Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Mini-Review Article

Syndecan-1: A Novel Diagnostic and Therapeutic Target in Liver Diseases

Author(s): Xiaoli Zhang, Yalei Zhao, Liangru Liu and Yingli He*

Volume 24, Issue 15, 2023

Published on: 07 November, 2023

Page: [1155 - 1165] Pages: 11

DOI: 10.2174/0113894501250057231102061624

Price: $65

conference banner
Abstract

Syndecan-1 (SDC-1), known as a coreceptor of various growth factors or an integrin binding partner, regulates various cell behaviours. Under certain pathological conditions, SDC-1 is shed from the cell surface and plays a protective or pathogenic role in various diseases. In the liver, SDC-1 is highly expressed in hepatocytes, where it is localized on the basolateral surface. It is critical to the cellular and molecular functions of hepatocytes, including their attachment to hepatitis viruses. Previous studies have reported that SDC-1 may function as a novel and promising diagnostic and therapeutic marker for various liver diseases, such as drug-induced liver injury, liver fibrosis, and liver cancer. In this review, we summarize related research and highlight the mechanisms by which SDC-1 participates in the pathogenesis of liver diseases, as well as its potential diagnostic and therapeutic applications. This review is expected to lay the foundation for further therapeutic strategies to target SDC-1 in liver diseases.

Graphical Abstract

[1]
Bernfield M, Götte M, Park PW, et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 1999; 68(1): 729-77.
[http://dx.doi.org/10.1146/annurev.biochem.68.1.729] [PMID: 10872465]
[2]
Park PW, Reizes O, Bernfield M. Cell surface heparan sulfate proteoglycans: Selective regulators of ligand-receptor encounters. J Biol Chem 2000; 275(39): 29923-6.
[http://dx.doi.org/10.1074/jbc.R000008200] [PMID: 10931855]
[3]
Baghy K, Tátrai P, Regős E, Kovalszky I. Proteoglycans in liver cancer. World J Gastroenterol 2016; 22(1): 379-93.
[http://dx.doi.org/10.3748/wjg.v22.i1.379] [PMID: 26755884]
[4]
Teng YHF, Aquino RS, Park PW. Molecular functions of syndecan-1 in disease. Matrix Biol 2012; 31(1): 3-16.
[http://dx.doi.org/10.1016/j.matbio.2011.10.001] [PMID: 22033227]
[5]
Dews IC, MacKenzie KR. Transmembrane domains of the syndecan family of growth factor coreceptors display a hierarchy of homotypic and heterotypic interactions. Proc Natl Acad Sci USA 2007; 104(52): 20782-7.
[http://dx.doi.org/10.1073/pnas.0708909105] [PMID: 18093920]
[6]
Beauvais DM, Burbach BJ, Rapraeger AC. The syndecan-1 ectodomain regulates αvβ3 integrin activity in human mammary carcinoma cells. J Cell Biol 2004; 167(1): 171-81.
[http://dx.doi.org/10.1083/jcb.200404171] [PMID: 15479743]
[7]
Couchman JR. Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol 2010; 26(1): 89-114.
[http://dx.doi.org/10.1146/annurev-cellbio-100109-104126] [PMID: 20565253]
[8]
Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK. Proteoglycans in health and disease: Novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J 2010; 277(19): 3904-23.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07800.x] [PMID: 20840587]
[9]
Jalkanen M, Rapraeger A, Saunders S, Bernfield M. Cell surface proteoglycan of mouse mammary epithelial cells is shed by cleavage of its matrix-binding ectodomain from its membrane-associated domain. J Cell Biol 1987; 105(6): 3087-96.
[http://dx.doi.org/10.1083/jcb.105.6.3087] [PMID: 3320062]
[10]
Hayashida K, Bartlett AH, Chen Y, Park PW. Molecular and cellular mechanisms of ectodomain shedding. Anat Rec 2010; 293(6): 925-37.
[http://dx.doi.org/10.1002/ar.20757] [PMID: 20503387]
[11]
Wang Z, Götte M, Bernfield M, Reizes O. Constitutive and accelerated shedding of murine syndecan-1 is mediated by cleavage of its core protein at a specific juxtamembrane site. Biochemistry 2005; 44(37): 12355-61.
[http://dx.doi.org/10.1021/bi050620i] [PMID: 16156648]
[12]
Sharma A, Nagalli S. Chronic Liver Disease.StatPearls. StatPearls Publishing 2021. Available from: http://www.ncbi.nlm.nih.gov/books/NBK554597/ Accessed August 9, 2021.
[13]
Grigorov B, Reungoat E, Gentil dit Maurin A, et al. Hepatitis C virus infection propagates through interactions between Syndecan-1 and CD81 and impacts the hepatocyte glycocalyx. Cell Microbiol 2017; 19(5): e12711.
[http://dx.doi.org/10.1111/cmi.12711] [PMID: 27930836]
[14]
Shi Q, Jiang J, Luo G. Syndecan-1 serves as the major receptor for attachment of hepatitis C virus to the surfaces of hepatocytes. J Virol 2013; 87(12): 6866-75.
[http://dx.doi.org/10.1128/JVI.03475-12] [PMID: 23576506]
[15]
Zhang F, Sodroski C, Cha H, Li Q, Liang TJ. Infection of hepatocytes with hcv increases cell surface levels of heparan sulfate proteoglycans, uptake of cholesterol and lipoprotein, and virus entry by up-regulating SMAD6 and SMAD7. Gastroenterology 2017; 152(1): 257-270.e7.
[http://dx.doi.org/10.1053/j.gastro.2016.09.033] [PMID: 27693511]
[16]
Kalia M, Chandra V, Rahman SA, Sehgal D, Jameel S. Heparan sulfate proteoglycans are required for cellular binding of the hepatitis E virus ORF2 capsid protein and for viral infection. J Virol 2009; 83(24): 12714-24.
[http://dx.doi.org/10.1128/JVI.00717-09] [PMID: 19812150]
[17]
Arnold K, Xu Y, Sparkenbaugh EM, et al. Design of anti-inflammatory heparan sulfate to protect against acetaminophen-induced acute liver failure. Sci Transl Med 2020; 12(535): eaav8075.
[http://dx.doi.org/10.1126/scitranslmed.aav8075] [PMID: 32188725]
[18]
Li J, Yuan T, Zhao X, Lv GY, Liu HQ. Protective effects of sevoflurane in hepatic ischemia-reperfusion injury. Int J Immunopathol Pharmacol 2016; 29(2): 300-7.
[http://dx.doi.org/10.1177/0394632016638346] [PMID: 26966142]
[19]
Hayashida K, Chen Y, Bartlett AH, Park PW. Syndecan-1 is an in vivo suppressor of Gram-positive toxic shock. J Biol Chem 2008; 283(29): 19895-903.
[http://dx.doi.org/10.1074/jbc.M801614200] [PMID: 18499671]
[20]
Schiefer J, Faybik P, Koch S, et al. Glycocalyx damage within human liver grafts correlates with graft injury and postoperative graft function after orthotopic liver transplantation. Transplantation 2020; 104(1): 72-8.
[http://dx.doi.org/10.1097/TP.0000000000002838] [PMID: 31283668]
[21]
Regős E, Karászi K, Reszegi A, et al. Syndecan-1 in Liver Diseases. Pathol Oncol Res 2020; 26(2): 813-9.
[http://dx.doi.org/10.1007/s12253-019-00617-0] [PMID: 30826971]
[22]
Reszegi A, Tátrai P, Regős E, Kovalszky I, Baghy K. Syndecan-1 in liver pathophysiology. Am J Physiol Cell Physiol 2022; 323(2): C289-94.
[http://dx.doi.org/10.1152/ajpcell.00039.2022] [PMID: 35704700]
[23]
Kokenyesi R, Bernfield M. Core protein structure and sequence determine the site and presence of heparan sulfate and chondroitin sulfate on syndecan-1. J Biol Chem 1994; 269(16): 12304-9.
[http://dx.doi.org/10.1016/S0021-9258(17)32716-3] [PMID: 8163535]
[24]
Roskams T, Moshage H, de Vos R, Guido D, Yap P, Desmet V. Heparan sulfate proteoglycan expression in normal human liver. Hepatology 1995; 21(4): 950-8.
[http://dx.doi.org/10.1002/hep.1840210410] [PMID: 7705805]
[25]
Roskams T, De Vos R, David G, Van Damme B, Desmet V. Heparan sulphate proteoglycan expression in human primary liver tumours. J Pathol 1998; 185(3): 290-7.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199807)185:3<290::AID-PATH91>3.0.CO;2-I] [PMID: 9771483]
[26]
Weiner OH, Zoremba M, Gressner AM. Gene expression of syndecans and betaglycan in isolated rat liver cells. Cell Tissue Res 1996; 285(1): 11-6.
[http://dx.doi.org/10.1007/s004410050615] [PMID: 8766853]
[27]
Tanaka Y, Tateishi R, Koike K. Proteoglycans are attractive biomarkers and therapeutic targets in hepatocellular carcinoma. Int J Mol Sci 2018; 19(10): 3070.
[http://dx.doi.org/10.3390/ijms19103070] [PMID: 30297672]
[28]
Regős E, Abdelfattah HH, Reszegi A, et al. Syndecan-1 inhibits early stages of liver fibrogenesis by interfering with TGFβ1 action and upregulating MMP14. Matrix Biol 2018; 68-69: 474-89.
[http://dx.doi.org/10.1016/j.matbio.2018.02.008] [PMID: 29454902]
[29]
Fitzgerald ML, Wang Z, Park PW, Murphy G, Bernfield M. Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol 2000; 148(4): 811-24.
[http://dx.doi.org/10.1083/jcb.148.4.811] [PMID: 10684261]
[30]
Park PW, Foster TJ, Nishi E, Duncan SJ, Klagsbrun M, Chen Y. Activation of syndecan-1 ectodomain shedding by staphylococcus aureus α-toxin and β-toxin. J Biol Chem 2004; 279(1): 251-8.
[http://dx.doi.org/10.1074/jbc.M308537200] [PMID: 14573623]
[31]
Charnaux N, Brule S, Chaigneau T, et al. RANTES (CCL5) induces a CCR5-dependent accelerated shedding of syndecan-1 (CD138) and syndecan-4 from hela cells and forms complexes with the shed ectodomains of these proteoglycans as well as with those of CD44. Glycobiology 2004; 15(2): 119-30.
[http://dx.doi.org/10.1093/glycob/cwh148] [PMID: 15355933]
[32]
Brule S, Charnaux N, Sutton A, et al. The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9. Glycobiology 2006; 16(6): 488-501.
[http://dx.doi.org/10.1093/glycob/cwj098] [PMID: 16513763]
[33]
Chung MC, Popova TG, Millis BA, et al. Secreted neutral metalloproteases of Bacillus anthracis as candidate pathogenic factors. J Biol Chem 2006; 281(42): 31408-18.
[http://dx.doi.org/10.1016/S0021-9258(19)84053-X] [PMID: 16926147]
[34]
Kainulainen V, Wang H, Schick C, Bernfield M. Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids. J Biol Chem 1998; 273(19): 11563-9.
[http://dx.doi.org/10.1074/jbc.273.19.11563] [PMID: 9565572]
[35]
Kato M, Wang H, Kainulainen V, et al. Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 1998; 4(6): 691-7.
[http://dx.doi.org/10.1038/nm0698-691] [PMID: 9623978]
[36]
Park PW, Pier GB, Hinkes MT, Bernfield M. Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature 2001; 411(6833): 98-102.
[http://dx.doi.org/10.1038/35075100] [PMID: 11333985]
[37]
Yang Y, Yaccoby S, Liu W, et al. Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood 2002; 100(2): 610-7.
[http://dx.doi.org/10.1182/blood.V100.2.610] [PMID: 12091355]
[38]
Haynes A III, Ruda F, Oliver J, et al. Syndecan 1 shedding contributes to Pseudomonas aeruginosa sepsis. Infect Immun 2005; 73(12): 7914-21.
[http://dx.doi.org/10.1128/IAI.73.12.7914-7921.2005] [PMID: 16299282]
[39]
Xu J, Park PW, Kheradmand F, et al. Endogenous attenuation of allergic lung inflammation by syndecan-1. J Immunol Baltim Md 2005; 174(9): 5758-65. 1950
[http://dx.doi.org/10.4049/jimmunol.174.9.5758]
[40]
Hayashida A, Bartlett AH, Foster TJ, Park PW. Staphylococcus aureus beta-toxin induces lung injury through syndecan-1. Am J Pathol 2009; 174(2): 509-18.
[http://dx.doi.org/10.2353/ajpath.2009.080394] [PMID: 19147831]
[41]
Hayashida K, Parks WC, Park PW. Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines. Blood 2009; 114(14): 3033-43.
[http://dx.doi.org/10.1182/blood-2009-02-204966] [PMID: 19638625]
[42]
Kliment CR, Englert JM, Gochuico BR, et al. Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. J Biol Chem 2009; 284(6): 3537-45.
[http://dx.doi.org/10.1074/jbc.M807001200] [PMID: 19073610]
[43]
Hayashida A, Amano S, Park PW. Syndecan-1 promotes Staphylococcus aureus corneal infection by counteracting neutrophil-mediated host defense. J Biol Chem 2011; 286(5): 3288-97.
[http://dx.doi.org/10.1074/jbc.M110.185165] [PMID: 21127056]
[44]
Haywood-Watson RJ, Holcomb JB, Gonzalez EA, et al. Modulation of syndecan-1 shedding after hemorrhagic shock and resuscitation. PLoS One 2011; 6(8): e23530.
[http://dx.doi.org/10.1371/journal.pone.0023530] [PMID: 21886795]
[45]
Park PW, Pier GB, Preston MJ, Goldberger O, Fitzgerald ML, Bernfield M. Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa. J Biol Chem 2000; 275(5): 3057-64.
[http://dx.doi.org/10.1074/jbc.275.5.3057] [PMID: 10652286]
[46]
Li Q, Park PW, Wilson CL, Parks WC. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 2002; 111(5): 635-46.
[http://dx.doi.org/10.1016/S0092-8674(02)01079-6] [PMID: 12464176]
[47]
Endo K, Takino T, Miyamori H, et al. Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem 2003; 278(42): 40764-70.
[http://dx.doi.org/10.1074/jbc.M306736200] [PMID: 12904296]
[48]
Ding K, Lopez-Burks M, Sánchez-Duran JA, Korc M, Lander AD. Growth factor–induced shedding of syndecan-1 confers glypican-1 dependence on mitogenic responses of cancer cells. J Cell Biol 2005; 171(4): 729-38.
[http://dx.doi.org/10.1083/jcb.200508010] [PMID: 16286510]
[49]
Jung O, Trapp-Stamborski V, Purushothaman A, et al. Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins. Oncogenesis 2016; 5(2): e202.
[http://dx.doi.org/10.1038/oncsis.2016.5] [PMID: 26926788]
[50]
Mahtouk K, Hose D, Raynaud P, et al. Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood 2007; 109(11): 4914-23.
[http://dx.doi.org/10.1182/blood-2006-08-043232] [PMID: 17339423]
[51]
Yang Y, MacLeod V, Miao HQ, et al. Heparanase enhances syndecan-1 shedding: A novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem 2007; 282(18): 13326-33.
[http://dx.doi.org/10.1074/jbc.M611259200] [PMID: 17347152]
[52]
Ramani VC, Pruett PS, Thompson CA, DeLucas LD, Sanderson RD. Heparan sulfate chains of syndecan-1 regulate ectodomain shedding. J Biol Chem 2012; 287(13): 9952-61.
[http://dx.doi.org/10.1074/jbc.M111.330803] [PMID: 22298773]
[53]
Chen X, Cheng B, Dai D, et al. Heparanase induces necroptosis of microvascular endothelial cells to promote the metastasis of hepatocellular carcinoma. Cell Death Discov 2021; 7(1): 33.
[http://dx.doi.org/10.1038/s41420-021-00411-5] [PMID: 33597510]
[54]
Subramanian SV, Fitzgerald ML, Bernfield M. Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 1997; 272(23): 14713-20.
[http://dx.doi.org/10.1074/jbc.272.23.14713] [PMID: 9169435]
[55]
Piotti A, Novelli D, Meessen JMTA, et al. Endothelial damage in septic shock patients as evidenced by circulating syndecan-1, sphingosine-1-phosphate and soluble VE-cadherin: A substudy of ALBIOS. Crit Care 2021; 25(1): 113.
[http://dx.doi.org/10.1186/s13054-021-03545-1] [PMID: 33741039]
[56]
Carmichael SP II, Appelbaum RD, Renaldo A, Hauser N, Rahbar E, Nunn AM. er al. Endothelial glycocalyx shedding in intra-abdominal sepsis: A feasibility study. Shock 2023; 59(4): 540-6.
[http://dx.doi.org/10.1097/SHK.0000000000002079] [PMID: 36625488]
[57]
Zhou G, Liu J, Zhang H, Wang X, Liu D. Elevated endothelial dysfunction-related biomarker levels indicate the severity and predict sepsis incidence. Sci Rep 2022; 12(1): 21935.
[http://dx.doi.org/10.1038/s41598-022-26623-y] [PMID: 36536028]
[58]
Zhang D, Qiao X, Cui WJ, et al. Syndecan-1 amplifies ovalbumin-induced airway remodeling by strengthening TGFβ1/Smad3 action. Front Immunol 2021; 12: 744477.
[http://dx.doi.org/10.3389/fimmu.2021.744477] [PMID: 34671356]
[59]
Celie JWAM, Katta KK, Adepu S, et al. Tubular epithelial syndecan-1 maintains renal function in murine ischemia/reperfusion and human transplantation. Kidney Int 2012; 81(7): 651-61.
[http://dx.doi.org/10.1038/ki.2011.425] [PMID: 22237752]
[60]
Rops AL, Götte M, Baselmans MH, et al. Syndecan-1 deficiency aggravates anti-glomerular basement membrane nephritis. Kidney Int 2007; 72(10): 1204-15.
[http://dx.doi.org/10.1038/sj.ki.5002514] [PMID: 17805240]
[61]
Bartlett AH, Hayashida K, Park PW. Molecular and cellular mechanisms of syndecans in tissue injury and inflammation. Mol Cells 2007; 24(2): 153-66.
[PMID: 17978567]
[62]
Masouleh BK, Ten Dam GB, Wild MK, et al. Role of the heparan sulfate proteoglycan syndecan-1 (CD138) in delayed-type hypersensitivity. J Immunol 2009; 182(8): 4985-93.
[http://dx.doi.org/10.4049/jimmunol.0800574] [PMID: 19342678]
[63]
Floer M, Götte M, Wild MK, et al. Enoxaparin improves the course of dextran sodium sulfate-induced colitis in syndecan-1-deficient mice. Am J Pathol 2010; 176(1): 146-57.
[http://dx.doi.org/10.2353/ajpath.2010.080639] [PMID: 20008145]
[64]
Vanhoutte D, Schellings MWM, Götte M, et al. Increased expression of syndecan-1 protects against cardiac dilatation and dysfunction after myocardial infarction. Circulation 2007; 115(4): 475-82.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.644609] [PMID: 17242279]
[65]
Bao X, Moseman EA, Saito H, et al. Endothelial heparan sulfate controls chemokine presentation in recruitment of lymphocytes and dendritic cells to lymph nodes. Immunity 2010; 33(5): 817-29.
[http://dx.doi.org/10.1016/j.immuni.2010.10.018] [PMID: 21093315]
[66]
Handel TM, Johnson Z, Crown SE, Lau EK, Sweeney M, Proudfoot AE. Regulation of protein function by glycosaminoglycans--as exemplified by chemokines. Annu Rev Biochem 2005; 74(1): 385-410.
[http://dx.doi.org/10.1146/annurev.biochem.72.121801.161747] [PMID: 15952892]
[67]
Shafti-Keramat S, Handisurya A, Kriehuber E, Meneguzzi G, Slupetzky K, Kirnbauer R. Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol 2003; 77(24): 13125-35.
[http://dx.doi.org/10.1128/JVI.77.24.13125-13135.2003] [PMID: 14645569]
[68]
Freissler E, Meyer auf der Heyde A, David G, Meyer TF, Dehio C. Syndecan-1 and syndecan-4 can mediate the invasion of OpaHSPG-expressing Neisseria gonorrhoeae into epithelial cells. Cell Microbiol 2000; 2(1): 69-82.
[http://dx.doi.org/10.1046/j.1462-5822.2000.00036.x] [PMID: 11207564]
[69]
Solursh M, Reiter RS, Jensen KL, Kato M, Bernfield M. Transient expression of a cell surface heparan sulfate proteoglycan (syndecan) during limb development. Dev Biol 1990; 140(1): 83-92.
[http://dx.doi.org/10.1016/0012-1606(90)90055-N] [PMID: 2358126]
[70]
Trautman MS, Kimelman J, Bernfield M. Developmental expression of syndecan, an integral membrane proteoglycan, correlates with cell differentiation. Development 1991; 111(1): 213-20.
[http://dx.doi.org/10.1242/dev.111.1.213] [PMID: 2015796]
[71]
Sutherland AE, Sanderson RD, Mayes M, et al. Expression of syndecan, a putative low affinity fibroblast growth factor receptor, in the early mouse embryo. Development 1991; 113(1): 339-51.
[http://dx.doi.org/10.1242/dev.113.1.339] [PMID: 1765004]
[72]
Schellings MWM, Vanhoutte D, van Almen GC, et al. Syndecan-1 amplifies angiotensin II-induced cardiac fibrosis. Hypertension 2010; 55(2): 249-56.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.137885] [PMID: 20048198]
[73]
Elenius K, Vainio S, Laato M, Salmivirta M, Thesleff I, Jalkanen M. Induced expression of syndecan in healing wounds. J Cell Biol 1991; 114(3): 585-95.
[http://dx.doi.org/10.1083/jcb.114.3.585] [PMID: 1860887]
[74]
Szatmári T, Ötvös R, Hjerpe A, Dobra K. Syndecan-1 in cancer: Implications for cell signaling, differentiation, and prognostication. Dis Markers 2015; 2015: 1-13.
[http://dx.doi.org/10.1155/2015/796052] [PMID: 26420915]
[75]
Derksen PWB, Keehnen RMJ, Evers LM, et al. Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 2002; 99(4): 1405-10.
[http://dx.doi.org/10.1182/blood.V99.4.1405]
[76]
Purushothaman A, Hurst DR, Pisano C, Mizumoto S, Sugahara K, Sanderson RD. Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem 2011; 286(35): 30377-83.
[http://dx.doi.org/10.1074/jbc.M111.254789] [PMID: 21757697]
[77]
Sun H, Berquin IM, Owens RT, O’Flaherty JT, Edwards IJ. Peroxisome proliferator-activated receptor gamma-mediated up-regulation of syndecan-1 by n-3 fatty acids promotes apoptosis of human breast cancer cells. Cancer Res 2008; 68(8): 2912-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2305] [PMID: 18413760]
[78]
D’Arcy C, Zimmermann CC, Espinoza-Sanchez NA, et al. The heparan sulphate proteoglycan Syndecan-1 ( CD138 ) regulates tumour progression in a 3D model of ductal carcinoma in situ of the breast. IUBMB Life 2022; 74(10): 955-68.
[http://dx.doi.org/10.1002/iub.2623] [PMID: 35587107]
[79]
Charchanti A, Kanavaros P, Koniaris E, et al. Expression of syndecan-1 in chronic liver diseases: Correlation with hepatic fibrosis. in vivo 2021; 35(1): 333-9.
[http://dx.doi.org/10.21873/invivo.12264] [PMID: 33402482]
[80]
Whitelock JM, Iozzo RV. Heparan sulfate: A complex polymer charged with biological activity. Chem Rev 2005; 105(7): 2745-64.
[http://dx.doi.org/10.1021/cr010213m] [PMID: 16011323]
[81]
Haga S, Ozaki M, Inoue H, et al. The survival pathways phosphatidylinositol-3 kinase (PI3-K)/phosphoinositide-dependent protein kinase 1 (PDK1)/Akt modulate liver regeneration through hepatocyte size rather than proliferation. Hepatology 2009; 49(1): 204-14.
[http://dx.doi.org/10.1002/hep.22583] [PMID: 19065678]
[82]
Nam EJ, Hayashida K, Aquino RS, et al. Syndecan-1 limits the progression of liver injury and promotes liver repair in acetaminophen-induced liver injury in mice. Hepatology 2017; 66(5): 1601-15.
[http://dx.doi.org/10.1002/hep.29265] [PMID: 28543100]
[83]
Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378(6559): 785-9.
[http://dx.doi.org/10.1038/378785a0] [PMID: 8524413]
[84]
Pap M, Cooper GM. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J Biol Chem 1998; 273(32): 19929-32.
[http://dx.doi.org/10.1074/jbc.273.32.19929] [PMID: 9685326]
[85]
Yilmaz Y, Eren F, Colak Y, Senates E, Celikel CA, Imeryuz N. Hepatic expression and serum levels of syndecan 1 (CD138) in patients with nonalcoholic fatty liver disease. Scand J Gastroenterol 2012; 47(12): 1488-93.
[http://dx.doi.org/10.3109/00365521.2012.725093] [PMID: 23137022]
[86]
Foley EM, Esko JD. Hepatic heparan sulfate proteoglycans and endocytic clearance of triglyceride-rich lipoproteins. Prog Mol Biol Transl Sci 2010; 93: 213-33.
[http://dx.doi.org/10.1016/S1877-1173(10)93010-X] [PMID: 20807647]
[87]
Gonzales JC, Gordts PLSM, Foley EM, Esko JD. Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans. J Clin Invest 2013; 123(6): 2742-51.
[http://dx.doi.org/10.1172/JCI67398] [PMID: 23676495]
[88]
Bauters D, Spincemaille P, Geys L, et al. ADAMTS 5 deficiency protects against non-alcoholic steatohepatitis in obesity. Liver Int 2016; 36(12): 1848-59.
[http://dx.doi.org/10.1111/liv.13181] [PMID: 27254774]
[89]
Zvibel I, Halfon P, Fishman S, et al. Syndecan 1 (CD138) serum levels: A novel biomarker in predicting liver fibrosis stage in patients with hepatitis C. Liver Int 2009; 29(2): 208-12.
[http://dx.doi.org/10.1111/j.1478-3231.2008.01830.x] [PMID: 18694404]
[90]
Nault JC, Guyot E, Laguillier C, et al. Serum proteoglycans as prognostic biomarkers of hepatocellular carcinoma in patients with alcoholic cirrhosis. Cancer Epidemiol Biomarkers Prev 2013; 22(8): 1343-52.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-0179] [PMID: 23780836]
[91]
Roskams T, Rosenbaum J, De Vos R, David G, Desmet V. Heparan sulfate proteoglycan expression in chronic cholestatic human liver diseases. Hepatology 1996; 24(3): 524-32.
[http://dx.doi.org/10.1002/hep.510240310] [PMID: 8781318]
[92]
Miftode RS, Costache II, Constantinescu D, et al. Syndecan-1: From a promising novel cardiac biomarker to a surrogate early predictor of kidney and liver injury in patients with acute heart failure. Life 2023; 13(4): 898.
[http://dx.doi.org/10.3390/life13040898] [PMID: 37109427]
[93]
Zeng Y, Yao X, Chen L, et al. Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/syndecan-1/TGF-β autocrine loop. Oncotarget 2016; 7(39): 63324-37.
[http://dx.doi.org/10.18632/oncotarget.11450] [PMID: 27556509]
[94]
Matsumoto A, Ono M, Fujimoto Y, Gallo RL, Bernfield M, Kohgo Y. Reduced expression of syndecan-1 in human hepatocellular carcinoma with high metastatic potential. Int J Cancer 1997; 74(5): 482-91.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19971021)74:5<482::AID-IJC2>3.0.CO;2-#] [PMID: 9355969]
[95]
Reszegi A, Karászi K, Tóth G, et al. Overexpression of human syndecan-1 protects against the diethylnitrosamine-induced hepatocarcinogenesis in mice. Cancers 2021; 13(7): 1548.
[http://dx.doi.org/10.3390/cancers13071548] [PMID: 33801718]
[96]
Li HG, Xie DR, Shen XM, Li HH, Zeng H, Zeng YJ. Clinicopathological significance of expression of paxillin, syndecan-1 and EMMPRIN in hepatocellular carcinoma. World J Gastroenterol 2005; 11(10): 1445-51.
[http://dx.doi.org/10.3748/wjg.v11.i10.1445] [PMID: 15770719]
[97]
Gerber TS, Bartsch F, Wagner DC, et al. Clinicopathological significance of syndecan-1 in cholangiocarcinoma: A study based on immunohistochemistry and public sequencing data. J Clin Med 2021; 10(13): 2745.
[http://dx.doi.org/10.3390/jcm10132745] [PMID: 34206469]
[98]
Harada K, Masuda S, Hirano M, Nakanuma Y. Reduced expression of syndecan-1 correlates with histologic dedifferentiation, lymph node metastasis, and poor prognosis in intrahepatic cholangiocarcinoma. Hum Pathol 2003; 34(9): 857-63.
[http://dx.doi.org/10.1016/S0046-8177(03)00336-8] [PMID: 14562280]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy