Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

Radioprotective Potency of Nanoceria

Author(s): Maryam Alvandi, Zahra Shaghaghi*, Soghra Farzipour and Zeynab Marzhoseyni

Volume 17, Issue 2, 2024

Published on: 21 November, 2023

Page: [138 - 147] Pages: 10

DOI: 10.2174/0118744710267281231104170435

Price: $65

Abstract

Cancer presents a significant medical challenge that requires effective management. Current cancer treatment options, such as chemotherapy, targeted therapy, radiotherapy, and immunotherapy, have limitations in terms of their efficacy and the potential harm they can cause to normal tissues. In response, researchers have been focusing on developing adjuvants that can enhance tumor responses while minimizing damage to healthy tissues. Among the promising options, nanoceria (NC), a type of nanoparticle composed of cerium oxide, has garnered attention for its potential to improve various cancer treatment regimens. Nanoceria has demonstrated its ability to exhibit toxicity towards cancer cells, inhibit invasion, and sensitize cancer cells to both radiation therapy and chemotherapy. The remarkable aspect is that nanoceria show minimal toxicity to normal tissues while protecting against various forms of reactive oxygen species generation. Its capability to enhance the sensitivity of cancer cells to chemotherapy and radiotherapy has also been observed. This paper thoroughly reviews the current literature on nanoceria's applications within different cancer treatment modalities, with a specific focus on radiotherapy. The emphasis is on nanoceria's unique role in enhancing tumor radiosensitization and safeguarding normal tissues from radiation damage.

Graphical Abstract

[1]
Barrios, C.H. Global challenges in breast cancer detection and treatment. Breast, 2022, 62(Suppl 1)(1), S3-S6.
[http://dx.doi.org/10.1016/j.breast.2022.02.003] [PMID: 35219542]
[2]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[3]
Choi, W.H.; Cho, J. Evolving clinical cancer radiotherapy: Concerns regarding normal tissue protection and quality assurance. J. Korean Med. Sci., 2016, 31(Suppl 1)(1), S75-S87.
[http://dx.doi.org/10.3346/jkms.2016.31.S1.S75] [PMID: 26908993]
[4]
Elbanna, M.; Chowdhury, N.N.; Rhome, R.; Fishel, M.L. Clinical and preclinical outcomes of combining targeted therapy with radiotherapy. Front. Oncol., 2021, 11, 749496.
[http://dx.doi.org/10.3389/fonc.2021.749496] [PMID: 34733787]
[5]
Shaghaghi, Z.; Alvandi, M.; Nosrati, S.; Hadei, S.K. Potential utility of peptides against damage induced by ionizing radiation. Future Oncol., 2021, 17(10), 1219-1235.
[http://dx.doi.org/10.2217/fon-2020-0577] [PMID: 33593084]
[6]
Citrin, D.E.; Mitchell, J.B. Altering the response to radiation: Sensitizers and protectors, Seminars in oncology; Elsevier, 2014, pp. 848-859.
[7]
Kuruba, V.; Gollapalli, P. Natural radioprotectors and their impact on cancer drug discovery. Radiat. Oncol. J., 2018, 36(4), 265-275.
[http://dx.doi.org/10.3857/roj.2018.00381] [PMID: 30630265]
[8]
Kim, J.H.; Jenrow, K.A.; Brown, S.L. Novel biological strategies to enhance the radiation therapeutic ratio. Radiat. Oncol. J., 2018, 36(3), 172-181.
[http://dx.doi.org/10.3857/roj.2018.00332] [PMID: 30309208]
[9]
Citrin, D.; Cotrim, A.P.; Hyodo, F.; Baum, B.J.; Krishna, M.C.; Mitchell, J.B. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist, 2010, 15(4), 360-371.
[http://dx.doi.org/10.1634/theoncologist.2009-S104] [PMID: 20413641]
[10]
Retif, P.; Pinel, S.; Toussaint, M.; Frochot, C.; Chouikrat, R.; Bastogne, T.; Barberi-Heyob, M. Nanoparticles for radiation therapy enhancement: The key parameters. Theranostics, 2015, 5(9), 1030-1044.
[http://dx.doi.org/10.7150/thno.11642] [PMID: 26155318]
[11]
Singh, K.R.B.; Nayak, V.; Sarkar, T.; Singh, R.P. Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application. RSC Advances, 2020, 10(45), 27194-27214.
[http://dx.doi.org/10.1039/D0RA04736H] [PMID: 35515804]
[12]
Montazeri, A.; Zal, Z.; Ghasemi, A.; Yazdannejat, H.; Asgarian-Omran, H.; Hosseinimehr, S.J. Radiosensitizing effect of cerium oxide nanoparticles on human leukemia cells. Pharm. Nanotechnol., 2018, 6(2), 111-115.
[http://dx.doi.org/10.2174/2211738506666180306161253] [PMID: 29510658]
[13]
Zal, Z.; Ghasemi, A.; Azizi, S.; Asgarian-Omran, H.; Montazeri, A.; Hosseinimehr, S.J. Radioprotective effect of cerium oxide nanoparticles against genotoxicity induced by ionizing radiation on human lymphocytes. Curr. Radiopharm., 2018, 11(2), 109-115.
[http://dx.doi.org/10.2174/1874471011666180528095203] [PMID: 29804541]
[14]
Bouzigues, C.; Gacoin, T.; Alexandrou, A. Biological applications of rare-earth based nanoparticles. ACS Nano, 2011, 5(11), 8488-8505.
[http://dx.doi.org/10.1021/nn202378b] [PMID: 21981700]
[15]
Dahle, J.; Arai, Y. Environmental geochemistry of cerium: Applications and toxicology of cerium oxide nanoparticles. Int. J. Environ. Res. Public Health, 2015, 12(2), 1253-1278.
[http://dx.doi.org/10.3390/ijerph120201253] [PMID: 25625406]
[16]
Tsunekawa, S.; Sivamohan, R.; Ito, S.; Kasuya, A.; Fukuda, T. Structural study on monosize CeO2-x nano-particles. Nanostruct. Mater., 1999, 11(1), 141-147.
[http://dx.doi.org/10.1016/S0965-9773(99)00027-6]
[17]
Tsunekawa, S.; Sivamohan, R.; Ohsuna, T.; Takahashi, H.; Tohji, K. In Ultraviolet absorption spectra of CeO2 nano-particles. Mat. Sci. Forum. Trans. Tech. Publ., 1999, 439-445.
[18]
Heckman, K.L.; Estevez, A.Y.; DeCoteau, W.; Vangellow, S.; Ribeiro, S.; Chiarenzelli, J.; Hays-Erlichman, B.; Erlichman, J.S. Variable in vivo and in vitro biological effects of cerium oxide nanoparticle formulations. Front. Pharmacol., 2020, 10, 1599.
[http://dx.doi.org/10.3389/fphar.2019.01599] [PMID: 32047435]
[19]
Celardo, I.; Pedersen, J.Z.; Traversa, E.; Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 2011, 3(4), 1411-1420.
[http://dx.doi.org/10.1039/c0nr00875c] [PMID: 21369578]
[20]
Li, M.; Shi, P.; Xu, C.; Ren, J.; Qu, X. Cerium oxide caged metal chelator: Anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer’s disease treatment. Chem. Sci., 2013, 4(6), 2536-2542.
[http://dx.doi.org/10.1039/c3sc50697e]
[21]
Vassie, J.A.; Whitelock, J.M.; Lord, M.S. Targeted delivery and redox activity of folic acid-functionalized nanoceria in tumor cells. Mol. Pharm., 2018, 15(3), 994-1004.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00920] [PMID: 29397735]
[22]
Xu, C.; Lin, Y.; Wang, J.; Wu, L.; Wei, W.; Ren, J.; Qu, X. Nanoceria-triggered synergetic drug release based on CeO(2) -capped mesoporous silica host-guest interactions and switchable enzymatic activity and cellular effects of CeO(2). Adv. Healthc. Mater., 2013, 2(12), 1591-1599.
[http://dx.doi.org/10.1002/adhm.201200464] [PMID: 23630084]
[23]
Karakoti, A.S.; Tsigkou, O.; Yue, S.; Lee, P.D.; Stevens, M.M.; Jones, J.R.; Seal, S. Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J. Mater. Chem., 2010, 20(40), 8912-8919.
[http://dx.doi.org/10.1039/c0jm01072c]
[24]
Mandoli, C.; Pagliari, F.; Pagliari, S.; Forte, G.; Di Nardo, P.; Licoccia, S.; Traversa, E. Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv. Funct. Mater., 2010, 20(10), 1617-1624.
[http://dx.doi.org/10.1002/adfm.200902363]
[25]
Korsvik, C.; Patil, S.; Seal, S.; Self, W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun., 2007, (10), 1056-1058.
[http://dx.doi.org/10.1039/b615134e] [PMID: 17325804]
[26]
Deshpande, S.; Patil, S.; Kuchibhatla, S.V.N.T.; Seal, S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett., 2005, 87(13), 133113.
[http://dx.doi.org/10.1063/1.2061873]
[27]
Celardo, I.; Pedersen, J.Z.; Traversa, E.; Ghibelli, L. Nanoscale c0nr00875c. Nanoscale, 2011, 3(4), 1411-1420.
[http://dx.doi.org/10.1039/c0nr00875c] [PMID: 21369578]
[28]
Baer, S.; Stein, G. The decomposition of hydrgen peroxide by ceric salts. Part I. The action of ceric sulphate. J. Chem. Soc., 1953, 3176-3179.
[29]
Bielski, B.H.J.; Saito, E. The activation energy for the disproportionation of the HO2 radical in acid solutions1. J. Phys. Chem., 1962, 66(11), 2266-2268.
[http://dx.doi.org/10.1021/j100817a506]
[30]
Saito, E.; Bielski, B.H.J. The electron paramagnetic resonance spectrum of the HO 2 radical in aqueous solution. J. Am. Chem. Soc., 1961, 83(21), 4467-4468.
[http://dx.doi.org/10.1021/ja01482a039]
[31]
Sigler, P.B.; Masters, B.J. The hydrogen peroxide-induced Ce*(III)-Ce (IV) exchange System1. J. Am. Chem. Soc., 1957, 79(24), 6353-6357.
[http://dx.doi.org/10.1021/ja01581a003]
[32]
Pirmohamed, T.; Dowding, J.M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A.S.; King, J.E.S.; Seal, S.; Self, W.T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun., 2010, 46(16), 2736-2738.
[http://dx.doi.org/10.1039/b922024k] [PMID: 20369166]
[33]
Baldim, V.; Bedioui, F.; Mignet, N.; Margaill, I.; Berret, J.F. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce 3+ surface area concentration. Nanoscale, 2018, 10(15), 6971-6980.
[http://dx.doi.org/10.1039/C8NR00325D] [PMID: 29610821]
[34]
Esch, F.; Fabris, S.; Zhou, L.; Montini, T.; Africh, C.; Fornasiero, P.; Comelli, G.; Rosei, R. Electron localization determines defect formation on ceria substrates. Science, 2005, 309(5735), 752-755.
[http://dx.doi.org/10.1126/science.1111568] [PMID: 16051791]
[35]
Herman, G.S. Characterization of surface defects on epitaxial CeO2(001) films. Surf. Sci., 1999, 437(1-2), 207-214.
[http://dx.doi.org/10.1016/S0039-6028(99)00723-2]
[36]
Heckert, E.G.; Karakoti, A.S.; Seal, S.; Self, W.T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 2008, 29(18), 2705-2709.
[http://dx.doi.org/10.1016/j.biomaterials.2008.03.014] [PMID: 18395249]
[37]
Mullins, D.R. The surface chemistry of cerium oxide. Surf. Sci. Rep., 2015, 70(1), 42-85.
[http://dx.doi.org/10.1016/j.surfrep.2014.12.001]
[38]
Das, M.; Patil, S.; Bhargava, N.; Kang, J.F.; Riedel, L.M.; Seal, S.; Hickman, J.J. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials, 2007, 28(10), 1918-1925.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.036] [PMID: 17222903]
[39]
Sayle, T.X.T.; Parker, S.C.; Sayle, D.C. Oxidising CO to CO2 using ceria nanoparticles. Phys. Chem. Chem. Phys., 2005, 7(15), 2936-2941.
[http://dx.doi.org/10.1039/b506359k] [PMID: 16189614]
[40]
Dowding, J.M.; Seal, S.; Self, W.T. Cerium oxide nanoparticles accelerate the decay of peroxynitrite (ONOO−). Drug Deliv. Transl. Res., 2013, 3(4), 375-379.
[http://dx.doi.org/10.1007/s13346-013-0136-0] [PMID: 23936755]
[41]
Pezzini, I.; Marino, A.; Del Turco, S.; Nesti, C.; Doccini, S.; Cappello, V.; Gemmi, M.; Parlanti, P.; Santorelli, F.M.; Mattoli, V.; Ciofani, G. Cerium oxide nanoparticles: The regenerative redox machine in bioenergetic imbalance. Nanomedicine, 2017, 12(4), 403-416.
[http://dx.doi.org/10.2217/nnm-2016-0342] [PMID: 28000542]
[42]
Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[43]
Gharbi, N.; Pressac, M.; Hadchouel, M.; Szwarc, H.; Wilson, S.R.; Moussa, F. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett., 2005, 5(12), 2578-2585.
[http://dx.doi.org/10.1021/nl051866b] [PMID: 16351219]
[44]
Lee, S.S.; Song, W.; Cho, M.; Puppala, H.L.; Nguyen, P.; Zhu, H.; Segatori, L.; Colvin, V.L. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano, 2013, 7(11), 9693-9703.
[http://dx.doi.org/10.1021/nn4026806] [PMID: 24079896]
[45]
Reed, K.; Cormack, A.; Kulkarni, A.; Mayton, M.; Sayle, D.; Klaessig, F.; Stadler, B. Exploring the properties and applications of nanoceria: Is there still plenty of room at the bottom? Environ. Sci. Nano, 2014, 1(5), 390-405.
[http://dx.doi.org/10.1039/C4EN00079J]
[46]
Patil, S.; Sandberg, A.; Heckert, E.; Self, W.; Seal, S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials, 2007, 28(31), 4600-4607.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.029] [PMID: 17675227]
[47]
Rzigalinski, B.A. In Cerium oxide nanoparticles increase the lifespan of cultured brain cells and protect against free radical and mechanical trauma., Faseb J. Federat. Am. Soc. Exp. Biol., 2003, A606-A606. 2003
[48]
Colon, J.; Hsieh, N.; Ferguson, A.; Kupelian, P.; Seal, S.; Jenkins, D.W.; Baker, C.H. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine, 2010, 6(5), 698-705.
[http://dx.doi.org/10.1016/j.nano.2010.01.010] [PMID: 20172051]
[49]
Zhai, Y.; Zhang, Y.; Qin, F.; Yao, X. An electrochemical DNA biosensor for evaluating the effect of mix anion in cellular fluid on the antioxidant activity of CeO2 nanoparticles. Biosens. Bioelectron., 2015, 70, 130-136.
[http://dx.doi.org/10.1016/j.bios.2015.03.030] [PMID: 25801953]
[50]
Rubio, L.; Annangi, B.; Vila, L.; Hernández, A.; Marcos, R. Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system. Arch. Toxicol., 2016, 90(2), 269-278.
[http://dx.doi.org/10.1007/s00204-015-1468-y] [PMID: 25618551]
[51]
Singh, R.; Singh, S. Redox-dependent catalase mimetic cerium oxide-based nanozyme protect human hepatic cells from 3-AT induced acatalasemia. Colloids Surf. B Biointerfaces, 2019, 175, 625-635.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.042] [PMID: 30583218]
[52]
Tarnuzzer, R.W.; Colon, J.; Patil, S.; Seal, S. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett., 2005, 5(12), 2573-2577.
[http://dx.doi.org/10.1021/nl052024f] [PMID: 16351218]
[53]
Hirst, S.M.; Karakoti, A.S.; Tyler, R.D.; Sriranganathan, N.; Seal, S.; Reilly, C.M. Anti-inflammatory properties of cerium oxide nanoparticles. Small, 2009, 5(24), 2848-2856.
[http://dx.doi.org/10.1002/smll.200901048] [PMID: 19802857]
[54]
Balboa, M.A.; Balsinde, J. Oxidative stress and arachidonic acid mobilization. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2006, 1761(4), 385-391.
[http://dx.doi.org/10.1016/j.bbalip.2006.03.014]
[55]
Bertram, C.; Hass, R. Cellular responses to reactive oxygen species-induced DNA damage and aging. Biol Chem, 2008, 389(3), 211-220.
[http://dx.doi.org/10.1515/BC.2008.031]
[56]
Olmedo, D.G.; Tasat, D.R.; Evelson, P.; Guglielmotti, M.B.; Cabrini, R.L. Biological response of tissues with macrophagic activity to titanium dioxide. J. Biomed. Mater. Res. A, 2008, 84A(4), 1087-1093.
[http://dx.doi.org/10.1002/jbm.a.31514] [PMID: 17685404]
[57]
Niu, J.; Azfer, A.; Rogers, L.; Wang, X.; Kolattukudy, P. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc. Res., 2007, 73(3), 549-559.
[http://dx.doi.org/10.1016/j.cardiores.2006.11.031] [PMID: 17207782]
[58]
Sack, M.; Alili, L.; Karaman, E.; Das, S.; Gupta, A.; Seal, S.; Brenneisen, P. Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles: A novel aspect in cancer therapy. Mol. Cancer Ther., 2014, 13(7), 1740-1749.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0950] [PMID: 24825856]
[59]
Nourmohammadi, E.; Khoshdel-sarkarizi, H.; Nedaeinia, R.; Sadeghnia, H.R.; Hasanzadeh, L.; Darroudi, M.; Kazemi oskuee, R. Evaluation of anticancer effects of cerium oxide nanoparticles on mouse fibrosarcoma cell line. J. Cell. Physiol., 2019, 234(4), 4987-4996.
[http://dx.doi.org/10.1002/jcp.27303] [PMID: 30187476]
[60]
Abbasi, N.; Homayouni Tabrizi, M.; Ardalan, T.; Roumi, S. Cerium oxide nanoparticles-loaded on chitosan for the investigation of anticancer properties. Mater. Technol., 2022, 37(10), 1439-1449.
[http://dx.doi.org/10.1080/10667857.2021.1954279]
[61]
Amiri, F.T.; Hamzeh, M.; Beklar, S.Y.; Hosseinimehr, S.J. Anti-apoptotic and antioxidant effect of cerium oxide nanoparticles on cyclophosphamide-induced hepatotoxicity. Erciyes. Tıp. Dergisi/Erciyes. Med. J., 2018, 40(3), 148-154.
[http://dx.doi.org/10.5152/etd.2018.0016]
[62]
Hamzeh, M.; Talebpour Amiri, F.; Beklar, S.Y.; Hosseinimehr, S.J. Nephroprotective effect of cerium oxide nanoparticles on cyclophosphamide-induced nephrotoxicity via anti-apoptotic and antioxidant properties in BALB/c mice. Marmara Pharm. J., 2018, 22(2), 180-189.
[http://dx.doi.org/10.12991/mpj.2018.55]
[63]
Amiri, F.T.; Hamzeh, M.; Hosseinimehr, S.J.; Karimpour, A.; Mohammadi, H.R.; Khalatbary, A.R. Cerium oxide nanoparticles protect cyclophosphamide-induced testicular toxicity in mice. Int. J. Prev. Med., 2019, 10(1), 5.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_184_18] [PMID: 30774839]
[64]
Solgi, T.; Amiri, I.; Soleimani Asl, S.; Saidijam, M.; Mirzaei Seresht, B.; Artimani, T. Antiapoptotic and antioxidative effects of cerium oxide nanoparticles on the testicular tissues of streptozotocin-induced diabetic rats: An experimental study. Int. J. Reprod. Biomed., 2021, 19(7), 589-598.
[http://dx.doi.org/10.18502/ijrm.v19i7.9465] [PMID: 34458667]
[65]
Abbasi, E.; Vafaei, S.A.; Naseri, N.; Darini, A.; Azandaryani, M.T.; Ara, F.K.; Mirzaei, F. Protective effects of cerium oxide nanoparticles in non-alcoholic fatty liver disease (NAFLD) and carbon tetrachloride-induced liver damage in rats: Study on intestine and liver. Metabolism Open, 2021, 12, 100151.
[http://dx.doi.org/10.1016/j.metop.2021.100151] [PMID: 34870139]
[66]
Aslam Saifi, M.; Hirawat, R.; Godugu, C. Lactoferrin-decorated cerium oxide nanoparticles prevent renal injury and fibrosis. Biol. Trace Elem. Res., 2023, 201(4), 1837-1845.
[http://dx.doi.org/10.1007/s12011-022-03284-6] [PMID: 35568769]
[67]
Asghari, M.; Shaghaghi, Z.; Farzipour, S.; Ghasemi, A.; Hosseinimehr, S.J. Radioprotective effect of olanzapine as an antipsychotic drug against genotoxicity and apoptosis induced by ionizing radiation on human lymphocytes. Mol. Biol. Rep., 2019, 46(6), 5909-5917.
[http://dx.doi.org/10.1007/s11033-019-05024-x] [PMID: 31407246]
[68]
Farzipour, S.; Shaghaghi, Z.; Raeispour, M.; Alvandi, M.; Jalali, F.; Yazdi, A. Evaluation the effect of chelating arms and carrier agents in radiotoxicity of TAT agents. Curr. Radiopharm., 2022.
[PMID: 35538822]
[69]
Pouri, M.; Shaghaghi, Z.; Ghasemi, A.; Hosseinimehr, S.J. Radioprotective effect of gliclazide as an anti-hyperglycemic agent against genotoxicity induced by ionizing radiation on human lymphocytes. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 40-46.
[70]
Shaghaghi, Z.; Alvandi, M.; Farzipour, S.; Dehbanpour, M.R.; Nosrati, S. A review of effects of atorvastatin in cancer therapy. Med. Oncol., 2022, 40(1), 27.
[http://dx.doi.org/10.1007/s12032-022-01892-9] [PMID: 36459301]
[71]
Mun, G.I.; Kim, S.; Choi, E.; Kim, C.S.; Lee, Y.S. Pharmacology of natural radioprotectors. Arch. Pharm. Res., 2018, 41(11), 1033-1050.
[http://dx.doi.org/10.1007/s12272-018-1083-6] [PMID: 30361949]
[72]
Chen, B.H.; Stephen Inbaraj, B. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles. Crit. Rev. Biotechnol., 2018, 38(7), 1003-1024.
[http://dx.doi.org/10.1080/07388551.2018.1426555] [PMID: 29402135]
[73]
Karakoti, A.; Singh, S.; Dowding, J.M.; Seal, S.; Self, W.T. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev., 2010, 39(11), 4422-4432.
[http://dx.doi.org/10.1039/b919677n] [PMID: 20717560]
[74]
Walkey, C.; Das, S.; Seal, S.; Erlichman, J.; Heckman, K.; Ghibelli, L.; Traversa, E.; McGinnis, J.F.; Self, W.T. Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ. Sci. Nano, 2015, 2(1), 33-53.
[http://dx.doi.org/10.1039/C4EN00138A] [PMID: 26207185]
[75]
Madero-Visbal, R.A.; Alvarado, B.E.; Colon, J.F.; Baker, C.H.; Wason, M.S.; Isley, B.; Seal, S.; Lee, C.M.; Das, S.; Mañon, R. Harnessing nanoparticles to improve toxicity after head and neck radiation. Nanomedicine, 2012, 8(7), 1223-1231.
[http://dx.doi.org/10.1016/j.nano.2011.12.011] [PMID: 22248817]
[76]
Ouyang, Z.; Mainali, M.K.; Sinha, N.; Strack, G.; Altundal, Y.; Hao, Y.; Winningham, T.A.; Sajo, E.; Celli, J.; Ngwa, W. Potential of using cerium oxide nanoparticles for protecting healthy tissue during accelerated partial breast irradiation (APBI). Phys. Med., 2016, 32(4), 631-635.
[http://dx.doi.org/10.1016/j.ejmp.2016.03.014] [PMID: 27053452]
[77]
Popova, N.R.; Popov, A.L.; Ermakov, A.M.; Reukov, V.V.; Ivanov, V.K. Ceria-containing hybrid multilayered microcapsules for enhanced cellular internalisation with high radioprotection efficiency. Molecules, 2020, 25(13), 2957.
[http://dx.doi.org/10.3390/molecules25132957] [PMID: 32605031]
[78]
Kadivar, F.; Haddadi, G.; Mosleh-Shirazi, M.A.; Khajeh, F.; Tavasoli, A. Protection effect of cerium oxide nanoparticles against radiation-induced acute lung injuries in rats. Rep. Pract. Oncol. Radiother., 2020, 25(2), 206-211.
[http://dx.doi.org/10.1016/j.rpor.2019.12.023] [PMID: 32194345]
[79]
Alvandi, M.; Shaghaghi, Z.; Polgardani, N.Z.; Abbasi, S.; Albooyeh, H.; Dastranj, L.; Farzipour, S. Etodolac enhances the radiosensitivity of irradiated HT-29 human colorectal cancer cells. Curr. Radiopharm., 2022, 15(3), 242-248.
[http://dx.doi.org/10.2174/1874471015666220321143139] [PMID: 35319403]
[80]
Sia, J.; Szmyd, R.; Hau, E.; Gee, H.E. Molecular mechanisms of radiation-induced cancer cell death: A primer. Front. Cell Dev. Biol., 2020, 8, 41.
[http://dx.doi.org/10.3389/fcell.2020.00041] [PMID: 32117972]
[81]
Caputo, F.; De Nicola, M.; Ghibelli, L. Pharmacological potential of bioactive engineered nanomaterials. Biochem. Pharmacol., 2014, 92(1), 112-130.
[http://dx.doi.org/10.1016/j.bcp.2014.08.015] [PMID: 25175739]
[82]
Hainfeld, J.F.; Dilmanian, F.A.; Slatkin, D.N.; Smilowitz, H.M. Radiotherapy enhancement with gold nanoparticles. J. Pharm. Pharmacol., 2010, 60(8), 977-985.
[http://dx.doi.org/10.1211/jpp.60.8.0005] [PMID: 18644191]
[83]
Misawa, M.; Takahashi, J. Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations. Nanomedicine, 2011, 7(5), 604-614.
[http://dx.doi.org/10.1016/j.nano.2011.01.014] [PMID: 21333754]
[84]
Asghar, M.S.A.; Inkson, B.J.; Möbus, G. Giant radiolytic dissolution rates of aqueous ceria observed in situ by liquid-cell TEM. ChemPhysChem, 2017, 18(10), 1247-1251.
[http://dx.doi.org/10.1002/cphc.201601398] [PMID: 28276618]
[85]
Alili, L.; Sack, M.; Karakoti, A.S.; Teuber, S.; Puschmann, K.; Hirst, S.M.; Reilly, C.M.; Zanger, K.; Stahl, W.; Das, S.; Seal, S.; Brenneisen, P. Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor–stroma interactions. Biomaterials, 2011, 32(11), 2918-2929.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.056] [PMID: 21269688]
[86]
Wason, M.S.; Colon, J.; Das, S.; Seal, S.; Turkson, J.; Zhao, J.; Baker, C.H. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine, 2013, 9(4), 558-569.
[http://dx.doi.org/10.1016/j.nano.2012.10.010] [PMID: 23178284]
[87]
Wason, M.S.; Zhao, J. Cerium oxide nanoparticles: Potential applications for cancer and other diseases. Am. J. Transl. Res., 2013, 5(2), 126-131.
[PMID: 23573358]
[88]
Caputo, F.; Giovanetti, A.; Corsi, F.; Maresca, V.; Briganti, S.; Licoccia, S.; Traversa, E.; Ghibelli, L. Cerium oxide nanoparticles re-establish cell integrity checkpoints and apoptosis competence in irradiated HaCaT cells via novel redox-independent activity. Front. Pharmacol., 2018, 9, 1183.
[http://dx.doi.org/10.3389/fphar.2018.01183] [PMID: 30459604]
[89]
Das, S.; Dowding, J.M.; Klump, K.E.; McGinnis, J.F.; Self, W.; Seal, S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine, 2013, 8(9), 1483-1508.
[http://dx.doi.org/10.2217/nnm.13.133] [PMID: 23987111]
[90]
Colon, J.; Herrera, L.; Smith, J.; Patil, S.; Komanski, C.; Kupelian, P.; Seal, S.; Jenkins, D.W.; Baker, C.H. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomedicine, 2009, 5(2), 225-231.
[http://dx.doi.org/10.1016/j.nano.2008.10.003] [PMID: 19285453]
[91]
Kim, H.Y.; Ahn, J.K.; Kim, M.I.; Park, K.S.; Park, H.G. Rapid and label-free, electrochemical DNA detection utilizing the oxidase-mimicking activity of cerium oxide nanoparticles. Electrochem. Commun., 2019, 99, 5-10.
[http://dx.doi.org/10.1016/j.elecom.2018.12.008]
[92]
Shamim, U.; Hanif, S.; Albanyan, A.; Beck, F.W.J.; Bao, B.; Wang, Z.; Banerjee, S.; Sarkar, F.H.; Mohammad, R.M.; Hadi, S.M.; Azmi, A.S. Resveratrol-induced apoptosis is enhanced in low pH environments associated with cancer. J. Cell. Physiol., 2012, 227(4), 1493-1500.
[http://dx.doi.org/10.1002/jcp.22865] [PMID: 21678400]
[93]
De Marzi, L.; Monaco, A.; De Lapuente, J.; Ramos, D.; Borras, M.; Di Gioacchino, M.; Santucci, S.; Poma, A. Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro. Int. J. Mol. Sci., 2013, 14(2), 3065-3077.
[http://dx.doi.org/10.3390/ijms14023065] [PMID: 23377016]
[94]
Asati, A.; Santra, S.; Kaittanis, C.; Perez, J.M. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano, 2010, 4(9), 5321-5331.
[http://dx.doi.org/10.1021/nn100816s] [PMID: 20690607]
[95]
Wu, L.; Liu, G.; Wang, W.; Liu, R.; Liao, L.; Cheng, N.; Li, W.; Zhang, W.; Ding, D. Cyclodextrin-modified CeO2 nanoparticles as a multifunctional nanozyme for combinational therapy of psoriasis. Int. J. Nanomedicine, 2020, 15, 2515-2527.
[http://dx.doi.org/10.2147/IJN.S246783] [PMID: 32368038]
[96]
Jia, J.; Zhang, T.; Chi, J.; Liu, X.; Sun, J.; Xie, Q.; Peng, S.; Li, C.; Yi, L. Neuroprotective effect of CeO2@PAA-LXW7 Against H2O2-induced cytotoxicity in NGF-differentiated PC12 Cells. Neurochem. Res., 2018, 43(7), 1439-1453.
[http://dx.doi.org/10.1007/s11064-018-2559-y] [PMID: 29882125]
[97]
Wang, M.; He, H.; Liu, D.; Ma, M.; Zhang, Y. Preparation, characterization and multiple biological properties of peptide-modified cerium oxide nanoparticles. Biomolecules, 2022, 12(9), 1277.
[http://dx.doi.org/10.3390/biom12091277] [PMID: 36139116]
[98]
He, J.; Meng, X.; Meng, C.; Zhao, J.; Chen, Y.; Zhang, Z.; Zhang, Y. Layer-by-layer pirfenidone/cerium oxide nanocapsule dressing promotes wound repair and prevents scar formation. Molecules, 2022, 27(6), 1830.
[http://dx.doi.org/10.3390/molecules27061830] [PMID: 35335197]
[99]
Kastl, L.; Sasse, D.; Wulf, V.; Hartmann, R.; Mircheski, J.; Ranke, C.; Carregal-Romero, S.; Martínez-López, J.A.; Fernández-Chacón, R.; Parak, W.J.; Elsasser, H.P.; Rivera Gil, P. Multiple internalization pathways of polyelectrolyte multilayer capsules into mammalian cells. ACS Nano, 2013, 7(8), 6605-6618.
[http://dx.doi.org/10.1021/nn306032k] [PMID: 23826767]
[100]
Luo, D.; Poston, R.N.; Gould, D.J.; Sukhorukov, G.B. Magnetically targetable microcapsules display subtle changes in permeability and drug release in response to a biologically compatible low frequency alternating magnetic field. Mater. Sci. Eng. C, 2019, 94, 647-655.
[http://dx.doi.org/10.1016/j.msec.2018.10.031] [PMID: 30423750]
[101]
Luo, D.; Shahid, S.; Wilson, R.M.; Cattell, M.J.; Sukhorukov, G.B. Novel formulation of chlorhexidine spheres and sustained release with multilayered encapsulation. ACS Appl. Mater. Interfaces, 2016, 8(20), 12652-12660.
[http://dx.doi.org/10.1021/acsami.6b02997] [PMID: 27176115]
[102]
Mackiewicz, M.; Romanski, J.; Drabczyk, K.; Waleka, E.; Stojek, Z.; Karbarz, M. Degradable, thermo-, pH- and redox-sensitive hydrogel microcapsules for burst and sustained release of drugs. Int. J. Pharm., 2019, 569, 118589.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118589] [PMID: 31386880]
[103]
Popov, A.L.; Popova, N.R.; Tarakina, N.V.; Ivanova, O.S.; Ermakov, A.M.; Ivanov, V.K.; Sukhorukov, G.B. Intracellular delivery of antioxidant CeO2 nanoparticles via polyelectrolyte microcapsules. ACS Biomater. Sci. Eng., 2018, 4(7), 2453-2462.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00489] [PMID: 33435109]
[104]
Voronin, D.V.; Sindeeva, O.A.; Kurochkin, M.A.; Mayorova, O.; Fedosov, I.V.; Semyachkina-Glushkovskaya, O.; Gorin, D.A.; Tuchin, V.V.; Sukhorukov, G.B. In vitro and in vivo visualization and trapping of fluorescent magnetic microcapsules in a bloodstream. ACS Appl. Mater. Interfaces, 2017, 9(8), 6885-6893.
[http://dx.doi.org/10.1021/acsami.6b15811] [PMID: 28186726]
[105]
Delcea, M.; Möhwald, H.; Skirtach, A.G. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv. Drug Deliv. Rev., 2011, 63(9), 730-747.
[http://dx.doi.org/10.1016/j.addr.2011.03.010] [PMID: 21463658]
[106]
Kazakova, L.I.; Shabarchina, L.I.; Anastasova, S.; Pavlov, A.M.; Vadgama, P.; Skirtach, A.G.; Sukhorukov, G.B. Chemosensors and biosensors based on polyelectrolyte microcapsules containing fluorescent dyes and enzymes. Anal. Bioanal. Chem., 2013, 405(5), 1559-1568.
[http://dx.doi.org/10.1007/s00216-012-6381-0] [PMID: 22968684]
[107]
Muñoz Javier, A.; Kreft, O.; Semmling, M.; Kempter, S.; Skirtach, A.G.; Bruns, O.T.; del Pino, P.; Bedard, M.F.; Rädler, J.; Käs, J.; Plank, C.; Sukhorukov, G.B.; Parak, W.J. Uptake of colloidal polyelectrolyte-coated particles and polyelectrolyte multilayer capsules by living cells. Adv. Mater., 2008, 20(22), 4281-4287.
[http://dx.doi.org/10.1002/adma.200703190]
[108]
Tong, W.; Song, X.; Gao, C. Layer-by-layer assembly of microcapsules and their biomedical applications. Chem. Soc. Rev., 2012, 41(18), 6103-6124.
[http://dx.doi.org/10.1039/c2cs35088b] [PMID: 22695830]
[109]
Zhang, W.; Deng, L.; Wang, G.; Guo, X.; Li, Q.; Zhang, J.; Khashab, N.M. Low-magnetization magnetic microcapsules: A synergistic theranostic platform for remote cancer cells therapy and imaging. Part. Part. Syst. Charact., 2014, 31(9), 985-993.
[http://dx.doi.org/10.1002/ppsc.201400005]
[110]
Donath, E.; Sukhorukov, G.B.; Caruso, F.; Davis, S.A.; Möhwald, H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed., 1998, 37(16), 2201-2205.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2201:AID-ANIE2201>3.0.CO;2-E] [PMID: 29711461]
[111]
Ghiorghita, C.A.; Bucatariu, F.; Dragan, E.S. Influence of cross-linking in loading/release applications of polyelectrolyte multilayer assemblies. A review. Mater. Sci. Eng. C, 2019, 105, 110050.
[http://dx.doi.org/10.1016/j.msec.2019.110050] [PMID: 31546349]
[112]
Hu, Y.; Pérez-Mercader, J. Microcapsules with distinct dual-layer shells and their applications for the encapsulation, preservation, and slow release of hydrophilic small molecules. ACS Appl. Mater. Interfaces, 2019, 11(44), 41640-41648.
[http://dx.doi.org/10.1021/acsami.9b13699] [PMID: 31595738]
[113]
Luo, D.; Gould, D.J.; Sukhorukov, G.B. Local and sustained activity of doxycycline delivered with layer-by-layer microcapsules. Biomacromolecules, 2016, 17(4), 1466-1476.
[http://dx.doi.org/10.1021/acs.biomac.6b00070] [PMID: 26967921]
[114]
Sukhorukov, G.B.; Donath, E.; Davis, S.; Lichtenfeld, H.; Caruso, F.; Popov, V.I.; Möhwald, H. Stepwise polyelectrolyte assembly on particle surfaces: A novel approach to colloid design. Polym. Adv. Technol., 1998, 9(10-11), 759-767.
[http://dx.doi.org/10.1002/(SICI)1099-1581(1998100)9:10/11<759:AID-PAT846>3.0.CO;2-Q]
[115]
Pargaonkar, N.; Lvov, Y.M.; Li, N.; Steenekamp, J.H.; de Villiers, M.M. Controlled release of dexamethasone from microcapsules produced by polyelectrolyte layer-by-layer nanoassembly. Pharm. Res., 2005, 22(5), 826-835.
[http://dx.doi.org/10.1007/s11095-005-2600-0] [PMID: 15906179]
[116]
Patil, G.B.; Ramani, K.P.; Pandey, A.P.; More, M.P.; Patil, P.O.; Deshmukh, P.K. Fabrication of layer-by-layer self-assembled drug delivery platform for prednisolone. Polym. Plast. Technol. Eng., 2013, 52(15), 1637-1644.
[http://dx.doi.org/10.1080/03602559.2013.836537]
[117]
Stewart, S.S.; Roldan, J.E.; Lvov, Y.M.; Mills, D.K. In Layer-by-Layer adsorption of biocompatible polyelectrolytes onto dexamethasone aggregates. International Conference of the IEEE Engineering in Medicine and Biology Society,, 2006, pp. 1474--1477.
[118]
Nadeem, M.; Khan, R.; Afridi, K.; Nadhman, A.; Ullah, S.; Faisal, S.; Mabood, Z.U.; Hano, C.; Abbasi, B.H. Green synthesis of cerium oxide nanoparticles (CeO2 NPs) and their antimicrobial applications: A review. Int. J. Nanomedicine, 2020, 15, 5951-5961.
[http://dx.doi.org/10.2147/IJN.S255784] [PMID: 32848398]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy