Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

An Outlook of the Structure Activity Relationship (SAR) of Naphthalimide Derivatives as Anticancer Agents

Author(s): Aeyaz Ahmad Bhat*

Volume 24, Issue 2, 2024

Published on: 16 November, 2023

Page: [96 - 116] Pages: 21

DOI: 10.2174/0118715206274007231107094411

Price: $65

Abstract

The efficacy of drugs against cancer in clinical settings may be limited due to pharmacokinetic issues, side effects and the emergence of drug resistance. However, a class of anticancer drugs known as naphthalimides have proven to be very effective. These derivatives have demonstrated to be effective in treating different types of cancers and exhibit strong DNA binding affinity. The anticancer properties of the naphthalimide derivatives allow them to target a number of cancer cell lines. Researchers have investigated the anticancer activity of numerous naphthalimide derivatives, such as heterocyclic fused, non-fused substituted, metal-substituted and carboxamide derivatives. Surprisingly, some derivatives demonstrate greater activity than the reference norms, such as cisplatin, amonafide, mitonafide and others and are selective against many cell lines. The primary objective of this research is to comprehend the effects of various substitution patterns on the structure-activity relationship (SAR) of these derivatives and the instances in which they enhance or reduce this biological activity.

Graphical Abstract

[1]
Kamal, A.; Bolla, N.R.; Srikanth, P.S.; Srivastava, A.K. Naphthalimide derivatives with therapeutic characteristics: A patent review. Expert Opin. Ther. Pat., 2013, 23(3), 299-317.
[http://dx.doi.org/10.1517/13543776.2013.746313] [PMID: 23369185]
[2]
Tandon, R.; Luxami, V.; Kaur, H.; Tandon, N.; Paul, K. 1,8-Naphthalimide: A potent DNA intercalator and target for cancer therapy. Chem. Rec., 2017, 17(10), 956-993.
[http://dx.doi.org/10.1002/tcr.201600134] [PMID: 28375569]
[3]
Shen, K.; Sun, L.; Zhang, H.; Xu, Y.; Qian, X.; Lu, Y.; Li, Q.; Ni, L.; Liu, J. A ROS-mediated lysosomal–mitochondrial pathway is induced by a novel Amonafide analogue, 7c, in human Hela cervix carcinoma cells. Cancer Lett., 2013, 333(2), 229-238.
[http://dx.doi.org/10.1016/j.canlet.2013.01.038] [PMID: 23376642]
[4]
Su, G.H.; Sohn, T.A.; Ryu, B.; Kern, S.E. A novel histone deacetylase inhibitor identified by high-throughput transcriptional screening of a compound library. Cancer Res., 2000, 60(12), 3137-3142.
[PMID: 10866300]
[5]
Pain, A.; Samanta, S.; Dutta, S.; Saxena, A.K.; Shanmugavel, M.; Kampasi, H.; Quazi, G.N.; Sanyal, U. Synthesis and evaluation of substituted naphthalimide nitrogen mustards as rationally designed anticancer compounds. Acta Pol. Pharm., 2003, 60(4), 285-291.
[PMID: 14714857]
[6]
Shao, J.; Li, Y.; Wang, Z.; Xiao, M.; Yin, P.; Lu, Y.; Qian, X.; Xu, Y.; Liu, J. 7b, a novel naphthalimide derivative, exhibited anti-inflammatory effects via targeted-inhibiting TAK1 following down-regulation of ERK1/2- and p38 MAPK-mediated activation of NF-κB in LPS-stimulated RAW264.7 macrophages. Int. Immunopharmacol., 2013, 17(2), 216-228.
[http://dx.doi.org/10.1016/j.intimp.2013.06.008] [PMID: 23810444]
[7]
Banerjee, S.; Veale, E.B.; Phelan, C.M.; Murphy, S.A.; Tocci, G.M.; Gillespie, L.J.; Frimannsson, D.O.; Kelly, J.M.; Gunnlaugsson, T. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chem. Soc. Rev., 2013, 42(4), 1601-1618.
[http://dx.doi.org/10.1039/c2cs35467e] [PMID: 23325367]
[8]
Braña, M.; Ramos, A. Naphthalimides as anti-cancer agents: Synthesis and biological activity. Curr. Med. Chem. Anticancer Agents, 2001, 1(3), 237-255.
[http://dx.doi.org/10.2174/1568011013354624] [PMID: 12678756]
[9]
Lv, M.; Xu, H. Overview of naphthalimide analogs as anticancer agents. Curr. Med. Chem., 2009, 16(36), 4797-4813.
[http://dx.doi.org/10.2174/092986709789909576] [PMID: 19929786]
[10]
Ge, C.; Chang, L.; Zhao, Y.; Chang, C.; Xu, X.; He, H.; Wang, Y.; Dai, F.; Xie, S.; Wang, C. Design, synthesis and evaluation of naphthalimide derivatives as potential anticancer agents for hepatocellular carcinoma. Molecules, 2017, 22(2), 342.
[http://dx.doi.org/10.3390/molecules22020342] [PMID: 28241441]
[11]
Tomczyk, M.D.; Walczak, K.Z. l,8-Naphthalimide based DNA intercalators and anticancer agents. A systematic review from 2007 to 2017. Eur. J. Med. Chem., 2018, 159, 393-422.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.055] [PMID: 30312931]
[12]
Bhat, A.A.; Singh, I.; Tandon, N.; Tandon, R. Structure activity relationship (SAR) and anticancer activity of pyrrolidine derivatives: Recent developments and future prospects (A review). Eur. J. Med. Chem., 2023, 246, 114954.
[http://dx.doi.org/10.1016/j.ejmech.2022.114954] [PMID: 36481599]
[13]
Skladanowski, A.; Bozko, P.; Sabisz, M. DNA structure and integrity checkpoints during the cell cycle and their role in drug targeting and sensitivity of tumor cells to anticancer treatment. Chem. Rev., 2009, 109(7), 2951-2973.
[http://dx.doi.org/10.1021/cr900026u] [PMID: 19522503]
[14]
Bhat, A.A.; Tandon, N.; Tandon, R. Pyrrolidine derivatives as Anti‐diabetic agents: Current status and future prospects. ChemistrySelect, 2022, 7(6), e202103757.
[http://dx.doi.org/10.1002/slct.202103757]
[15]
Bloodgood, B.L.; Sharma, N.; Browne, H.A.; Trepman, A.Z.; Greenberg, M.E. The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition. Nature, 2013, 503(7474), 121-125.
[http://dx.doi.org/10.1038/nature12743] [PMID: 24201284]
[16]
Chen, Z.; Xu, Y.; Qian, X. Naphthalimides and analogues as antitumor agents: A review on molecular design, bioactivity and mechanism of action. Chin. Chem. Lett., 2018, 29(12), 1741-1756.
[http://dx.doi.org/10.1016/j.cclet.2018.09.020]
[17]
Ingrassia, L.; Lefranc, F.; Kiss, R.; Mijatovic, T. Naphthalimides and azonafides as promising anti-cancer agents. Curr. Med. Chem., 2009, 16(10), 1192-1213.
[http://dx.doi.org/10.2174/092986709787846659] [PMID: 19355879]
[18]
Kokosza, K.; Andrei, G.; Schols, D.; Snoeck, R.; Piotrowska, D.G. Design, antiviral and cytostatic properties of isoxazolidine-containing amonafide analogues. Bioorg. Med. Chem., 2015, 23(13), 3135-3146.
[http://dx.doi.org/10.1016/j.bmc.2015.04.079] [PMID: 26001344]
[19]
Bhat, A.A.; Tandon, N.; Singh, I.; Tandon, R. Structure-activity relationship (SAR) and antibacterial activity of pyrrolidine based hybrids: A review. J. Mol. Struct., 2023, 1283, 135175.
[http://dx.doi.org/10.1016/j.molstruc.2023.135175]
[20]
George, N.; Singh, G.; Singh, R.; Singh, G. Anita Devi; Singh, H.; Kaur, G.; Singh, J. Microwave accelerated green approach for tailored 1,2,3–triazoles via CuAAC. Sustain. Chem. Pharm., 2022, 30, 100824.
[http://dx.doi.org/10.1016/j.scp.2022.100824]
[21]
Tumiatti, V.; Milelli, A.; Minarini, A.; Micco, M.; Gasperi Campani, A.; Roncuzzi, L.; Baiocchi, D.; Marinello, J.; Capranico, G.; Zini, M.; Stefanelli, C.; Melchiorre, C. Design, synthesis, and biological evaluation of substituted naphthalene imides and diimides as anticancer agent. J. Med. Chem., 2009, 52(23), 7873-7877.
[http://dx.doi.org/10.1021/jm901131m] [PMID: 19954251]
[22]
Machado, K.E.; Oliveira, K.N.; Santos-Bubniak, L.; Licínio, M.A.; Nunes, R.J.; Santos-Silva, M.C. Evaluation of apoptotic effect of cyclic imide derivatives on murine B16F10 melanoma cells. Bioorg. Med. Chem., 2011, 19(21), 6285-6291.
[http://dx.doi.org/10.1016/j.bmc.2011.09.008] [PMID: 21964182]
[23]
Singh, G.; George, N.; Singh, R.; Singh, G.; Kaur, J.D.; Kaur, G.; Singh, H.; Singh, J. CuAAC-derived selective fluorescent probe as a recognition agent for Pb(II) and Hg(II): DFT and docking studies. ACS Omega, 2022, 7(43), 39159-39168.
[http://dx.doi.org/10.1021/acsomega.2c05050] [PMID: 36340062]
[24]
George, N.; Singh, G.; Singh, R.; Singh, G. Priyanka; Singh, H.; Kaur, G.; Singh, J. Click modified bis-appended Schiff base 1,2,3-triazole chemosensor for detection of Pb(II)ion and computational studies. J. Mol. Struct., 2023, 1288, 135666.
[http://dx.doi.org/10.1016/j.molstruc.2023.135666]
[25]
Armitage, B.A. DNA binders and related subjects; Springer Science & Business Media, 2005, p. 253.
[26]
Wani, A.K.; Akhtar, N.; Mir, T.G.; Singh, R.; Jha, P.K.; Mallik, S.K.; Sinha, S.; Tripathi, S.K.; Jain, A.; Jha, A.; Devkota, H.P.; Prakash, A. Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials. Biomolecules, 2023, 13(2), 194.
[http://dx.doi.org/10.3390/biom13020194] [PMID: 36830564]
[27]
Gholami, L.; Ivari, J.R.; Nasab, N.K.; Oskuee, R.K.; Sathyapalan, T.; Sahebkar, A. Recent advances in lung cancer therapy based on nanomaterials: A review. Curr. Med. Chem., 2023, 30(3), 335-355.
[http://dx.doi.org/10.2174/0929867328666210810160901] [PMID: 34375182]
[28]
Kamaike, K.; Sano, M.; Sakata, D.; Nishihara, Y.; Amino, H.; Ohtsuki, A.; Okada, Y.; Miyakawa, T.; Kogawara, M.; Tsutsumi, M.; Takahashi, M.; Kawashima, E.; Ota, K.; Miyaoka, H. Synthesis and evaluation of MGB polyamide-oligonucleotide conjugates as gene expression control compounds. J. Nucleic Acids, 2023, 2023, 1-20.
[http://dx.doi.org/10.1155/2023/2447998] [PMID: 36960406]
[29]
Craig, J.S.; Melidis, L.; Williams, H.D.; Dettmer, S.J.; Heidecker, A.A.; Altmann, P.J.; Guan, S.; Campbell, C.; Browning, D.F.; Sigel, R.K.O.; Johannsen, S.; Egan, R.T.; Aikman, B.; Casini, A.; Pöthig, A.; Hannon, M.J. Organometallic pillarplexes that bind DNA 4-way holliday junctions and forks. J. Am. Chem. Soc., 2023, 145(25), 13570-13580.
[http://dx.doi.org/10.1021/jacs.3c00118] [PMID: 37318835]
[30]
Singh, G.; George, N.; Singh, R.; Singh, G. Sushma; Kaur, G.; Singh, H.; Singh, J. Ion recognition by 1,2,3‐triazole moieties synthesized via “click chemistry”. Appl. Organomet. Chem., 2023, 37(1), e6897.
[http://dx.doi.org/10.1002/aoc.6897]
[31]
Vasudevan, S.; Smith, J.A.; Wojdyla, M.; McCabe, T.; Fletcher, N.C.; Quinn, S.J.; Kelly, J.M.; Quinn, S.J.; Kelly, J.M. Substituted dipyridophenazine complexes of Cr(iii): Synthesis, enantiomeric resolution and binding interactions with calf thymus DNA. Dalton Trans., 2010, 39(16), 3990-3998.
[http://dx.doi.org/10.1039/c000150c] [PMID: 20372725]
[32]
Bhat, A.A.; Tandon, N.; Tandon, R. Pyrrolidine derivatives as antibacterial agents, current status and future prospects: A patent review. Pharm. Pat. Anal., 2022, 11(6), 187-198.
[http://dx.doi.org/10.4155/ppa-2022-0015] [PMID: 36366974]
[33]
Seredinski, S.; Boos, F.; Günther, S.; Oo, J.A.; Warwick, T.; Izquierdo Ponce, J.; Lillich, F.F.; Proschak, E.; Knapp, S.; Gilsbach, R.; Pflüger-Müller, B.; Brandes, R.P.; Leisegang, M.S. DNA topoisomerase inhibition with the HIF inhibitor acriflavine promotes transcription of lncRNAs in endothelial cells. Mol. Ther. Nucleic Acids, 2022, 27, 1023-1035.
[http://dx.doi.org/10.1016/j.omtn.2022.01.016] [PMID: 35228897]
[34]
Irfandi, R.; Santi, S.; Raya, I.; Ahmad, A. Ahmad Fudholi; Sari, D.R.T.; Prihantono, Study of new Zn(II)Prolinedithiocarbamate as a potential agent for breast cancer: Characterization and molecular docking. J. Mol. Struct., 2022, 1252, 132101.
[http://dx.doi.org/10.1016/j.molstruc.2021.132101]
[35]
Lerman, L.S. The structure of the DNA-acridine complex. Proc. Natl. Acad. Sci. USA, 1963, 49(1), 94-102.
[http://dx.doi.org/10.1073/pnas.49.1.94] [PMID: 13929834]
[36]
Becker, H.C.; Nordén, B. DNA binding thermodynamics and sequence specificity of chiral piperazinecarbonyloxyalkyl derivatives of anthracene and pyrene. J. Am. Chem. Soc., 2000, 122(35), 8344-8349.
[http://dx.doi.org/10.1021/ja000464x]
[37]
Khalifa, M.M.; Al-Karmalawy, A.A.; Elkaeed, E.B.; Nafie, M.S.; Tantawy, M.A.; Eissa, I.H.; Mahdy, H.A. Topo II inhibition and DNA intercalation by new phthalazine-based derivatives as potent anticancer agents: Design, synthesis, anti-proliferative, docking, and in vivo studies. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 299-314.
[http://dx.doi.org/10.1080/14756366.2021.2007905] [PMID: 34894955]
[38]
Karimi-Maleh, H.; Liu, Y.; Li, Z.; Darabi, R.; Orooji, Y.; Karaman, C.; Karimi, F.; Baghayeri, M.; Rouhi, J.; Fu, L.; Rostamnia, S.; Rajendran, S.; Sanati, A.L.; Sadeghifar, H.; Ghalkhani, M. Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study. Chemosphere, 2023, 332, 138815.
[http://dx.doi.org/10.1016/j.chemosphere.2023.138815] [PMID: 37146774]
[39]
Satange, R.; Kao, S.H.; Chien, C.M.; Chou, S.H.; Lin, C.C.; Neidle, S.; Hou, M.H. Staggered intercalation of DNA duplexes with base-pair modulation by two distinct drug molecules induces asymmetric backbone twisting and structure polymorphism. Nucleic Acids Res., 2022, 50(15), 8867-8881.
[http://dx.doi.org/10.1093/nar/gkac629] [PMID: 35871296]
[40]
Ghosh, A.; Trajkovski, M.; Teulade-Fichou, M.P.; Gabelica, V.; Plavec, J. Phen‐DC 3 induces refolding of human telomeric DNA into a chair‐type antiparallel G‐Quadruplex through ligand intercalation. Angew. Chem., 2022, 134(40), e202207384.
[http://dx.doi.org/10.1002/ange.202207384]
[41]
Karimi-Maleh, H.; Erk, N. Gemcitabine drug intercalation with ds-DNA at surface of ds-DNA/Pt–ZnO/SWCNTs/GCE biosensor: A DNA-biosensor for gemcitabine monitoring confirmed by molecular docking study. Chemosphere, 2023, 336, 139268.
[http://dx.doi.org/10.1016/j.chemosphere.2023.139268] [PMID: 37343636]
[42]
Tandon, R.; Luxami, V.; Tandon, N.; Paul, K. Recent developments on 1,8-Naphthalimide moiety as potential target for anticancer agents. Bioorg. Chem., 2022, 121, 105677.
[http://dx.doi.org/10.1016/j.bioorg.2022.105677] [PMID: 35202852]
[43]
Berman, H.M.; Young, P.R. The interaction of intercalating drugs with nucleic acids. Annu. Rev. Biophys. Bioeng., 1981, 10(1), 87-114.
[http://dx.doi.org/10.1146/annurev.bb.10.060181.000511] [PMID: 7020585]
[44]
Wilson, W.D.; Jones, R.L. Intercalating drugs: DNA binding and molecular pharmacology. Adv. Pharmacol., 1981, 18, 177-222.
[http://dx.doi.org/10.1016/S1054-3589(08)60255-0] [PMID: 6172965]
[45]
Martínez, R.; Chacón-García, L. The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr. Med. Chem., 2005, 12(2), 127-151.
[http://dx.doi.org/10.2174/0929867053363414] [PMID: 15638732]
[46]
Biebricher, A.S.; Heller, I.; Roijmans, R.F.H.; Hoekstra, T.P.; Peterman, E.J.G.; Wuite, G.J.L. The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics. Nat. Commun., 2015, 6(1), 7304.
[http://dx.doi.org/10.1038/ncomms8304] [PMID: 26084388]
[47]
Hendershot, J.M.; O’Brien, P.J. Critical role of DNA intercalation in enzyme-catalyzed nucleotide flipping. Nucleic Acids Res., 2014, 42(20), 12681-12690.
[http://dx.doi.org/10.1093/nar/gku919] [PMID: 25324304]
[48]
Chen, A.Y.; Liu, L.F. DNA topoisomerases: Essential enzymes and lethal targets. Annu. Rev. Pharmacol. Toxicol., 1994, 34(1), 191-218.
[http://dx.doi.org/10.1146/annurev.pa.34.040194.001203] [PMID: 8042851]
[49]
Webb, M.R.; Ebeler, S.E. A gel electrophoresis assay for the simultaneous determination of topoisomerase I inhibition and DNA intercalation. Anal. Biochem., 2003, 321(1), 22-30.
[http://dx.doi.org/10.1016/S0003-2697(03)00459-7] [PMID: 12963051]
[50]
Palchaudhuri, R.; Hergenrother, P.J. DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr. Opin. Biotechnol., 2007, 18(6), 497-503.
[http://dx.doi.org/10.1016/j.copbio.2007.09.006] [PMID: 17988854]
[51]
El-Zahabi, M.; Amin, Y.; Sakr, H.; El-Hady, O. An overview of imides and their analogues as anticancer agents. Al-Azh. J. Pharmacol. Sci., 2022, 66(2), 99-125.
[http://dx.doi.org/10.21608/ajps.2022.268400]
[52]
Bolognese, A.; Correale, G.; Manfra, M.; Lavecchia, A.; Mazzoni, O.; Novellino, E.; Barone, V.; La Colla, P.; Loddo, R. Antitumor agents. 2. Synthesis, structure-activity relationships, and biological evaluation of substituted 5H-pyridophenoxazin-5-ones with potent antiproliferative activity. J. Med. Chem., 2002, 45(24), 5217-5223.
[http://dx.doi.org/10.1021/jm020918w] [PMID: 12431049]
[53]
Tempone, A.G.; Pieper, P.; Borborema, S.E.T.; Thevenard, F.; Lago, J.H.G.; Croft, S.L.; Anderson, E.A. Marine alkaloids as bioactive agents against protozoal neglected tropical diseases and malaria. Nat. Prod. Rep., 2021, 38(12), 2214-2235.
[http://dx.doi.org/10.1039/D0NP00078G] [PMID: 34913053]
[54]
Zhang, L.; Su, F.; Kong, X.; Lee, F.; Sher, S.; Day, K.; Tian, Y.; Meldrum, D.R. 1,8‐Naphthalimide derivative dyes with large stokes shifts for targeting live‐cell mitochondria. ChemBioChem, 2016, 17(18), 1719-1724.
[http://dx.doi.org/10.1002/cbic.201600169] [PMID: 27319799]
[55]
Zhang, J.; Dumur, F.; Xiao, P.; Graff, B.; Bardelang, D.; Gigmes, D.; Fouassier, J.P.; Lalevée, J. Structure design of naphthalimide derivatives: Toward versatile photoinitiators for near-UV/visible LEDs, 3D printing, and water-soluble photoinitiating systems. Macromolecules, 2015, 48(7), 2054-2063.
[http://dx.doi.org/10.1021/acs.macromol.5b00201]
[56]
Ventura, B.; Bertocco, A.; Braga, D.; Catalano, L.; d’Agostino, S.; Grepioni, F.; Taddei, P. Luminescence properties of 1, 8-naphthalimide derivatives in solution, in their crystals, and in co-crystals: Toward room-temperature phosphorescence from organic materials. J. Phys. Chem. C, 2014, 118(32), 18646-18658.
[http://dx.doi.org/10.1021/jp5049309]
[57]
Gong, H.H.; Addla, D.; Lv, J.S.; Zhou, C.H. Heterocyclic naphthalimides as new skeleton structure of compounds with increasingly expanding relational medicinal applications. Curr. Top. Med. Chem., 2016, 16(28), 3303-3364.
[http://dx.doi.org/10.2174/1568026616666160506145943] [PMID: 27150364]
[58]
Xin, M.; Wei, J.H.; Yang, C.H.; Liang, G.B.; Su, D.; Ma, X.L.; Zhang, Y. Design, synthesis and biological evaluation of 3-nitro-1,8-naphthalimides as potential antitumor agents. Bioorg. Med. Chem. Lett., 2020, 30(8), 127051.
[http://dx.doi.org/10.1016/j.bmcl.2020.127051] [PMID: 32111436]
[59]
Rong, R.X.; Wang, S.S.; Liu, X.; Li, R.F.; Wang, K.R.; Cao, Z.R.; Li, X.L. Lysosomes-targeting imaging and anticancer properties of novel bis-naphthalimide derivatives. Bioorg. Med. Chem. Lett., 2018, 28(4), 742-747.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.008] [PMID: 29342415]
[60]
Dai, F.; He, H.; Xu, X.; Chen, S.; Wang, C.; Feng, C.; Tian, Z.; Dong, H.; Xie, S. Synthesis and biological evaluation of naphthalimide-polyamine conjugates modified by alkylation as anticancer agents through p53 pathway. Bioorg. Chem., 2018, 77, 16-24.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.036] [PMID: 29316508]
[61]
Shaikh, S.A.; Bhat, S.S.; Hegde, P.L.; Revankar, V.K.; Kate, A.; Kirtani, D.; Kumbhar, A.A.; Kumbar, V.; Bhat, K. Synthesis, structural characterization, protein binding, DNA cleavage and anticancer activity of fluorophore labelled copper(II) complexes based on 1,8-naphthalimide conjugates. New J. Chem., 2021, 45(35), 16319-16332.
[http://dx.doi.org/10.1039/D1NJ02696H]
[62]
Yildiz, U.; Kandemir, I.; Cömert, F.; Akkoç, S.; Coban, B. Synthesis of naphthalimide derivatives with potential anticancer activity, their comparative ds- and G-quadruplex-DNA binding studies and related biological activities. Mol. Biol. Rep., 2020, 47(3), 1563-1572.
[http://dx.doi.org/10.1007/s11033-019-05239-y] [PMID: 32095985]
[63]
Liang, G.B.; Wei, J.H.; Jiang, H.; Huang, R.Z.; Qin, J.T.; Wang, H.L.; Wang, H.S.; Zhang, Y. Design, synthesis and antitumor evaluation of new 1,8-naphthalimide derivatives targeting nuclear DNA. Eur. J. Med. Chem., 2021, 210, 112951.
[http://dx.doi.org/10.1016/j.ejmech.2020.112951] [PMID: 33109400]
[64]
Chen, R.; Yuan, C.; Jaiswal, Y.; Huo, L.; Li, D.; Williams, L.; Zhong, J.; Liang, Y. Synthesis and biological evaluation of some 1, 8-naphthalimide-acridinyl hybrids. J. Chem., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/7989852]
[65]
Shankaraiah, N.; Kumar, N.P.; Tokala, R.; Gayatri, B.S.; Talla, V.; Santos, L.S. Synthesis of new 1, 2, 3-triazolo-naphthalimide/phthalimide conjugates via ‘Click’Reaction: DNA intercalation and cytotoxic studies. J. Braz. Chem. Soc., 2019, 30, 454-461.
[66]
Sankara Rao, N.; Nagesh, N.; Lakshma Nayak, V.; Sunkari, S.; Tokala, R.; Kiranmai, G.; Regur, P.; Shankaraiah, N.; Kamal, A. Design and synthesis of DNA-intercalative naphthalimide-benzothiazole/cinnamide derivatives: Cytotoxicity evaluation and topoisomerase-IIα inhibition. MedChemComm, 2019, 10(1), 72-79.
[http://dx.doi.org/10.1039/C8MD00395E] [PMID: 30774856]
[67]
Huang, Y.; Wu, C.X.; Song, Y.; Huang, M.; Tian, D.N.; Yang, X.B.; Fan, Y.R. Synthesis, DNA binding, and anticancer properties of bis-naphthalimide derivatives with lysine-modified polyamine linkers. Molecules, 2018, 23(2), 266.
[http://dx.doi.org/10.3390/molecules23020266] [PMID: 29382135]
[68]
Tung, C.H.; Lu, Y.T.; Kao, W.T.; Liu, J.W.; Lai, Y.H.; Jiang, S.J.; Chen, H.P.; Shih, T.L. Discovery of a more potent anticancer agent than C4 ‐benzazole 1,8‐naphthalimide derivatives against murine melanoma. J. Chin. Chem. Soc., 2020, 67(7), 1254-1262.
[http://dx.doi.org/10.1002/jccs.202000019]
[69]
Ma, W.; Zhang, S.; Tian, Z.; Xu, Z.; Zhang, Y.; Xia, X.; Chen, X.; Liu, Z. Potential anticancer agent for selective damage to mitochondria or lysosomes: Naphthalimide-modified fluorescent biomarker half-sandwich iridium (III) and ruthenium (II) complexes. Eur. J. Med. Chem., 2019, 181, 111599.
[http://dx.doi.org/10.1016/j.ejmech.2019.111599] [PMID: 31408807]
[70]
Streciwilk, W.; Terenzi, A.; Cheng, X.; Hager, L.; Dabiri, Y.; Prochnow, P.; Bandow, J.E.; Wölfl, S.; Keppler, B.K.; Ott, I. Fluorescent organometallic rhodium(I) and ruthenium(II) metallodrugs with 4-ethylthio-1,8-naphthalimide ligands: Antiproliferative effects, cellular uptake and DNA-interaction. Eur. J. Med. Chem., 2018, 156, 148-161.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.056] [PMID: 30006161]
[71]
Singh, I.; Luxami, V.; Paul, K. Synthesis and in vitro evaluation of naphthalimide–benzimidazole conjugates as potential antitumor agents. Org. Biomol. Chem., 2019, 17(21), 5349-5366.
[http://dx.doi.org/10.1039/C8OB02973C] [PMID: 31099353]
[72]
Chen, Q.M.; Li, Z.; Tian, G.X.; Chen, Y.; Wu, X.H. 1,2,3-triazole-dithiocarbamate-naphthalimides: Synthesis, characterization, and biological evaluation. J. Chem. Res., 2021, 45(3-4), 258-264.
[http://dx.doi.org/10.1177/1747519820966971]
[73]
Roos, L.; Malan, F.P.; Landman, M. Naphthalimide-NHC complexes: Synthesis and properties in catalytic, biological and photophysical applications. Coord. Chem. Rev., 2021, 449, 214201.
[http://dx.doi.org/10.1016/j.ccr.2021.214201]
[74]
Langdon-Jones, E.E.; Lloyd, D.; Hayes, A.J.; Wainwright, S.D.; Mottram, H.J.; Coles, S.J.; Horton, P.N.; Pope, S.J.A. Alkynyl-naphthalimide fluorophores: Gold coordination chemistry and cellular imaging applications. Inorg. Chem., 2015, 54(13), 6606-6615.
[http://dx.doi.org/10.1021/acs.inorgchem.5b00954] [PMID: 26086352]
[75]
Jothi, D.; Iyer, S.K. A highly sensitive naphthalimide based fluorescent “turn-on” sensor for H2S and its bio-imaging applications. J. Photochem. Photobiol. Chem., 2022, 427, 113802.
[http://dx.doi.org/10.1016/j.jphotochem.2022.113802]
[76]
Rahal, M.; Mokbel, H.; Graff, B.; Pertici, V.; Gigmes, D.; Toufaily, J.; Hamieh, T.; Dumur, F.; Lalevée, J. Naphthalimide‐based dyes as photoinitiators under visible light irradiation and their applications: Photocomposite synthesis, 3D printing and polymerization in water. ChemPhotoChem, 2021, 5(5), 476-490.
[http://dx.doi.org/10.1002/cptc.202000306]
[77]
Wang, H.; Wu, H.; Xue, L.; Shi, Y.; Li, X. A naphthalimide fluorophore with efficient intramolecular PET and ICT Processes: Application in molecular logic. Org. Biomol. Chem., 2011, 9(15), 5436-5444.
[http://dx.doi.org/10.1039/c1ob05481c] [PMID: 21660342]
[78]
Dong, H.Q.; Wei, T.B.; Ma, X.Q.; Yang, Q.Y.; Zhang, Y.F.; Sun, Y.J.; Shi, B-B.; Yao, H.; Zhang, Y-M.; Lin, Q. 1,8-Naphthalimide-based fluorescent chemosensors: Recent advances and perspectives. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(39), 13501-13529.
[http://dx.doi.org/10.1039/D0TC03681A]
[79]
Yu, H.; Guo, Y.; Zhu, W.; Havener, K.; Zheng, X. Recent advances in 1,8-naphthalimide-based small-molecule fluorescent probes for organelles imaging and tracking in living cells. Coord. Chem. Rev., 2021, 444, 214019.
[http://dx.doi.org/10.1016/j.ccr.2021.214019]
[80]
Kang, J.; Gopala, L.; Reddy Tangadanchu, V.K.; Gao, W.W.; Zhou, C.H. Novel naphthalimide nitroimidazoles as multitargeting antibacterial agents against resistant Acinetobacter baumannii. Future Med. Chem., 2018, 10(7), 711-724.
[http://dx.doi.org/10.4155/fmc-2017-0160] [PMID: 29671618]
[81]
Duke, R.M.; Veale, E.B.; Pfeffer, F.M.; Kruger, P.E.; Gunnlaugsson, T. Colorimetric and fluorescent anion sensors: An overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem. Soc. Rev., 2010, 39(10), 3936-3953.
[http://dx.doi.org/10.1039/b910560n] [PMID: 20818454]
[82]
Naeem, N.; Tahir, T.; Ans, M.; Rasool, A.; Aqil, S.R.; Iqbal, J. Molecular engineering strategy of naphthalimide based small donor molecules for high-performance organic solar cells. Comput. Theor. Chem., 2021, 1204, 113416.
[http://dx.doi.org/10.1016/j.comptc.2021.113416]
[83]
Tandon, N. Thakur, R.; Tandon, R.; Singh, I.; Paul, K.; Ahmad Bhat, A. C‐H functionalized molecules: Synthesis, reaction mechanism, and biological activity. Asian J. Org. Chem., 2023, 12(7), e202300017.
[http://dx.doi.org/10.1002/ajoc.202300017]
[84]
Xu, H.; Zhang, S.; Gu, Y.; Lu, H. Naphthalimide appended isoquinoline fluorescent probe for specific detection of Al3+ ions and its application in living cell imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 265, 120364.
[http://dx.doi.org/10.1016/j.saa.2021.120364] [PMID: 34520897]
[85]
Ye, F.; Liang, X.M.; Xu, K.X.; Pang, X.X.; Chai, Q.; Fu, Y. A novel dithiourea-appended naphthalimide “on-off” fluorescent probe for detecting Hg2+ and Ag+ and its application in cell imaging. Talanta, 2019, 200, 494-502.
[http://dx.doi.org/10.1016/j.talanta.2019.03.076] [PMID: 31036214]
[86]
Li, Y.; Qiu, Y.; Zhang, J.; Zhu, X.; Zhu, B.; Liu, X.; Zhang, X.; Zhang, H. Naphthalimide derived fluorescent probes with turn-on response for Au3+ and the application for biological visualization. Biosens. Bioelectron., 2016, 83, 334-338.
[http://dx.doi.org/10.1016/j.bios.2016.04.034] [PMID: 27135938]
[87]
Mati, S.S.; Roy, S.S.; Chall, S.; Bhattacharya, S.; Bhattacharya, S.C. Unveiling the groove binding mechanism of a biocompatible naphthalimide-based organoselenocyanate with calf thymus DNA: an “ex vivo” fluorescence imaging application appended by biophysical experiments and molecular docking simulations. J. Phys. Chem. B, 2013, 117(47), 14655-14665.
[http://dx.doi.org/10.1021/jp4090553] [PMID: 24205834]
[88]
Khanday, F.A.; Santhanam, L.; Kasuno, K.; Yamamori, T.; Naqvi, A.; DeRicco, J.; Bugayenko, A.; Mattagajasingh, I.; Disanza, A.; Scita, G.; Irani, K. Sos-mediated activation of rac1 by p66shc. J. Cell Biol., 2006, 172(6), 817-822.
[http://dx.doi.org/10.1083/jcb.200506001] [PMID: 16520382]
[89]
Wani, A.K.; Singh, J.; Shukla, S. Therapeutic application and toxicity associated with Crocus sativus (saffron) and its phytochemicals. In: Pharmacological Research-Modern Chinese Medicine; , 2022; p. 100136.
[90]
Bhat, A.A.; Shakeel, A.; Rafiq, S.; Farooq, I.; Malik, A.Q.; Alghuthami, M.E.; Alharthi, S.; Qanash, H.; Alharthy, S.A. Juglans regia Linn.: A Natural repository of vital phytochemical and pharmacological compounds. Life, 2023, 13(2), 380.
[http://dx.doi.org/10.3390/life13020380] [PMID: 36836737]
[91]
Jisha, V.S.; Thomas, A.J.; Ramaiah, D. Fluorescence ratiometric selective recognition of Cu2+ ions by dansyl-naphthalimide dyads. J. Org. Chem., 2009, 74(17), 6667-6673.
[http://dx.doi.org/10.1021/jo901164w] [PMID: 19639990]
[92]
Ott, I.; Qian, X.; Xu, Y.; Vlecken, D.H.W.; Marques, I.J.; Kubutat, D.; Will, J.; Sheldrick, W.S.; Jesse, P.; Prokop, A.; Bagowski, C.P. A gold(I) phosphine complex containing a naphthalimide ligand functions as a TrxR inhibiting antiproliferative agent and angiogenesis inhibitor. J. Med. Chem., 2009, 52(3), 763-770.
[http://dx.doi.org/10.1021/jm8012135] [PMID: 19123857]
[93]
Han, C.; Sun, S.B.; Ji, X.; Wang, J.Y. Recent advances in 1,8-naphthalimide-based responsive small-molecule fluorescent probes with a modified C4 position for the detection of biomolecules. Trends Analyt. Chem., 2023, 167, 117242.
[http://dx.doi.org/10.1016/j.trac.2023.117242]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy