Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Mini-Review Article

Deciphering the Role of Pyroptosis Impact on Cardiovascular Diseases

Author(s): Poonam Patil and Gaurav Doshi*

Volume 24, Issue 15, 2023

Published on: 21 November, 2023

Page: [1166 - 1183] Pages: 18

DOI: 10.2174/0113894501267496231102114410

Price: $65

Abstract

Pyroptosis has become a noteworthy area of focus in recent years due to its association with inflammatory diseases. Pyroptosis is a type of programmed cell death accompanied by an inflammatory response, and the discovery of the gasdermin family has expanded the study of pyroptosis. The primary characteristics of pyroptosis include cell expansion, membrane penetration, and the ejection of cell contents. In healthy physiology, pyroptosis is an essential part of the host's defence against pathogen infection. Excessive Pyroptosis, however, can lead to unchecked and persistent inflammatory responses, including the emergence of inflammatory diseases. More precisely, gasdermin family members have a role in the creation of membrane holes during pyroptosis, which leads to cell lysis. It is also related to how pro-inflammatory intracellular substances, including IL-1, IL-18, and High mobility group box 1 (HMGB1), are used. Two different signalling pathways, one of which is regulated by caspase-1 and the other by caspase-4/5/11, are the primary causes of pyroptosis. Cardiovascular diseases are often associated with cell death and acute or chronic inflammation, making this area of research particularly relevant. In this review, we first systematically summarize recent findings related to Pyroptosis, exploring its characteristics and the signalling pathway mechanisms, as well as various treatment strategies based on its modulation that has emerged from the studies. Some of these strategies are currently undergoing clinical trials. Additionally, the article elaborates on the scientific evidence indicating the role of Pyroptosis in various cardiovascular diseases. As a whole, this should shed insight into future paths and present innovative ideas for employing Pyroptosis as a strong disease-fighting weapon.

Graphical Abstract

[1]
Zhaolin Z, Guohua L, Shiyuan W, Zuo W. Role of pyroptosis in cardiovascular disease. Cell Prolif 2019; 52(2): e12563.
[http://dx.doi.org/10.1111/cpr.12563] [PMID: 30525268]
[2]
Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19(1): 107-20.
[http://dx.doi.org/10.1038/cdd.2011.96] [PMID: 21760595]
[3]
Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V. Role of Apoptosis in disease. Aging 2012; 4(5): 330-49.
[http://dx.doi.org/10.18632/aging.100459] [PMID: 22683550]
[4]
Zhang L, Feng Q, Wang T. Necrostatin-1 protects against paraquat-induced cardiac contractile dysfunction via RIP1-RIP3-MLKL-dependent necroptosis pathway. Cardiovasc Toxicol 2018; 18(4): 346-55.
[http://dx.doi.org/10.1007/s12012-017-9441-z] [PMID: 29299822]
[5]
Virchow R. An Address on the Value of Pathological Experiments. BMJ 1881; 2(1075): 198-203.
[http://dx.doi.org/10.1136/bmj.2.1075.198] [PMID: 20749954]
[6]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[7]
Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol 2017; 17(3): 151-64.
[http://dx.doi.org/10.1038/nri.2016.147] [PMID: 28138137]
[8]
Kolb JP, Oguin TH III, Oberst A, Martinez J. Programmed cell death and inflammation: Winter is coming. Trends Immunol 2017; 38(10): 705-18.
[http://dx.doi.org/10.1016/j.it.2017.06.009] [PMID: 28734635]
[9]
Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: Host cell death and inflammation. Nat Rev Microbiol 2009; 7(2): 99-109.
[http://dx.doi.org/10.1038/nrmicro2070] [PMID: 19148178]
[10]
Fang Y, Tian S, Pan Y, et al. Pyroptosis: A new frontier in cancer. Biomed Pharmacother 2020; 121: 109595.
[http://dx.doi.org/10.1016/j.biopha.2019.109595] [PMID: 31710896]
[11]
Taabazuing CY, Okondo MC, Bachovchin DA. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem Biol 2017; 24(4): 507-514.e4.
[http://dx.doi.org/10.1016/j.chembiol.2017.03.009] [PMID: 28392147]
[12]
Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature 1992; 358(6382): 167-9.
[http://dx.doi.org/10.1038/358167a0] [PMID: 1614548]
[13]
Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol 2001; 9(3): 113-4.
[http://dx.doi.org/10.1016/S0966-842X(00)01936-3] [PMID: 11303500]
[14]
Tan M-S, Tan L, Jiang T, et al. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis 2014; 5(8): e1382-2.
[http://dx.doi.org/10.1038/cddis.2014.348] [PMID: 25144717]
[15]
Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464(7293): 1357-61.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[16]
Xu YJ, Zheng L, Hu YW, Wang Q. Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta 2018; 476: 28-37.
[http://dx.doi.org/10.1016/j.cca.2017.11.005] [PMID: 29129476]
[17]
Doitsh G, Galloway NLK, Geng X, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 2014; 505(7484): 509-14.
[http://dx.doi.org/10.1038/nature12940] [PMID: 24356306]
[18]
Doitsh G, Greene WC. Dissecting How CD4 T Cells Are Lost During HIV Infection. Cell Host Microbe 2016; 19(3): 280-91.
[http://dx.doi.org/10.1016/j.chom.2016.02.012] [PMID: 26962940]
[19]
Friedlander AM. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem 1986; 261(16): 7123-6.
[http://dx.doi.org/10.1016/S0021-9258(17)38364-3] [PMID: 3711080]
[20]
Black RA, Kronheim SR, Merriam JE, March CJ, Hopp TP. A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 β. J Biol Chem 1989; 264(10): 5323-6.
[http://dx.doi.org/10.1016/S0021-9258(18)83546-3] [PMID: 2784432]
[21]
Thornberry NA, Bull HG, Calaycay JR, et al. A novel heterodimeric cysteine protease is required for interleukin-1βprocessing in monocytes. Nature 1992; 356(6372): 768-74.
[http://dx.doi.org/10.1038/356768a0] [PMID: 1574116]
[22]
Cerretti DP, Kozlosky CJ, Mosley B, et al. Molecular cloning of the interleukin-1 β converting enzyme. Science 1992; 256(5053): 97-100.
[http://dx.doi.org/10.1126/science.1373520] [PMID: 1373520]
[23]
Chen Y, Smith MR, Thirumalai K, Zychlinsky A. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J 1996; 15(15): 3853-60.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00759.x] [PMID: 8670890]
[24]
D’Souza CA, Heitman J. Dismantling the Cryptococcus coat. Trends Microbiol 2001; 9(3): 112-3.
[http://dx.doi.org/10.1016/S0966-842X(00)01945-4] [PMID: 11303499]
[25]
Martinon F, Burns K, Tschopp J. The Inflammasome. Mol Cell 2002; 10(2): 417-26.
[http://dx.doi.org/10.1016/S1097-2765(02)00599-3] [PMID: 12191486]
[26]
Kovacs SB, Miao EA. Gasdermins: Effectors of pyroptosis. Trends Cell Biol 2017; 27(9): 673-84.
[http://dx.doi.org/10.1016/j.tcb.2017.05.005] [PMID: 28619472]
[27]
Rühl S, Shkarina K, Demarco B, Heilig R, Santos JC, Broz P. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 2018; 362(6417): 956-60.
[http://dx.doi.org/10.1126/science.aar7607] [PMID: 30467171]
[28]
Humphries F, Shmuel-Galia L, Ketelut-Carneiro N, et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 2020; 369(6511): 1633-7.
[http://dx.doi.org/10.1126/science.abb9818] [PMID: 32820063]
[29]
Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 2017; 547(7661): 99-103.
[http://dx.doi.org/10.1038/nature22393] [PMID: 28459430]
[30]
Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun 2017; 8(1): 14128.
[http://dx.doi.org/10.1038/ncomms14128] [PMID: 28045099]
[31]
Newton K, Wickliffe KE, Maltzman A, et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature 2019; 575(7784): 679-82.
[http://dx.doi.org/10.1038/s41586-019-1752-8] [PMID: 31723262]
[32]
Zhang Z, Zhang Y, Xia S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 2020; 579(7799): 415-20.
[http://dx.doi.org/10.1038/s41586-020-2071-9] [PMID: 32188940]
[33]
Zhou Z, He H, Wang K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 2020; 368(6494): eaaz7548.
[http://dx.doi.org/10.1126/science.aaz7548] [PMID: 32299851]
[34]
Hou J, Zhao R, Xia W, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol 2020; 22(10): 1264-75.
[http://dx.doi.org/10.1038/s41556-020-0575-z] [PMID: 32929201]
[35]
Wei X, Xie F, Zhou X, et al. Role of pyroptosis in inflammation and cancer. Cell Mol Immunol 2022; 19(9): 971-92.
[http://dx.doi.org/10.1038/s41423-022-00905-x] [PMID: 35970871]
[36]
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: Mechanisms and diseases. Signal Transduct Target Ther 2021; 6(1): 128.
[http://dx.doi.org/10.1038/s41392-021-00507-5] [PMID: 33776057]
[37]
Xia X, Wang X, Cheng Z, et al. The role of pyroptosis in cancer: Pro-cancer or pro-“host”? Cell Death Dis 2019; 10(9): 650.
[http://dx.doi.org/10.1038/s41419-019-1883-8] [PMID: 31501419]
[38]
Frank D, Vince JE. Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death Differ 2019; 26(1): 99-114.
[http://dx.doi.org/10.1038/s41418-018-0212-6] [PMID: 30341423]
[39]
Jackson DN, Theiss AL. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes 2020; 11(3): 285-304.
[http://dx.doi.org/10.1080/19490976.2019.1592421] [PMID: 30913966]
[40]
Man SM, Karki R, Kanneganti TD. AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity. Eur J Immunol 2016; 46(2): 269-80.
[http://dx.doi.org/10.1002/eji.201545839] [PMID: 26626159]
[41]
He Y, Amer AO. Microbial modulation of host apoptosis and pyroptosis. Front Cell Infect Microbiol 2014; 4: 83.
[http://dx.doi.org/10.3389/fcimb.2014.00083] [PMID: 24995165]
[42]
Nunes T, de Souza HS. Inflammasome in intestinal inflammation and cancer. Mediators Inflamm 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/654963] [PMID: 23606794]
[43]
Cervantes J, Nagata T, Uchijima M, Shibata K, Koide Y. Intracytosolic Listeria monocytogenes induces cell death through caspase-1 activation in murine macrophages. Cell Microbiol 2007; 0(0): 070729204019001-.
[http://dx.doi.org/10.1111/j.1462-5822.2007.01012.x] [PMID: 17662073]
[44]
Kelk P, Johansson A, Claesson R, Hänström L, Kalfas S. Caspase 1 involvement in human monocyte lysis induced by Actinobacillus actinomycetemcomitans leukotoxin. Infect Immun 2003; 71(8): 4448-55.
[http://dx.doi.org/10.1128/IAI.71.8.4448-4455.2003] [PMID: 12874324]
[45]
Jesenberger V, Procyk KJ, Yuan J, Reipert S, Baccarini M. Salmonella-induced caspase-2 activation in macrophages: A novel mechanism in pathogen-mediated apoptosis. J Exp Med 2000; 192(7): 1035-46.
[http://dx.doi.org/10.1084/jem.192.7.1035] [PMID: 11015444]
[46]
Li P, Allen H, Banerjee S, et al. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 1995; 80(3): 401-11.
[http://dx.doi.org/10.1016/0092-8674(95)90490-5] [PMID: 7859282]
[47]
He Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 2016; 41(12): 1012-21.
[http://dx.doi.org/10.1016/j.tibs.2016.09.002] [PMID: 27669650]
[48]
Thi HTH, Hong S. Inflammasome as a therapeutic target for cancer prevention and treatment. J Cancer Prev 2017; 22(2): 62-73.
[http://dx.doi.org/10.15430/JCP.2017.22.2.62] [PMID: 28698859]
[49]
McAllister SS, Weinberg RA. Tumor-host interactions: A far-reaching relationship. J Clin Oncol 2010; 28(26): 4022-8.
[http://dx.doi.org/10.1200/JCO.2010.28.4257] [PMID: 20644094]
[50]
Munn DH, Bronte V. Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol 2016; 39: 1-6.
[http://dx.doi.org/10.1016/j.coi.2015.10.009] [PMID: 26609943]
[51]
Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature 2016; 529(7586): 298-306.
[http://dx.doi.org/10.1038/nature17038] [PMID: 26791720]
[52]
Klement GL. Eco-evolution of cancer resistance. Sci Transl Med 2016; 8(327): 327fs5.
[http://dx.doi.org/10.1126/scitranslmed.aaf3802] [PMID: 26912901]
[53]
Finn OJ, Beatty PL. Cancer immunoprevention. Curr Opin Immunol 2016; 39: 52-8.
[http://dx.doi.org/10.1016/j.coi.2016.01.002] [PMID: 26799207]
[54]
Solinas G, Marchesi F, Garlanda C, Mantovani A, Allavena P. Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Rev 2010; 29(2): 243-8.
[http://dx.doi.org/10.1007/s10555-010-9227-2] [PMID: 20414701]
[55]
Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature 2012; 481(7381): 278-86.
[http://dx.doi.org/10.1038/nature10759] [PMID: 22258606]
[56]
Liston A, Masters SL. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol 2017; 17(3): 208-14.
[http://dx.doi.org/10.1038/nri.2016.151] [PMID: 28163301]
[57]
Chen GY, Nuñez G. Sterile inflammation: Sensing and reacting to damage. Nat Rev Immunol 2010; 10(12): 826-37.
[http://dx.doi.org/10.1038/nri2873] [PMID: 21088683]
[58]
Rathinam VAK, Fitzgerald KA. Inflammasome complexes: Emerging mechanisms and effector functions. Cell 2016; 165(4): 792-800.
[http://dx.doi.org/10.1016/j.cell.2016.03.046] [PMID: 27153493]
[59]
Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell 2014; 157(5): 1013-22.
[http://dx.doi.org/10.1016/j.cell.2014.04.007] [PMID: 24855941]
[60]
Place DE, Kanneganti TD. Recent advances in inflammasome biology. Curr Opin Immunol 2018; 50: 32-8.
[http://dx.doi.org/10.1016/j.coi.2017.10.011] [PMID: 29128729]
[61]
Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009; 458(7237): 514-8.
[http://dx.doi.org/10.1038/nature07725] [PMID: 19158675]
[62]
Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 2009; 458(7237): 509-13.
[http://dx.doi.org/10.1038/nature07710] [PMID: 19158676]
[63]
Hara H, Seregin SS, Yang D, et al. The NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen infection. Cell 2018; 175(6): 1651-1664.e14.
[http://dx.doi.org/10.1016/j.cell.2018.09.047] [PMID: 30392956]
[64]
Levy M, Thaiss CA, Zeevi D, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 2015; 163(6): 1428-43.
[http://dx.doi.org/10.1016/j.cell.2015.10.048] [PMID: 26638072]
[65]
Minkiewicz J, de Rivero Vaccari JP, Keane RW. Human astrocytes express a novel NLRP2 inflammasome. Glia 2013; 61(7): 1113-21.
[http://dx.doi.org/10.1002/glia.22499] [PMID: 23625868]
[66]
Miao EA, Leaf IA, Treuting PM, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 2010; 11(12): 1136-42.
[http://dx.doi.org/10.1038/ni.1960] [PMID: 21057511]
[67]
Jorgensen I, Zhang Y, Krantz BA, Miao EA. Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. J Exp Med 2016; 213(10): 2113-28.
[http://dx.doi.org/10.1084/jem.20151613] [PMID: 27573815]
[68]
Lamkanfi M. Emerging inflammasome effector mechanisms. Nat Rev Immunol 2011; 11(3): 213-20.
[http://dx.doi.org/10.1038/nri2936] [PMID: 21350580]
[69]
Barton GM, Medzhitov R. Toll-like receptor signaling pathways. Science 2003; 300(5625): 1524-5.
[http://dx.doi.org/10.1126/science.1085536] [PMID: 12791976]
[70]
Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34(5): 637-50.
[http://dx.doi.org/10.1016/j.immuni.2011.05.006] [PMID: 21616434]
[71]
Zitvogel L, Kepp O, Galluzzi L, Kroemer G. Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol 2012; 13(4): 343-51.
[http://dx.doi.org/10.1038/ni.2224] [PMID: 22430787]
[72]
Broz P, Dixit VM. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat Rev Immunol 2016; 16(7): 407-20.
[http://dx.doi.org/10.1038/nri.2016.58] [PMID: 27291964]
[73]
Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 2012; 28(1): 137-61.
[http://dx.doi.org/10.1146/annurev-cellbio-101011-155745] [PMID: 22974247]
[74]
Chavarría-Smith J, Mitchell PS, Ho AM, Daugherty MD, Vance RE. Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation. PLoS Pathog 2016; 12(12): e1006052.
[http://dx.doi.org/10.1371/journal.ppat.1006052] [PMID: 27926929]
[75]
Boyden ED, Dietrich WF. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 2006; 38(2): 240-4.
[http://dx.doi.org/10.1038/ng1724] [PMID: 16429160]
[76]
Ewald SE, Chavarria-Smith J, Boothroyd JC. NLRP1 is an inflammasome sensor for Toxoplasma gondii. Infect Immun 2014; 82(1): 460-8.
[http://dx.doi.org/10.1128/IAI.01170-13] [PMID: 24218483]
[77]
Okondo MC, Johnson DC, Sridharan R, et al. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat Chem Biol 2017; 13(1): 46-53.
[http://dx.doi.org/10.1038/nchembio.2229] [PMID: 27820798]
[78]
Chavarría-Smith J, Vance RE. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog 2013; 9(6): e1003452.
[http://dx.doi.org/10.1371/journal.ppat.1003452] [PMID: 23818853]
[79]
Levinsohn JL, Newman ZL, Hellmich KA, et al. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 2012; 8(3): e1002638.
[http://dx.doi.org/10.1371/journal.ppat.1002638] [PMID: 22479187]
[80]
Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol 2019; 19(8): 477-89.
[http://dx.doi.org/10.1038/s41577-019-0165-0] [PMID: 31036962]
[81]
Lightfield KL, Persson J, Brubaker SW, et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 2008; 9(10): 1171-8.
[http://dx.doi.org/10.1038/ni.1646] [PMID: 18724372]
[82]
Kofoed EM, Vance RE. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 2011; 477(7366): 592-5.
[http://dx.doi.org/10.1038/nature10394] [PMID: 21874021]
[83]
Zhao Y, Yang J, Shi J, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 2011; 477(7366): 596-600.
[http://dx.doi.org/10.1038/nature10510] [PMID: 21918512]
[84]
Duncan JA, Canna SW. The NLRC 4 Inflammasome. Immunol Rev 2018; 281(1): 115-23.
[http://dx.doi.org/10.1111/imr.12607] [PMID: 29247997]
[85]
Matyszewski M, Morrone SR, Sohn J. Digital signaling network drives the assembly of the AIM2-ASC inflammasome. Proceedings of the National Academy of Sciences. 115.
[http://dx.doi.org/10.1073/pnas.1712860115]
[86]
Jones JW, Kayagaki N, Broz P, et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci 2010; 107(21): 9771-6.
[http://dx.doi.org/10.1073/pnas.1003738107] [PMID: 20457908]
[87]
Pierini R, Juruj C, Perret M, et al. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ 2012; 19(10): 1709-21.
[http://dx.doi.org/10.1038/cdd.2012.51] [PMID: 22555457]
[88]
Rathinam VAK, Jiang Z, Waggoner SN, et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 2010; 11(5): 395-402.
[http://dx.doi.org/10.1038/ni.1864] [PMID: 20351692]
[89]
Fernandes-Alnemri T, Yu JW, Juliana C, et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 2010; 11(5): 385-93.
[http://dx.doi.org/10.1038/ni.1859] [PMID: 20351693]
[90]
Jin T, Perry A, Jiang J, et al. Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 2012; 36(4): 561-71.
[http://dx.doi.org/10.1016/j.immuni.2012.02.014] [PMID: 22483801]
[91]
Roberts TL, Idris A, Dunn JA, et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 2009; 323(5917): 1057-60.
[http://dx.doi.org/10.1126/science.1169841] [PMID: 19131592]
[92]
Ratner D, Orning MPA, Proulx MK, et al. The Yersinia pestis effector YopM inhibits pyrin inflammasome activation. PLoS Pathog 2016; 12(12): e1006035.
[http://dx.doi.org/10.1371/journal.ppat.1006035] [PMID: 27911947]
[93]
Xu H, Yang J, Gao W, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 2014; 513(7517): 237-41.
[http://dx.doi.org/10.1038/nature13449] [PMID: 24919149]
[94]
Chung LK, Park YH, Zheng Y, et al. The yersinia virulence factor YopM hijacks host kinases to inhibit type III effector-triggered activation of the pyrin inflammasome. Cell Host Microbe 2016; 20(3): 296-306.
[http://dx.doi.org/10.1016/j.chom.2016.07.018] [PMID: 27569559]
[95]
Park YH, Wood G, Kastner DL, Chae JJ. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol 2016; 17(8): 914-21.
[http://dx.doi.org/10.1038/ni.3457] [PMID: 27270401]
[96]
Masters SL, Lagou V, Jéru I, et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci Transl Med 2016; 8(332): 332ra45.
[http://dx.doi.org/10.1126/scitranslmed.aaf1471] [PMID: 27030597]
[97]
Gao W, Yang J, Liu W, Wang Y, Shao F. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proceedings of the National Academy of Sciences. 113.
[http://dx.doi.org/10.1073/pnas.1601700113]
[98]
Sollberger G, Strittmatter GE, Garstkiewicz M, Sand J, Beer HD. Caspase-1: The inflammasome and beyond. Innate Immun 2014; 20(2): 115-25.
[http://dx.doi.org/10.1177/1753425913484374] [PMID: 23676582]
[99]
Sborgi L, Rühl S, Mulvihill E, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 2016; 35(16): 1766-78.
[http://dx.doi.org/10.15252/embj.201694696] [PMID: 27418190]
[100]
Carty M, Kearney J, Shanahan KA, et al. Cell survival and cytokine release after inflammasome activation is regulated by the Toll-IL-1R protein SARM. Immunity 2019; 50(6): 1412-1424.e6.
[http://dx.doi.org/10.1016/j.immuni.2019.04.005] [PMID: 31076360]
[101]
He W, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 2015; 25(12): 1285-98.
[http://dx.doi.org/10.1038/cr.2015.139] [PMID: 26611636]
[102]
Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014; 514(7521): 187-92.
[http://dx.doi.org/10.1038/nature13683] [PMID: 25119034]
[103]
Chu LH, Indramohan M, Ratsimandresy RA, et al. The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nat Commun 2018; 9(1): 996.
[http://dx.doi.org/10.1038/s41467-018-03409-3] [PMID: 29520027]
[104]
Aglietti RA, Estevez A, Gupta A, et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci 2016; 113(28): 7858-63.
[http://dx.doi.org/10.1073/pnas.1607769113] [PMID: 27339137]
[105]
Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci 2017; 42(4): 245-54.
[http://dx.doi.org/10.1016/j.tibs.2016.10.004] [PMID: 27932073]
[106]
Yang D, He Y, Muñoz-Planillo R, Liu Q, Núñez G. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity 2015; 43(5): 923-32.
[http://dx.doi.org/10.1016/j.immuni.2015.10.009] [PMID: 26572062]
[107]
Schmid-Burgk JL, Gaidt MM, Schmidt T, Ebert TS, Bartok E, Hornung V. Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells. Eur J Immunol 2015; 45(10): 2911-7.
[http://dx.doi.org/10.1002/eji.201545523] [PMID: 26174085]
[108]
Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11. Nature 2011; 479(7371): 117-21.
[http://dx.doi.org/10.1038/nature10558] [PMID: 22002608]
[109]
Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 2016; 535(7610): 111-6.
[http://dx.doi.org/10.1038/nature18590] [PMID: 27281216]
[110]
Liu Y, Fang Y, Chen X, et al. Gasdermin E–mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci Immunol 2020; 5(43): eaax7969.
[http://dx.doi.org/10.1126/sciimmunol.aax7969] [PMID: 31953257]
[111]
Pan J, Han L, Guo J, et al. AIM2 accelerates the atherosclerotic plaque progressions in ApoE−/− mice. Biochem Biophys Res Commun 2018; 498(3): 487-94.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.005] [PMID: 29510138]
[112]
Kawaguchi M, Takahashi M, Hata T, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 2011; 123(6): 594-604.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.982777] [PMID: 21282498]
[113]
Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 2007; 100(6): 914-22.
[http://dx.doi.org/10.1161/01.RES.0000261924.76669.36] [PMID: 17332429]
[114]
Marchant DJ, Boyd JH, Lin DC, Granville DJ, Garmaroudi FS, McManus BM. Inflammation in myocardial diseases. Circ Res 2012; 110(1): 126-44.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.243170] [PMID: 22223210]
[115]
Nazir S, Gadi I, Al-Dabet MM, et al. Cytoprotective activated protein C averts Nlrp3 inflammasome–induced ischemia-reperfusion injury via mTORC1 inhibition. Blood 2017; 130(24): 2664-77.
[http://dx.doi.org/10.1182/blood-2017-05-782102] [PMID: 28882883]
[116]
Rovai ES, Holzhausen M. The role of proteinase-activated receptors 1 and 2 in the regulation of periodontal tissue metabolism and disease. J Immunol Res 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/5193572] [PMID: 28503577]
[117]
Devi TS, Lee I, Hüttemann M, Kumar A, Nantwi KD, Singh LP. TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: Implications for diabetic retinopathy. Exp Diabetes Res 2012; 2012: 1-19.
[http://dx.doi.org/10.1155/2012/438238] [PMID: 22474421]
[118]
Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol 2014; 5: 352.
[http://dx.doi.org/10.3389/fphys.2014.00352] [PMID: 25324778]
[119]
Nag AC. Study of non-muscle cells of the adult mammalian heart: A fine structural analysis and distribution. Cytobios 1980; 28(109): 41-61.
[PMID: 7428441]
[120]
Sandanger Ø, Ranheim T, Vinge LE, et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia–reperfusion injury. Cardiovasc Res 2013; 99(1): 164-74.
[http://dx.doi.org/10.1093/cvr/cvt091] [PMID: 23580606]
[121]
Shen L, Li L, Li M, et al. Silencing of NOD2 protects against diabetic cardiomyopathy in a murine diabetes model. Int J Mol Med 2018; 42(6): 3017-26.
[http://dx.doi.org/10.3892/ijmm.2018.3880] [PMID: 30221681]
[122]
Alhawiti NM, Al Mahri S, Aziz MA, Malik SS, Mohammad S. TXNIP in metabolic regulation: Physiological role and therapeutic outlook. Curr Drug Targets 2017; 18(9): 1095-103.
[PMID: 28137209]
[123]
Chen K, Zhang J, Zhang W, et al. ATP-P2X4 signaling mediates NLRP3 inflammasome activation: A novel pathway of diabetic nephropathy. Int J Biochem Cell Biol 2013; 45(5): 932-43.
[http://dx.doi.org/10.1016/j.biocel.2013.02.009] [PMID: 23434541]
[124]
Katsanou V, Milatos S, Yiakouvaki A, et al. The RNA-binding protein Elavl1/HuR is essential for placental branching morphogenesis and embryonic development. Mol Cell Biol 2009; 29(10): 2762-76.
[http://dx.doi.org/10.1128/MCB.01393-08] [PMID: 19307312]
[125]
Jeyabal P, Thandavarayan RA, Joladarashi D, et al. MicroRNA-9 inhibits hyperglycemia-induced pyroptosis in human ventricular cardiomyocytes by targeting ELAVL1. Biochem Biophys Res Commun 2016; 471(4): 423-9.
[http://dx.doi.org/10.1016/j.bbrc.2016.02.065] [PMID: 26898797]
[126]
Li X, Du N, Zhang Q, et al. MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Cell Death Dis 2014; 5(10): e1479-9.
[http://dx.doi.org/10.1038/cddis.2014.430] [PMID: 25341033]
[127]
Donath S, Li P, Willenbockel C, et al. Apoptosis repressor with caspase recruitment domain is required for cardioprotection in response to biomechanical and ischemic stress. Circulation 2006; 113(9): 1203-12.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.576785] [PMID: 16505176]
[128]
Li G, Xing W, Zhang M, et al. Antifibrotic cardioprotection of berberine via downregulating myocardial IGF-1 receptor-regulated MMP-2/MMP-9 expression in diabetic rats. Am J Physiol Heart Circ Physiol 2018; 315(4): H802-13.
[http://dx.doi.org/10.1152/ajpheart.00093.2018] [PMID: 29957017]
[129]
Li X, He X, Wang H, et al. Loss of AZIN2 splice variant facilitates endogenous cardiac regeneration. Cardiovasc Res 2018; 114(12): 1642-55.
[http://dx.doi.org/10.1093/cvr/cvy075] [PMID: 29584819]
[130]
Gao X, Ge J, Li W, Zhou W, Xu L. LncRNA KCNQ1OT1 ameliorates particle-induced osteolysis through inducing macrophage polarization by inhibiting miR-21a-5p. Biol Chem 2018; 399(4): 375-86.
[http://dx.doi.org/10.1515/hsz-2017-0215] [PMID: 29252185]
[131]
Li X, Dai Y, Yan S, et al. Down-regulation of lncRNA KCNQ1OT1 protects against myocardial ischemia/reperfusion injury following acute myocardial infarction. Biochem Biophys Res Commun 2017; 491(4): 1026-33.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.005] [PMID: 28780351]
[132]
Coto E, Calvo D, Reguero JR, et al. Differential methylation of lncRNA KCNQ1OT1 promoter polymorphism was associated with symptomatic cardiac long QT. Epigenomics 2017; 9(8): 1049-57.
[http://dx.doi.org/10.2217/epi-2017-0024] [PMID: 28749187]
[133]
Zhang X, Fu Y, Li H, et al. H3 relaxin inhibits the collagen synthesis via ROS- and P2X7R-mediated NLRP3 inflammasome activation in cardiac fibroblasts under high glucose. J Cell Mol Med 2018; 22(3): 1816-25.
[http://dx.doi.org/10.1111/jcmm.13464] [PMID: 29314607]
[134]
Peng K, Liu L, Wei D, et al. P2X7R is involved in the progression of atherosclerosis by promoting NLRP3 inflammasome activation. Int J Mol Med 2015; 35(5): 1179-88.
[http://dx.doi.org/10.3892/ijmm.2015.2129] [PMID: 25761252]
[135]
Yi YS. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology 2017; 152(2): 207-17.
[http://dx.doi.org/10.1111/imm.12787] [PMID: 28695629]
[136]
Liu X, Lieberman J. A mechanistic understanding of pyroptosis: The fiery death triggered by invasive infection. Adv Immunol 2017; 135: 81-117.
[137]
Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 2007; 59(4): 418-58.
[http://dx.doi.org/10.1124/pr.107.06002] [PMID: 18048761]
[138]
Little WC, Constantinescu M, Applegate RJ, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 1988; 78(5): 1157-66.
[http://dx.doi.org/10.1161/01.CIR.78.5.1157] [PMID: 3180375]
[139]
Lin J, Shou X, Mao X, et al. Oxidized low density lipoprotein induced caspase-1 mediated pyroptotic cell death in macrophages: Implication in lesion instability? PLoS One 2013; 8(4): e62148.
[http://dx.doi.org/10.1371/journal.pone.0062148] [PMID: 23637985]
[140]
Qiu Z, Lei S, Zhao B, et al. NLRP3 inflammasome activation-mediated pyroptosis aggravates myocardial ischemia/reperfusion injury in diabetic rats. Oxid Med Cell Longev 2017; 2017: 1-17.
[http://dx.doi.org/10.1155/2017/9743280] [PMID: 29062465]
[141]
Mezzaroma E, Toldo S, Farkas D, et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci 2011; 108(49): 19725-30.
[http://dx.doi.org/10.1073/pnas.1108586108] [PMID: 22106299]
[142]
Krishnan SM, Dowling JK, Ling YH, et al. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br J Pharmacol 2016; 173(4): 752-65.
[http://dx.doi.org/10.1111/bph.13230] [PMID: 26103560]
[143]
Saito T, Miyagawa K, Chen SY, et al. Upregulation of human endogenous retrovirus-k is linked to immunity and inflammation in pulmonary arterial hypertension. Circulation 2017; 136(20): 1920-35.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.027589] [PMID: 28935667]
[144]
Dalekos GN, Elisaf M, Bairaktari E, Tsolas O, Siamopoulos KC. Increased serum levels of interleukin-1β in the systemic circulation of patients with essential hypertension: Additional risk factor for atherogenesis in hypertensive patients? J Lab Clin Med 1997; 129(3): 300-8.
[http://dx.doi.org/10.1016/S0022-2143(97)90178-5] [PMID: 9042815]
[145]
Hong C, Zhi-Zhen L, Hong W, Chide H. Induction of ice and inhibition of c-fos, jun D and zif 268 in 12 -month old spontaneously hypertensive rats. Life Sci 1997; 61(2): A27-31.
[http://dx.doi.org/10.1016/S0024-3205(97)00377-9] [PMID: 9217281]
[146]
Qi J, Yu XJ, Shi XL, et al. NF-κB blockade in hypothalamic paraventricular nucleus inhibits high-salt-induced hypertension through NLRP3 and caspase-1. Cardiovasc Toxicol 2016; 16(4): 345-54.
[http://dx.doi.org/10.1007/s12012-015-9344-9] [PMID: 26438340]
[147]
Tang B, Chen G, Liang M, Yao J, Wu Z. Ellagic acid prevents monocrotaline-induced pulmonary artery hypertension via inhibiting NLRP3 inflammasome activation in rats. Int J Cardiol 2015; 180: 134-41.
[http://dx.doi.org/10.1016/j.ijcard.2014.11.161] [PMID: 25438234]
[148]
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7(1): 131.
[http://dx.doi.org/10.1038/s41392-022-00955-7] [PMID: 35459215]
[149]
Abela GS, Aziz K. Cholesterol crystals rupture biological membranes and human plaques during acute cardiovascular events-a novel insight into plaque rupture by scanning electron microscopy. Scanning 2006; 28(1): 1-10.
[http://dx.doi.org/10.1002/sca.4950280101] [PMID: 16502619]
[150]
Sacco SJ, Park CL, Suresh DP, Bliss D. Living with heart failure: Psychosocial resources, meaning, gratitude and well-being. Heart Lung 2014; 43(3): 213-8.
[http://dx.doi.org/10.1016/j.hrtlng.2014.01.012] [PMID: 24661743]
[151]
Bracey NA, Beck PL, Muruve DA, et al. The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukin-1β. Exp Physiol 2013; 98(2): 462-72.
[http://dx.doi.org/10.1113/expphysiol.2012.068338] [PMID: 22848083]
[152]
Wang Y, Wu Y, Chen J, Zhao S, Li H. Pirfenidone attenuates cardiac fibrosis in a mouse model of TAC-induced left ventricular remodeling by suppressing NLRP3 inflammasome formation. Cardiology 2013; 126(1): 1-11.
[http://dx.doi.org/10.1159/000351179] [PMID: 23839341]
[153]
Li R, Lu K, Wang Y, et al. Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression. Biochem Biophys Res Commun 2017; 485(1): 69-75.
[http://dx.doi.org/10.1016/j.bbrc.2017.02.021] [PMID: 28202417]
[154]
Zhang W, Xu X, Kao R, et al. Cardiac fibroblasts contribute to myocardial dysfunction in mice with sepsis: The role of NLRP3 inflammasome activation. PLoS One 2014; 9(9): e107639.
[http://dx.doi.org/10.1371/journal.pone.0107639] [PMID: 25216263]
[155]
Boza P, Ayala P, Vivar R, et al. Expression and function of toll-like receptor 4 and inflammasomes in cardiac fibroblasts and myofibroblasts: IL-1β synthesis, secretion, and degradation. Mol Immunol 2016; 74: 96-105.
[http://dx.doi.org/10.1016/j.molimm.2016.05.001] [PMID: 27174187]
[156]
Freeman JV, Wang Y, Akar J, Desai N, Krumholz H. National trends in atrial fibrillation hospitalization, readmission, and mortality for medicare beneficiaries, 1999–2013. Circulation 2017; 135(13): 1227-39.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.022388] [PMID: 28148599]
[157]
Andrade J, Khairy P, Dobrev D, Nattel S. The clinical profile and pathophysiology of atrial fibrillation: Relationships among clinical features, epidemiology, and mechanisms. Circ Res 2014; 114(9): 1453-68.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303211] [PMID: 24763464]
[158]
Harada M, Van Wagoner DR, Nattel S. Role of inflammation in atrial fibrillation pathophysiology and management. Circ J 2015; 79(3): 495-502.
[http://dx.doi.org/10.1253/circj.CJ-15-0138] [PMID: 25746525]
[159]
Chen G, Chelu MG, Dobrev D, Li N. Cardiomyocyte inflammasome signaling in cardiomyopathies and atrial fibrillation: Mechanisms and potential therapeutic implications. Front Physiol 2018; 9: 1115.
[http://dx.doi.org/10.3389/fphys.2018.01115] [PMID: 30150941]
[160]
Luan Y, Guo Y, Li S, et al. Interleukin-18 among atrial fibrillation patients in the absence of structural heart disease. Europace 2010; 12(12): 1713-8.
[http://dx.doi.org/10.1093/europace/euq321] [PMID: 20833691]
[161]
Yao C, Veleva T, Scott L Jr, et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation 2018; 138(20): 2227-42.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035202] [PMID: 29802206]
[162]
Kayagaki N, Kornfeld OS, Lee BL, et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 2021; 591(7848): 131-6.
[http://dx.doi.org/10.1038/s41586-021-03218-7] [PMID: 33472215]
[163]
Kayagaki N, Stowe IB, Alegre K, et al. Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury. Nature 2023; 618(7967): 1072-7.
[http://dx.doi.org/10.1038/s41586-023-06191-5] [PMID: 37196676]
[164]
Borges JP, Sætra RSR, Volchuk A, et al. Glycine inhibits NINJ1 membrane clustering to suppress plasma membrane rupture in cell death. eLife 2022; 11: e78609.
[http://dx.doi.org/10.7554/eLife.78609] [PMID: 36468682]
[165]
Dias C, Hornung V, Nylandsted J. A novel NINJ1-mediated regulatory step is essential for active membrane rupture and common to different cell death pathways. Fac Rev 2022; 11: 41.
[http://dx.doi.org/10.12703/r-01-0000021] [PMID: 36644292]
[166]
Dai Z, Liu WC, Chen XY, Wang X, Li JL, Zhang X. Gasdermin D-mediated pyroptosis: Mechanisms, diseases, and inhibitors. Front Immunol 2023; 14: 1178662.
[http://dx.doi.org/10.3389/fimmu.2023.1178662] [PMID: 37275856]
[167]
Mulla J, Katti R, Scott MJ. The Role of Gasdermin-D-Mediated Pyroptosis in Organ Injury and Its Therapeutic Implications. Organogenesis 2023; 19(1): 2177484.
[http://dx.doi.org/10.1080/15476278.2023.2177484] [PMID: 36967609]
[168]
Demarco B, Ramos S, Broz P. Detection of gasdermin activation and lytic cell death during pyroptosis and apoptosis. Methods Mol Biol 2022; 2523: 209-37.
[http://dx.doi.org/10.1007/978-1-0716-2449-4_14] [PMID: 35759200]
[169]
Zeng ZL, Lin X, Tan LL, Liu YM, Qu K, Wang Z. MicroRNAs: Important regulators of induced pluripotent stem cell generation and differentiation. Stem Cell Rev 2018; 14(1): 71-81.
[http://dx.doi.org/10.1007/s12015-017-9785-6] [PMID: 29143183]
[170]
Luo B, Li B, Wang W, et al. Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model. Cardiovasc Drugs Ther 2014; 28(1): 33-43.
[http://dx.doi.org/10.1007/s10557-013-6498-1] [PMID: 24254031]
[171]
Han Y, Qiu H, Pei X, Fan Y, Tian H, Geng J. Low-dose sinapic acid abates the pyroptosis of macrophages by downregulation of lncRNA-MALAT1 in rats with diabetic atherosclerosis. J Cardiovasc Pharmacol 2018; 71(2): 104-12.
[http://dx.doi.org/10.1097/FJC.0000000000000550] [PMID: 29095793]
[172]
Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: What’s new? A review. J Pineal Res 2018; 65(1): e12490.
[http://dx.doi.org/10.1111/jpi.12490] [PMID: 29570845]
[173]
Zhou Y, Zhang X, Klibanski A. MEG3 noncoding RNA: A tumor suppressor. J Mol Endocrinol 2012; 48(3): R45-53.
[http://dx.doi.org/10.1530/JME-12-0008] [PMID: 22393162]
[174]
Tian M, Yuan YC, Li JY, Gionfriddo MR, Huang RC. Tumor necrosis factor-α and its role as a mediator in myocardial infarction: A brief review. Chronic Dis Transl Med 2015; 1(1): 18-26.
[PMID: 29062983]
[175]
Chen A, Chen Z, Xia Y, et al. Liraglutide attenuates NLRP3 inflammasome-dependent pyroptosis via regulating SIRT1/NOX4/ROS pathway in H9c2 cells. Biochem Biophys Res Commun 2018; 499(2): 267-72.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.142] [PMID: 29571736]
[176]
He C, Cao S, Tong Z, Wang W, Zhang Y, Guo C. Trimetazidine ameliorates myocardial ischemia-reperfusion injury. Pak J Pharm Sci 2018; 31(4): 1691-6.
[PMID: 30203764]
[177]
a) Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016; 315(8): 801-10.
[http://dx.doi.org/10.1001/jama.2016.0287] [PMID: 26903338];
b) Chen J, Wang B, Lai J, et al. Trimetazidine attenuates cardiac dysfunction in endotoxemia and sepsis by promoting neutrophil migration. Front Immunol 2018; 9: 2015.
[http://dx.doi.org/10.3389/fimmu.2018.02015] [PMID: 30233596]
[178]
The role of pyroptosis in chronic venous disease (PYROCVD). Patent NCT03744858, 2018.
[179]
The Relationship Between Serum Gasdermin-D Levels and Pyroptosis and Preterm Labor. Patent NCT05835700, 2023.
[180]
The Evaluation of NETs, Caspase-1 and Cytokines in ARDS Patients. Patent NCT03227107,
[181]
The Effect and Mechanism of lncRNA NBR2 Regulating Endothelial Pyroptosis by Targeting GSDMD in Sepsis. Patent NCT04427371, 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy