/10.1016/j.bmcl.2019.126855] [PMID: 31898998]
[95]
Li, Z.; Chen, Y.; Zhou, Z.; Deng, L.; Xu, Y.; Hu, L.; Liu, B.; Zhang, L. Discovery of first-in-class thiazole-based dual FFA1/PPARδ agonists as potential antidiabetic agents. Eur. J. Med. Chem., 2019, 164, 352-365.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.069] [PMID: 30605833]
[96]
Xie, Z.; Wang, G.; Wang, J.; Chen, M.; Peng, Y.; Li, L.; Deng, B.; Chen, S.; Li, W. Synthesis, Biological Evaluation, and Molecular Docking Studies of Novel Isatin-Thiazole Derivatives as α-Glucosidase Inhibitors. Molecules, 2017, 22(4), 659.
[http://dx.doi.org/10.3390/molecules22040659] [PMID: 28425975]
[97]
Solangi, M. Kanwal; Khan, K.M.; Chigurupati, S.; Saleem, F.; Qureshi, U.; Ul-Haq, Z.; Jabeen, A.; Felemban, S.G.; Zafar, F.; Perveen, S.; Taha, M.; Bhatia, S. Isatin thiazoles as antidiabetic: Synthesis, in vitro enzyme inhibitory activities, kinetics, and in silico studies. Arch. Pharm. (Weinheim), 2022, 355(6), 2100481.
[http://dx.doi.org/10.1002/ardp.202100481] [PMID: 35355329]
[98]
Rahim, F.; Tariq, S.; Taha, M.; Ullah, H.; Zaman, K.; Uddin, I.; Wadood, A.; Khan, A.A.; Rehman, A.U.; Uddin, N.; Zafar, S.; Shah, S.A.A. New triazinoindole bearing thiazole/oxazole analogues: Synthesis, α-amylase inhibitory potential and molecular docking study. Bioorg. Chem., 2019, 92, 103284.
[http://dx.doi.org/10.1016/j.bioorg.2019.103284] [PMID: 31546207]
[99]
Wang, G.; He, D.; Li, X.; Li, J.; Peng, Z. Design, synthesis and biological evaluation of novel coumarin thiazole derivatives as α-glucosidase inhibitors. Bioorg. Chem., 2016, 65, 167-174.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.001] [PMID: 26964016]
[100]
He, M.; Li, Y.J.; Shao, J.; Li, Y.S.; Cui, Z.N. Synthesis and biological evaluation of 2,5-disubstituted furan derivatives containing 1,3-thiazole moiety as potential α‐glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2023, 83, 129173.
[http://dx.doi.org/10.1016/j.bmcl.2023.129173] [PMID: 36764471]
[101]
Taha, M.; Hayat, S.; Rahim, F.; Uddin, N.; Wadood, A.; Nawaz, M.; Gollapalli, M.; Rehman, A.U.; Khan, K.M.; Farooq, R.K. Exploring thiazole-based Schiff base analogs as potent α-glucosidase and α-amylase inhibitor: their synthesis and in-silico study. J. Mol. Struct., 2023, 1287, 135672.
[http://dx.doi.org/10.1016/j.molstruc.2023.135672]
[102]
Lam, T.; Hilgers, M.T.; Cunningham, M.L.; Kwan, B.P.; Nelson, K.J.; Brown-Driver, V.; Ong, V.; Trzoss, M.; Hough, G.; Shaw, K.J.; Finn, J. Structure-based design of new dihydrofolate reductase antibacterial agents: 7-(benzimidazol-1-yl)-2,4-diaminoquinazolines. J. Med. Chem., 2014, 57(3), 651-668.
[http://dx.doi.org/10.1021/jm401204g] [PMID: 24428639]
[103]
Abhale, Y.K.; Sasane, A.V.; Chavan, A.P.; Shekh, S.H.; Deshmukh, K.K.; Bhansali, S.; Nawale, L.; Sarkar, D.; Mhaske, P.C. Synthesis and antimycobacterial screening of new thiazolyl-oxazole derivatives. Eur. J. Med. Chem., 2017, 132, 333-340.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.065] [PMID: 28411559]
[104]
Sashidhara, K.V.; Rao, K.B.; Kushwaha, P.; Modukuri, R.K.; Singh, P.; Soni, I.; Shukla, P.K.; Chopra, S.; Pasupuleti, M. Novel Chalcone–Thiazole Hybrids as Potent Inhibitors of Drug Resistant Staphylococcus aureus. ACS Med. Chem. Lett., 2015, 6(7), 809-813.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00169] [PMID: 26191371]
[105]
Fan, T.; Guo, W.; Shao, T.; Zhou, W.; Hu, P.; Liu, M.; Chen, Y.; Yi, Z. Design, synthesis and evaluation of phenylthiazole and phenylthiophene pyrimidindiamine derivatives targeting the bacterial membrane. Eur. J. Med. Chem., 2020, 190, 112141.
[http://dx.doi.org/10.1016/j.ejmech.2020.112141] [PMID: 32078862]
[106]
Wang, L.L.; Battini, N.; Bheemanaboina, R.R.Y.; Zhang, S.L.; Zhou, C.H. Design and synthesis of aminothiazolyl norfloxacin analogues as potential antimicrobial agents and their biological evaluation. Eur. J. Med. Chem., 2019, 167, 105-123.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.072] [PMID: 30769240]
[107]
Biernasiuk, A.; Kawczyńska, M.; Berecka-Rycerz, A.; Rosada, B.; Gumieniczek, A.; Malm, A.; Dzitko, K.; Łączkowski, K.Z. Synthesis, antimicrobial activity, and determination of the lipophilicity of ((cyclohex-3-enylmethylene)hydrazinyl)thiazole derivatives. Med. Chem. Res., 2019, 28(11), 2023-2036.
[http://dx.doi.org/10.1007/s00044-019-02433-2]
[108]
Narendra babu, K.; Nagarjuna, U.; Reddy, G.D.; Padmaja, A.; Padmavathi, V. Synthesis and antimicrobial activity of benzazolyl azolyl urea derivatives. J. Mol. Struct., 2019, 1198(6), 126871.
[http://dx.doi.org/10.1016/j.molstruc.2019.126871]
[109]
Eryılmaz, S.; Türk Çelikoğlu, E.; İdil, Ö.; İnkaya, E.; Kozak, Z.; Mısır, E.; Gül, M. Derivatives of pyridine and thiazole hybrid: Synthesis, DFT, biological evaluation via antimicrobial and DNA cleavage activity. Bioorg. Chem., 2020, 95, 103476.
[http://dx.doi.org/10.1016/j.bioorg.2019.103476] [PMID: 31838288]
[110]
Zhao, W.H.; Xu, J.H.; Tangadanchu, V.K.R.; Zhou, C.H. Thiazolyl hydrazineylidenyl indolones as unique potential multitargeting broad-spectrum antimicrobial agents. Eur. J. Med. Chem., 2023, 256, 115452.
[http://dx.doi.org/10.1016/j.ejmech.2023.115452] [PMID: 37167780]
[111]
Nandurkar, Y.; Bhoye, M.R.; Maliwal, D.; Pissurlenkar, R.R.S.; Chavan, A.; Katade, S.; Mhaske, P.C. Synthesis, biological screening and in silico studies of new N-phenyl-4-(1,3-diaryl-1H-pyrazol-4-yl)thiazol-2-amine derivatives as potential antifungal and antitubercular agents. Eur. J. Med. Chem., 2023, 258, 115548.
[http://dx.doi.org/10.1016/j.ejmech.2023.115548] [PMID: 37307623]
[112]
Dawood, K.M.; Eldebss, T.M.A.; El-Zahabi, H.S.A.; Yousef, M.H. Synthesis and antiviral activity of some new bis-1,3-thiazole derivatives. Eur. J. Med. Chem., 2015, 102, 266-276.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.005] [PMID: 26291036]
[113]
Curreli, F.; Kwon, Y.D.; Belov, D.S.; Ramesh, R.R.; Kurkin, A.V.; Altieri, A.; Kwong, P.D.; Debnath, A.K. Synthesis, Antiviral Potency, in vitro ADMET, and X-ray Structure of Potent CD4 Mimics as Entry Inhibitors That Target the Phe43 Cavity of HIV-1 gp120. J. Med. Chem., 2017, 60(7), 3124-3153.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00179] [PMID: 28266845]
[114]
Pan, T.; Ding, Y.; Wu, L.; Liang, L.; He, X.; Li, Q.; Bai, C.; Zhang, H. Design and synthesis of aminothiazole based Hepatitis B Virus (HBV) capsid inhibitors. Eur. J. Med. Chem., 2019, 166, 480-501.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.059] [PMID: 30739828]
[115]
Rauf, A.; Kashif, M.K.; Saeed, B.A.; Al-Masoudi, N.A.; Hameed, S. Synthesis, anti-HIV activity, molecular modeling study and QSAR of new designed 2-(2-arylidenehydrazinyl)-4-arylthiazoles. J. Mol. Struct., 2019, 1198, 126866.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.113]
[116]
Kasralikar, H.M.; Jadhavar, S.C.; Goswami, S.V.; Kaminwar, N.S.; Bhusare, S.R. Design, synthesis and molecular docking of pyrazolo [3,4d] thiazole hybrids as potential anti-HIV-1 NNRT inhibitors. Bioorg. Chem., 2019, 86, 437-444.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.006] [PMID: 30771690]
[117]
Woodring, J.L.; Lu, S.H.; Krasnova, L.; Wang, S.C.; Chen, J.B.; Chou, C.C.; Huang, Y.C.; Cheng, T.J.R.; Wu, Y.T.; Chen, Y.H.; Fang, J.M.; Tsai, M.D.; Wong, C.H. Disrupting the Conserved Salt Bridge in the Trimerization of Influenza A Nucleoprotein. J. Med. Chem., 2020, 63(1), 205-215.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01244] [PMID: 31769665]
[118]
Cui, M.Y.; Nie, J.X.; Yan, Z.Z.; Xiao, M-W.; Lin, D.; Ye, J.; Hu, AX. Design, synthesis, bioactivity, and DFT calculation of 2-thiazolyl-hydrazone derivatives as influenza neuraminidase inhibitors. Med. Chem. Res., 2019, 28(7), 938-947.
[http://dx.doi.org/10.1007/s00044-019-02343-3]
[119]
Zhang, W.; Guo, L.; Liu, H.; Wu, G.; Shi, H.; Zhou, M.; Zhang, Z.; Kou, B.; Hu, T.; Zhou, Z.; Xu, Z.; Zhou, X.; Zhou, Y.; Tian, X.; Yang, G.; Young, J.A.T.; Qiu, H.; Ottaviani, G.; Xie, J.; Mayweg, A.V.; Shen, H.C.; Zhu, W. Discovery of Linvencorvir (RG7907), a hepatitis B virus core protein allosteric modulator, for the treatment of chronic HBV infection. J. Med. Chem., 2023, 66(6), 4253-4270.
[http://dx.doi.org/10.1021/acs.jmedchem.3c00173] [PMID: 36896968]
[120]
Zamiri, M.; Cheung, P.K.; Brockman, M.A.; Brumme, Z.L.; Chabot, B.; Cochrane, A.; Grierson, D.S. 2-Trifluoromethylthiazole-5-carboxamides: Analogues of a Stilbene-Based Anti-HIV Agent that Impact HIV mRNA Processing. ACS Med. Chem. Lett., 2021, 12(11), 1818-1823.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00428] [PMID: 34795872]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy