[1]
Xu, Z. Computational drug screening targeting viral proteins of Zika and Dengue fever. J. Med. Chem., 2020, 63(4), 1543-1555.
[PMID: 31986036]
[PMID: 31986036]
[2]
Manikkam, M. Molecular dynamics simulation studies on dengue virus NS2B-NS3 protease complexed with inhibitors. J. Biomol. Struct. Dyn., 2019, 37(7), 1897-1909.
[3]
Jaghoori, M.M. DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network. J. Chem. Inf. Model., 2017, 57(11), 2808-2818.
[4]
Pereira, J.C.; Caffarena, E.R.; dos Santos, C.N. Boosting docking-based virtual screening with deep learning. J. Chem. Inf. Model., 2016, 56(12), 2495-2506.
[http://dx.doi.org/10.1021/acs.jcim.6b00355] [PMID: 28024405]
[http://dx.doi.org/10.1021/acs.jcim.6b00355] [PMID: 28024405]
[5]
Wallach, I. AtomNet: A deep convolutional neural network for bioactivity prediction in structure-based drug discovery , arXiv:1510.02855.2015
[6]
Zhang, L. Computational approaches for designing selective inhibitors targeting SARS-CoV-2 main protease. Front. Mol. Biosci., 2020, 7, 208.
[7]
Gao, Y. Structure-based virtual screening and optimization of SARS-CoV-2 3CL protease inhibitors. Bioorg. Chem., 2021, 112, 104910.
[8]
Li, L. Identification of novel small-molecule inhibitors targeting the Ebola virus VP35 protein. Antiviral Res., 2019, 171, 104590.
[9]
de Vries, R.P. Structure-based identification of hemagglutinin mutations enabling the emergence of the 2009 pandemic influenza A (H1N1) virus. J. Virol., 2015, 89(15), 8049-8057.
[10]
Lomize, M.A. Drug repurposing for influenza a virus neuraminidase inhibitors based on 3D protein structures using computer-aided drug design approaches. J. Biomol. Struct. Dyn., 2021, 1-18.
[11]
Wang, R. Virtual screening and molecular dynamics simulations for identification of potential DNA gyrase inhibitors. J. Biomol. Struct. Dyn., 2020, 38(4), 1139-1151.
[PMID: 32037968]
[PMID: 32037968]
[12]
Sangshetti, J.N. Molecular dynamics simulation studies of topoisomerase IV inhibition by novel benzothiazole derivatives. J. Biomol. Struct. Dyn., 2019, 37(2), 387-398.
[13]
Anandan, S. Identification of potential inhibitors against LpxC of Acinetobacter baumannii through computer-aided drug design. J. Biomol. Struct. Dyn., 2021, 39(5), 1815-1831.
[14]
Kumar, N. Insights into the molecular dynamics and ligand interaction studies of lpxC protein of Escherichia coli. J. Biomol. Struct. Dyn., 2022, 40(5), 1674-1688.
[15]
Williams, A.H.; Immormino, R.M.; Gewirth, D.T.; Raetz, C.R.H. Structure of UDP- N -acetylglucosamine acyltransferase with a bound antibacterial pentadecapeptide. Proc. Natl. Acad. Sci., 2006, 103(29), 10877-10882.
[http://dx.doi.org/10.1073/pnas.0604465103] [PMID: 16835299]
[http://dx.doi.org/10.1073/pnas.0604465103] [PMID: 16835299]
[16]
Jenkins, R.J.; Dotson, G.D. Dual targeting antibacterial peptide inhibitor of early lipid A biosynthesis. ACS Chem. Biol., 2012, 7(7), 1170-1177.
[http://dx.doi.org/10.1021/cb300094a] [PMID: 22530734]
[http://dx.doi.org/10.1021/cb300094a] [PMID: 22530734]
[17]
Sheikh, J.A. In silico design of multi-epitope vaccine against avian influenza virus subtype H9N2. Vaccines, 2021, 9(6), 640.
[PMID: 34208017]
[PMID: 34208017]
[18]
Khan, A. Immunoinformatics-guided design of a novel multi-epitope vaccine against avian influenza H5N1. Vaccines, 2021, 9(3), 192.
[PMID: 33669067]
[PMID: 33669067]