Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Chalcones as Potential Cyclooxygenase-2 Inhibitors: A Review

Author(s): Mohammad Mahboubi-Rabbani, Rosa Zarei, Mehdi Baradaran, Maryam Bayanati and Afshin Zarghi*

Volume 24, Issue 2, 2024

Published on: 13 November, 2023

Page: [77 - 95] Pages: 19

DOI: 10.2174/0118715206267309231103053808

Price: $65

Abstract

Cyclooxygenases (COXs) play a pivotal role in inflammation, a complex phenomenon required in human defense, but also involved in the emergence of insidious human disorders. Currently-used COX-1 inhibitors (Non-Steroidal Anti-Inflammatory Drugs-NSAIDs), as the most frequent choices for the treatment of chronic inflammatory diseases, have been identified to be associated with a variety of adverse drug reactions, especially dyspepsia, as well as peptic ulcer, which lead to diminished output. Moreover, the structural similarities of COX- 1 and -2, along with the availability of comprehensive information about the three-dimensional structure of COX- 2, co-crystallized with various inhibitors, search selective COX-2 inhibitors a formidable challenge. COX-2 inhibitors were shown to minimize the incidence of metastasis in cancer patients when administered preoperatively. Developing selective COX-2 inhibitors to tackle both cancer and chronic inflammatory illnesses has been identified as a promising research direction in recent decades. Identifying innovative scaffolds to integrate as the major component of future COX-2 inhibitors is critical in this regard. The presence of a central, α, β-unsaturated carbonyl- containing scaffold, as a characteristic structural pattern in many selective COX-2 inhibitors, along with a huge count of chalcone-based anticancer agents representing the basic idea of this review; providing a survey of the most recently published literature concerning development of chalcone analogs as novel COX-2 inhibitors until 2022 with efficient anticancer activity. A brief overview of the most recent developments concerning structure- activity relationship insights and mechanisms is also reported, helping pave the road for additional investigation.

« Previous
Graphical Abstract

[1]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[2]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers, 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[3]
de Souza, P.S.; Bibá, G.C.C.; Melo, E.D.N.; Muzitano, M.F. Chalcones against the hallmarks of cancer: A mini-review. Nat. Prod. Res., 2022, 36(18), 4803-4820.
[http://dx.doi.org/10.1080/14786419.2021.2000980] [PMID: 34865580]
[4]
Dempke, W.; Rie, C.; Grothey, A.; Schmoll, H.J. Cyclooxygenase-2: A novel target for cancer chemotherapy? J. Cancer Res. Clin. Oncol., 2001, 127(7), 411-417.
[http://dx.doi.org/10.1007/s004320000225] [PMID: 11469677]
[5]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[6]
Méric, J.B.; Rottey, S.; Olaussen, K.; Soria, J.C.; Khayat, D.; Rixe, O.; Spano, J.P. Cyclooxygenase-2 as a target for anticancer drug development. Crit. Rev. Oncol. Hematol., 2006, 59(1), 51-64.
[http://dx.doi.org/10.1016/j.critrevonc.2006.01.003] [PMID: 16531064]
[7]
Sales, K.J.; Jabbour, H.N. Cyclooxygenase enzymes and prostaglandins in pathology of the endometrium. Reproduction, 2003, 126(5), 559-567.
[http://dx.doi.org/10.1530/rep.0.1260559] [PMID: 14611628]
[8]
Heasley, L.E. Autocrine and paracrine signaling through neuropeptide receptors in human cancer. Oncogene, 2001, 20(13), 1563-1569.
[http://dx.doi.org/10.1038/sj.onc.1204183] [PMID: 11313903]
[9]
Reader, J.; Holt, D.; Fulton, A. Prostaglandin E2 EP receptors as therapeutic targets in breast cancer. Cancer Metastasis Rev., 2011, 30(3-4), 449-463.
[http://dx.doi.org/10.1007/s10555-011-9303-2] [PMID: 22002714]
[10]
Puurunen, J. Central nervous system effects of arachidonic acid, PGE2, PGF2α PGD2 and PGI2 on gastric secretion in the rat. Br. J. Pharmacol., 1983, 80(2), 255-262.
[http://dx.doi.org/10.1111/j.1476-5381.1983.tb10028.x] [PMID: 6360279]
[11]
Sugita, R.; Kuwabara, H.; Kubota, K.; Sugimoto, K.; Kiho, T.; Tengeiji, A.; Kawakami, K.; Shimada, K. Simultaneous inhibition of PGE 2 and PGI 2 signals is necessary to suppress hyperalgesia in rat inflammatory pain models. Mediators Inflamm., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/9847840] [PMID: 27478311]
[12]
Vane, J.R.; Botting, R.M. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am. J. Med., 1998, 104(3), 2S-8S.
[http://dx.doi.org/10.1016/S0002-9343(97)00203-9] [PMID: 9572314]
[13]
Mitchell, J.A.; Warner, T.D. Cyclo-oxygenase-2: Pharmacology, physiology, biochemistry and relevance to NSAID therapy. Br. J. Pharmacol., 1999, 128(6), 1121-1132.
[http://dx.doi.org/10.1038/sj.bjp.0702897] [PMID: 10578123]
[14]
Simmons, D.L.; Wagner, D.; Westover, K. Nonsteroidal anti-inflammatory drugs, acetaminophen, cyclooxygenase 2, and fever. Clin. Infect. Dis., 2000, 31(Suppl. 5), S211-S218.
[http://dx.doi.org/10.1086/317517] [PMID: 11113025]
[15]
Zidar, N.; Odar, K.; Glavac, D.; Jerse, M.; Zupanc, T.; Stajer, D. Cyclooxygenase in normal human tissues – is COX-1 really a constitutive isoform, and COX-2 an inducible isoform? J. Cell. Mol. Med., 2009, 13(9b), 3753-3763.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00430.x] [PMID: 18657230]
[16]
Grosser, T.; Fries, S.; FitzGerald, G.A. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J. Clin. Invest., 2005, 116(1), 4-15.
[http://dx.doi.org/10.1172/JCI27291] [PMID: 16395396]
[17]
Orlando, B.J.; McDougle, D.R.; Lucido, M.J.; Eng, E.T.; Graham, L.A.; Schneider, C.; Stokes, D.L.; Das, A.; Malkowski, M.G. Cyclooxygenase-2 catalysis and inhibition in lipid bilayer nanodiscs. Arch. Biochem. Biophys., 2014, 546, 33-40.
[http://dx.doi.org/10.1016/j.abb.2014.01.026] [PMID: 24503478]
[18]
Attiq, A.; Jalil, J.; Husain, K.; Ahmad, W. Raging the war against inflammation with natural products. Front. Pharmacol., 2018, 9, 976.
[http://dx.doi.org/10.3389/fphar.2018.00976] [PMID: 30245627]
[19]
Rouzer, C.A.; Marnett, L.J. Cyclooxygenases: Structural and functional insights. J. Lipid Res., 2009, 50, S29-S34.
[http://dx.doi.org/10.1194/jlr.R800042-JLR200]
[20]
Ghanghas, P.; Jain, S.; Rana, C.; Sanyal, S.N. Chemopreventive action of non-steroidal anti-inflammatory drugs on the inflammatory pathways in colon cancer. Biomed. Pharmacother., 2016, 78, 239-247.
[http://dx.doi.org/10.1016/j.biopha.2016.01.024]
[21]
Chan, A.T. Aspirin and familial adenomatous polyposis: Coming full circle. Cancer Prev. Res., 2011, 4(5), 623-627.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0157] [PMID: 21543340]
[22]
Sostres, C.; Gargallo, C.J.; Lanas, A. Aspirin, cyclooxygenase inhibition and colorectal cancer. World J. Gastrointest. Pharmacol. Ther., 2014, 5(1), 40-49.
[http://dx.doi.org/10.4292/wjgpt.v5.i1.40] [PMID: 24605250]
[23]
Maniewska, J. Jeżewska, D. Non-steroidal anti-inflammatory drugs in colorectal cancer chemoprevention. Cancers, 2021, 13(4), 594.
[http://dx.doi.org/10.3390/cancers13040594] [PMID: 33546238]
[24]
Pannunzio, A.; Coluccia, M. Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A review of oncology and medicinal chemistry literature. Pharmaceuticals, 2018, 11(4), 101.
[http://dx.doi.org/10.3390/ph11040101] [PMID: 30314310]
[25]
Frejborg, E.; Salo, T.; Salem, A. Role of cyclooxygenase-2 in head and neck tumorigenesis. Int. J. Mol. Sci., 2020, 21(23), 9246.
[http://dx.doi.org/10.3390/ijms21239246] [PMID: 33287464]
[26]
Craig, R.; Larkin, A.; Mingo, A.M.; Thuerauf, D.J.; Andrews, C.; McDonough, P.M.; Glembotski, C.C. p38 MAPK and NF-kappa B collaborate to induce interleukin-6 gene expression and release. Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J. Biol. Chem., 2000, 275(31), 23814-23824.
[http://dx.doi.org/10.1074/jbc.M909695199] [PMID: 10781614]
[27]
Yuen, H.F.; Chan, Y.K.; Grills, C.; McCrudden, C.M.; Gunasekharan, V.; Shi, Z.; Wong, A.S.Y.; Lappin, T.R.; Chan, K.W.; Fennell, D.A.; Khoo, U.S.; Johnston, P.G.; El-Tanani, M. Polyomavirus enhancer activator 3 protein promotes breast cancer metastatic progression through Snail-induced epithelial-mesenchymal transition. J. Pathol., 2011, 224(1), 78-89.
[http://dx.doi.org/10.1002/path.2859] [PMID: 21404275]
[28]
Hoesel, B.; Schmid, J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer, 2013, 12(1), 86.
[http://dx.doi.org/10.1186/1476-4598-12-86] [PMID: 23915189]
[29]
Liu, Y.; Borchert, G.L.; Surazynski, A.; Phang, J.M. Proline oxidase, a p53-induced gene, targets COX-2/PGE2 signaling to induce apoptosis and inhibit tumor growth in colorectal cancers. Oncogene, 2008, 27(53), 6729-6737.
[http://dx.doi.org/10.1038/onc.2008.322] [PMID: 18794809]
[30]
Dixon, D.A.; Blanco, F.F.; Bruno, A.; Patrignani, P. Mechanistic aspects of COX-2 expression in colorectal neoplasia. Recent Results Cancer Res., 2013, 191, 7-37.
[http://dx.doi.org/10.1007/978-3-642-30331-9_2] [PMID: 22893198]
[31]
Szweda, M.; Rychlik, A. Babińska, I.; Pomianowski, A. Significance of cyclooxygenase-2 in oncogenesis. J. Vet. Res., 2019, 63(2), 215-224.
[http://dx.doi.org/10.2478/jvetres-2019-0030] [PMID: 31276061]
[32]
Ding, X.Z.; Hennig, R.; Adrian, T.E. Lipoxygenase and cyclooxygenase metabolism: New insights in treatment and chemoprevention of pancreatic cancer. Mol. Cancer, 2003, 2(1), 10.
[http://dx.doi.org/10.1186/1476-4598-2-10] [PMID: 12575899]
[33]
Esteves, F.; Rueff, J.; Kranendonk, M. The central role of cytochrome P450 in xenobiotic metabolism—A brief review on a fascinating enzyme family. J. Xenobiot., 2021, 11(3), 94-114.
[http://dx.doi.org/10.3390/jox11030007] [PMID: 34206277]
[34]
Jara-Gutiérrez, Á.; Baladrón, V. The role of prostaglandins in different types of cancer. Cells, 2021, 10(6), 1487.
[http://dx.doi.org/10.3390/cells10061487] [PMID: 34199169]
[35]
Finetti, F.; Travelli, C.; Ercoli, J.; Colombo, G.; Buoso, E.; Trabalzini, L. Prostaglandin E2 and cancer: Insight into tumor progression and immunity. Biology, 2020, 9(12), 434.
[http://dx.doi.org/10.3390/biology9120434] [PMID: 33271839]
[36]
Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res., 2011, 10(4), 655-683.
[PMID: 24250402]
[37]
Wong, R.S. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res., 2011, 30(1), 87.
[38]
Cui, J.; Zhao, S.; Li, Y.; Zhang, D.; Wang, B.; Xie, J.; Wang, J. Regulated cell death: Discovery, features and implications for neurodegenerative diseases. Cell Commun. Signal., 2021, 19(1), 120.
[http://dx.doi.org/10.1186/s12964-021-00799-8] [PMID: 34922574]
[39]
Sun, Y.; Tang, X.M.; Half, E.; Kuo, M.T.; Sinicrope, F.A. Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res., 2002, 62(21), 6323-6328.
[PMID: 12414664]
[40]
Yadav, N.; Kumar, S.; Marlowe, T.; Chaudhary, A.K.; Kumar, R.; Wang, J. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents. Cell Death Dis., 2015, 6(11), e1969.
[http://dx.doi.org/10.1038/cddis.2015.305]
[41]
Youssef, J.; Badr, M. Peroxisome proliferator-activated receptors and cancer: Challenges and opportunities. Br. J. Pharmacol., 2011, 164(1), 68-82.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01383.x] [PMID: 21449912]
[42]
Martinasso, G.; Oraldi, M.; Trombetta, A.; Maggiora, M.; Bertetto, O.; Canuto, R.A.; Muzio, G. Involvement of PPARs in cell proliferation and apoptosis in human colon cancer specimens and in normal and cancer cell lines. PPAR Res., 2007, 2007, 1-9.
[http://dx.doi.org/10.1155/2007/93416] [PMID: 17389773]
[43]
Peters, J.M.; Shah, Y.M.; Gonzalez, F.J. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat. Rev. Cancer, 2012, 12(3), 181-195.
[http://dx.doi.org/10.1038/nrc3214] [PMID: 22318237]
[44]
Wagner, N.; Wagner, K.D. PPAR beta/delta and the hallmarks of cancer. Cells, 2020, 9(5), 1133.
[http://dx.doi.org/10.3390/cells9051133] [PMID: 32375405]
[45]
Elrod, H.A.; Sun, S.Y. PPAR γ and apoptosis in cancer. PPAR Res., 2008, 2008, 1-12.
[http://dx.doi.org/10.1155/2008/704165] [PMID: 18615184]
[46]
Sobolewski, C.; Cerella, C.; Dicato, M.; Ghibelli, L.; Diederich, M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int. J. Cell Biol., 2010, 2010, 1-21.
[http://dx.doi.org/10.1155/2010/215158] [PMID: 20339581]
[47]
Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal., 2020, 18(1), 59.
[http://dx.doi.org/10.1186/s12964-020-0530-4] [PMID: 32264958]
[48]
Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun., 2020, 11(1), 5120.
[http://dx.doi.org/10.1038/s41467-020-18794-x] [PMID: 33037194]
[49]
Wells, A.; Grahovac, J.; Wheeler, S.; Ma, B.; Lauffenburger, D. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol. Sci., 2013, 34(5), 283-289.
[http://dx.doi.org/10.1016/j.tips.2013.03.001] [PMID: 23571046]
[50]
Sheng, J.; Sun, H.; Yu, F.B.; Li, B.; Zhang, Y.; Zhu, Y.T. The role of cyclooxygenase-2 in colorectal cancer. Int. J. Med. Sci., 2020, 17(8), 1095-1101.
[http://dx.doi.org/10.7150/ijms.44439] [PMID: 32410839]
[51]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[52]
Ramanujan, S.; Koenig, G.C.; Padera, T.P.; Stoll, B.R.; Jain, R.K. Local imbalance of proangiogenic and antiangiogenic factors: A potential mechanism of focal necrosis and dormancy in tumors. Cancer Res., 2000, 60(5), 1442-1448.
[PMID: 10728711]
[53]
Gupta, M.K.; Qin, R.Y. Mechanism and its regulation of tumor-induced angiogenesis. World J. Gastroenterol., 2003, 9(6), 1144-1155.
[http://dx.doi.org/10.3748/wjg.v9.i6.1144] [PMID: 12800214]
[54]
Gately, S. The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev., 2000, 19(1/2), 19-27.
[http://dx.doi.org/10.1023/A:1026575610124] [PMID: 11191059]
[55]
Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev., 2018, 32(19-20), 1267-1284.
[http://dx.doi.org/10.1101/gad.314617.118] [PMID: 30275043]
[56]
Frank, K.; Paust, S. Dynamic natural killer cell and T cell responses to influenza infection. Front. Cell. Infect. Microbiol., 2020, 10, 425.
[http://dx.doi.org/10.3389/fcimb.2020.00425] [PMID: 32974217]
[57]
Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441.
[http://dx.doi.org/10.1021/jm0613166] [PMID: 17341061]
[58]
Linn, S.C.; Giaccone, G. MDR1/P-glycoprotein expression in colorectal cancer. Eur. J. Cancer, 1995, 31a(7-8), 1291-1294.
[59]
Sui, H.; Zhou, S.; Wang, Y.; Liu, X.; Zhou, L.; Yin, P.; Fan, Z.; Li, Q. COX-2 contributes to P-glycoprotein-mediated multidrug resistance via phosphorylation of c-Jun at Ser63/73 in colorectal cancer. Carcinogenesis, 2011, 32(5), 667-675.
[http://dx.doi.org/10.1093/carcin/bgr016] [PMID: 21296766]
[60]
Waghray, D.; Zhang, Q. Inhibit or evade multidrug resistance p-glycoprotein in cancer treatment. J. Med. Chem., 2018, 61(12), 5108-5121.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01457] [PMID: 29251920]
[61]
Zhao, H.; Zhou, L.; Shangguan, A.J.; Bulun, S.E. Aromatase expression and regulation in breast and endometrial cancer. J. Mol. Endocrinol., 2016, 57(1), R19-R33.
[http://dx.doi.org/10.1530/JME-15-0310] [PMID: 27067638]
[62]
Chan, H.J.; Petrossian, K.; Chen, S. Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine-responsive and –resistant breast cancer cells. J. Steroid Biochem. Mol. Biol., 2016, 161, 73-83.
[http://dx.doi.org/10.1016/j.jsbmb.2015.07.018] [PMID: 26277097]
[63]
Konturek, P.C.; Kania, J.; Burnat, G.; Hahn, E.G.; Konturek, S.J. Prostaglandins as mediators of COX-2 derived carcinogenesis in gastrointestinal tract. J. Physiol. Pharmacol., 2005, 56(S5), 57-73.
[64]
Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement., 2018, 4, 575-590.
[http://dx.doi.org/10.1016/j.trci.2018.06.014]
[65]
Amor, S.; Puentes, F.; Baker, D.; van der Valk, P. Inflammation in neurodegenerative diseases. Immunology, 2010, 129(2), 154-169.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03225.x] [PMID: 20561356]
[66]
Wang, J.; Tan, L.; Wang, H.F.; Tan, C.C.; Meng, X.F.; Wang, C.; Tang, S.W.; Yu, J.T. Anti-inflammatory drugs and risk of Alzheimer’s disease: An updated systematic review and meta-analysis. J. Alzheimers Dis., 2015, 44(2), 385-396.
[http://dx.doi.org/10.3233/JAD-141506] [PMID: 25227314]
[67]
Imbimbo, B.P.; Solfrizzi, V.; Panza, F. Are NSAIDs useful to treat Alzheimer’s disease or mild cognitive impairment? Front. Aging Neurosci., 2010, 2, 2.
[http://dx.doi.org/10.3389/fnagi.2010.00019] [PMID: 20725517]
[68]
Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol., 2020, 180, 114147.
[http://dx.doi.org/10.1016/j.bcp.2020.114147] [PMID: 32653589]
[69]
Heneka, M.T.; Klockgether, T.; Feinstein, D.L. Peroxisome proliferator-activated receptor-gamma ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. J. Neurosci., 2000, 20(18), 6862-6867.
[http://dx.doi.org/10.1523/JNEUROSCI.20-18-06862.2000] [PMID: 10995830]
[70]
Youssef, J.; Badr, M. Role of peroxisome proliferator-activated receptors in inflammation control. J. Biomed. Biotechnol., 2004, 2004(3), 156-166.
[http://dx.doi.org/10.1155/S1110724304308065] [PMID: 15292582]
[71]
Wang, W.Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med., 2015, 3(10), 136.
[PMID: 26207229]
[72]
Hemonnot, A.L.; Hua, J.; Ulmann, L.; Hirbec, H. Microglia in alzheimer disease: Well-known targets and new opportunities. Front. Aging Neurosci., 2019, 11, 233.
[http://dx.doi.org/10.3389/fnagi.2019.00233] [PMID: 31543810]
[73]
Gao, C.; Shen, X.; Tan, Y.; Chen, S. Pathogenesis, therapeutic strategies and biomarker development based on “omics” analysis related to microglia in Alzheimer’s disease. J. Neuroinflammation, 2022, 19(1), 215.
[http://dx.doi.org/10.1186/s12974-022-02580-1] [PMID: 36058959]
[74]
Gagne, J.J.; Power, M.C. Anti-inflammatory drugs and risk of Parkinson disease: A meta-analysis. Neurology, 2010, 74(12), 995-1002.
[http://dx.doi.org/10.1212/WNL.0b013e3181d5a4a3] [PMID: 20308684]
[75]
Brakedal, B.; Tzoulis, C.; Tysnes, O.B.; Haugarvoll, K. NSAID use is not associated with Parkinson’s disease incidence: A Norwegian Prescription Database study. PLoS One, 2021, 16(9), e0256602.
[http://dx.doi.org/10.1371/journal.pone.0256602] [PMID: 34492069]
[76]
Chen, H.; Zhang, S.M.; Hernán, M.A.; Schwarzschild, M.A.; Willett, W.C.; Colditz, G.A.; Speizer, F.E.; Ascherio, A. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch. Neurol., 2003, 60(8), 1059-1064.
[http://dx.doi.org/10.1001/archneur.60.8.1059] [PMID: 12925360]
[77]
Tansey, M.G.; Wallings, R.L.; Houser, M.C.; Herrick, M.K.; Keating, C.E.; Joers, V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol., 2022, 22(11), 657-673.
[http://dx.doi.org/10.1038/s41577-022-00684-6] [PMID: 35246670]
[78]
Królicka, E. Kieć-Kononowicz, K.; Łażewska, D. Chalcones as potential ligands for the treatment of parkinson’s disease. Pharmaceuticals, 2022, 15(7), 847.
[http://dx.doi.org/10.3390/ph15070847] [PMID: 35890146]
[79]
Jawabrah Al-Hourani, B.; Sharma, S.K.; Suresh, M.; Wuest, F. Cyclooxygenase-2 inhibitors: A literature and patent review (2009 – 2010). Expert Opin. Ther. Pat., 2011, 21(9), 1339-1432.
[http://dx.doi.org/10.1517/13543776.2011.593510] [PMID: 21714592]
[80]
Kim, Y.H.; Kim, J.; Park, H.; Kim, H.P. Anti-inflammatory activity of the synthetic chalcone derivatives: Inhibition of inducible nitric oxide synthase-catalyzed nitric oxide production from lipopolysaccharide-treated RAW 264.7 cells. Biol. Pharm. Bull., 2007, 30(8), 1450-1455.
[http://dx.doi.org/10.1248/bpb.30.1450] [PMID: 17666802]
[81]
Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone derivatives: Role in anticancer therapy. Biomolecules, 2021, 11(6), 894.
[http://dx.doi.org/10.3390/biom11060894] [PMID: 34208562]
[82]
Zarghi, A.; Arfaee, S.; Rao, P.N.P.; Knaus, E.E. Design, synthesis, and biological evaluation of 1,3-diarylprop-2-en-1-ones: A novel class of cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2006, 14(8), 2600-2605.
[http://dx.doi.org/10.1016/j.bmc.2005.11.041] [PMID: 16356730]
[83]
Abolhasani, H.; Zarghi, A.; Komeili Movahhed, T.; Abolhasani, A.; Daraei, B.; Dastmalchi, S. Design, synthesis and biological evaluation of novel indanone containing spiroisoxazoline derivatives with selective COX-2 inhibition as anticancer agents. Bioorg. Med. Chem., 2021, 32, 115960.
[http://dx.doi.org/10.1016/j.bmc.2020.115960] [PMID: 33477020]
[84]
Zarghi, A.; Zebardast, T.; Hakimion, F.; Shirazi, F.H.; Praveen Rao, P.N.; Knaus, E.E. Synthesis and biological evaluation of 1,3-diphenylprop-2-en-1-ones possessing a methanesulfonamido or an azido pharmacophore as cyclooxygenase-1/-2 inhibitors. Bioorg. Med. Chem., 2006, 14(20), 7044-7050.
[http://dx.doi.org/10.1016/j.bmc.2006.06.022] [PMID: 16798002]
[85]
Zebardast, T.; Zarghi, A.; Daraie, B.; Hedayati, M.; Dadrass, O.G. Design and synthesis of 3-alkyl-2-aryl-1,3-thiazinan-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(12), 3162-3165.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.125] [PMID: 19447036]
[86]
Zarghi, A.; Zebardast, T.; Daraie, B.; Hedayati, M. Design and synthesis of new 1,3-benzthiazinan-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem., 2009, 17(15), 5369-5373.
[http://dx.doi.org/10.1016/j.bmc.2009.06.056] [PMID: 19596198]
[87]
Ju, Z.; Li, M.; Xu, J.; Howell, D.C.; Li, Z.; Chen, F.E. Recent development on COX-2 inhibitors as promising anti-inflammatory agents: The past 10 years. Acta Pharm. Sin. B, 2022, 12(6), 2790-2807.
[http://dx.doi.org/10.1016/j.apsb.2022.01.002] [PMID: 35755295]
[88]
Huang, Z.H.; Yin, L.Q.; Guan, L.P.; Li, Z.H.; Tan, C. Screening of chalcone analogs with anti-depressant, anti-inflammatory, analgesic, and COX-2-inhibiting effects. Bioorg. Med. Chem. Lett., 2020, 30(11), 127173.
[http://dx.doi.org/10.1016/j.bmcl.2020.127173] [PMID: 32278513]
[89]
Padhye, S.; Ahmad, A.; Oswal, N.; Sarkar, F.H. Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J. Hematol. Oncol., 2009, 2(1), 38.
[http://dx.doi.org/10.1186/1756-8722-2-38] [PMID: 19725977]
[90]
Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr., 2011, 6(2), 125-147.
[http://dx.doi.org/10.1007/s12263-011-0210-5] [PMID: 21484163]
[91]
Salehi, B.; Quispe, C.; Chamkhi, I.; El Omari, N.; Balahbib, A.; Sharifi-Rad, J.; Bouyahya, A.; Akram, M.; Iqbal, M.; Docea, A.O.; Caruntu, C.; Leyva-Gómez, G.; Dey, A.; Martorell, M.; Calina, D.; López, V.; Les, F. Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence. Front. Pharmacol., 2021, 11, 592654.
[http://dx.doi.org/10.3389/fphar.2020.592654] [PMID: 33536909]
[92]
Li, Q.S.; Li, C.Y.; Lu, X.; Zhang, H.; Zhu, H.L. Design, synthesis and biological evaluation of novel (E)-α-benzylsulfonyl chalcone derivatives as potential BRAF inhibitors. Eur. J. Med. Chem., 2012, 50, 288-295.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.007] [PMID: 22361686]
[93]
Elkhalifa, D.; Siddique, A.B.; Qusa, M.; Cyprian, F.S.; El Sayed, K.; Alali, F.; Al Moustafa, A.E.; Khalil, A. Design, synthesis, and validation of novel nitrogen-based chalcone analogs against triple negative breast cancer. Eur. J. Med. Chem., 2020, 187, 111954.
[http://dx.doi.org/10.1016/j.ejmech.2019.111954] [PMID: 31838326]
[94]
Eldehna, W.M.; Abo-Ashour, M.F.; Ibrahim, H.S.; Al-Ansary, G.H.; Ghabbour, H.A.; Elaasser, M.M.; Ahmed, H.Y.A.; Safwat, N.A. Novel [(3-indolylmethylene)hydrazono]indolin-2-ones as apoptotic anti-proliferative agents: design, synthesis and in vitro biological evaluation. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 686-700.
[http://dx.doi.org/10.1080/14756366.2017.1421181] [PMID: 29560733]
[95]
Alswah, M.; Bayoumi, A.; Elgamal, K.; Elmorsy, A.; Ihmaid, S.; Ahmed, H. Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing triazolo[4,3-a]-quinoxaline moieties as potent anticancer agents with dual egfr kinase and tubulin polymerization inhibitory effects. Molecules, 2017, 23(1), 48.
[http://dx.doi.org/10.3390/molecules23010048] [PMID: 29280968]
[96]
Zhang, S.Y.; Fu, D.J.; Yue, X.X.; Liu, Y.C.; Song, J.; Sun, H.H.; Liu, H.M.; Zhang, Y.B. Design, synthesis and structure-activity relationships of novel chalcone-1,2,3-triazole-azole derivates as antiproliferative agents. Molecules, 2016, 21(5), 653.
[http://dx.doi.org/10.3390/molecules21050653] [PMID: 27213317]
[97]
Hartinger, C.G.; Metzler-Nolte, N.; Dyson, P.J. Challenges and opportunities in the development of organometallic anticancer drugs. Organometallics, 2012, 31(16), 5677-5685.
[http://dx.doi.org/10.1021/om300373t]
[98]
Parveen, S.; Arjmand, F.; Tabassum, S. Development and future prospects of selective organometallic compounds as anticancer drug candidates exhibiting novel modes of action. Eur. J. Med. Chem., 2019, 175, 269-286.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.062] [PMID: 31096151]
[99]
Farzaneh, S.; Zeinalzadeh, E.; Daraei, B.; Shahhosseini, S.; Zarghi, A. New ferrocene compounds as selective cyclooxygenase (COX-2) inhibitors: Design, synthesis, cytotoxicity and enzyme-inhibitory activity. Anticancer. Agents Med. Chem., 2018, 18(2), 295-301.
[http://dx.doi.org/10.2174/1871520617666171003145533] [PMID: 28971779]
[100]
Noori, S.; Nourbakhsh, M.; Farzaneh, S.; Zarghi, A. A ferrocene derivative reduces cisplatin resistance in breast cancer cells through suppression of MDR-1 expression and modulation of JAK2/STAT3 signaling pathway. Anticancer. Agents Med. Chem., 2020, 20(18), 2285-2292.
[101]
Mourad, A.A.E.; Mourad, M.A.E.; Jones, P.G. Novel HDAC/tubulin dual inhibitor: Design, synthesis and docking studies of α-phthalimido-chalcone hybrids as potential anticancer agents with apoptosis-inducing activity. Drug Des. Devel. Ther., 2020, 14, 3111-3130.
[http://dx.doi.org/10.2147/DDDT.S256756] [PMID: 32848361]
[102]
Sivapriya, S.; Sivakumar, K.; Manikandan, H. Anticancer effects of chalcone-benzoxadiazole hybrids on KB human cancer cells. Chemical Data Collections, 2021, 35, 100762.
[http://dx.doi.org/10.1016/j.cdc.2021.100762]
[103]
Fayed, E.A.; Eldin, R.R.E.; Mehany, A.B.M.; Bayoumi, A.H.; Ammar, Y.A. Isatin-Schiff’s base and chalcone hybrids as chemically apoptotic inducers and EGFR inhibitors; design, synthesis, anti-proliferative activities and in silico evaluation. J. Mol. Struct., 2021, 1234, 130159.
[http://dx.doi.org/10.1016/j.molstruc.2021.130159]
[104]
Bayanati, M.; Shahhosseini, S.; Shirazi, F.H.; Farnam, G.; Zarghi, A. Design, synthesis and biological evaluation of 1,3-diphenyl-3-(phenylthio)propan-1-ones as new cytotoxic agents. Iran. J. Pharm. Res., 2021, 20(4), 229-237.
[PMID: 35194442]
[105]
Anil, D.A.; Polat, M.F.; Saglamtas, R.; Tarikogullari, A.H.; Alagoz, M.A.; Gulcin, I.; Algul, O.; Burmaoglu, S. Exploring enzyme inhibition profiles of novel halogenated chalcone derivatives on some metabolic enzymes: Synthesis, characterization and molecular modeling studies. Comput. Biol. Chem., 2022, 100, 107748.
[http://dx.doi.org/10.1016/j.compbiolchem.2022.107748] [PMID: 35917597]
[106]
Ahmed, A.H.H.; Mohamed, M.F.A.; Allam, R.M.; Nafady, A.; Mohamed, S.K.; Gouda, A.E.; Beshr, E.A.M. Design, synthesis, and molecular docking of novel pyrazole-chalcone analogs of lonazolac as 5-LOX, iNOS and tubulin polymerization inhibitors with potential anticancer and anti-inflammatory activities. Bioorg. Chem., 2022, 129, 106171.
[http://dx.doi.org/10.1016/j.bioorg.2022.106171] [PMID: 36166898]
[107]
Guan, Y.F.; Liu, X.J.; Yuan, X.Y.; Liu, W.B.; Li, Y.R.; Yu, G.X.; Tian, X.Y.; Zhang, Y.B.; Song, J.; Li, W.; Zhang, S.Y. Design, synthesis, and anticancer activity studies of novel quinoline-chalcone derivatives. Molecules, 2021, 26(16), 4899.
[http://dx.doi.org/10.3390/molecules26164899] [PMID: 34443487]
[108]
Patel, S.; Challagundla, N.; Rajput, R.A.; Mishra, S. Design, synthesis, characterization and anticancer activity evaluation of deoxycholic acid-chalcone conjugates. Bioorg. Chem., 2022, 127, 106036.
[http://dx.doi.org/10.1016/j.bioorg.2022.106036] [PMID: 35878450]
[109]
Sunkari, Y.M.J.; Eppakayala, L. Design, synthesis and anticancer evaluation of chalcone based thieno[2,3-d]thiazoles as anticancer agents. Chemical Data Collections, 2021, 34, 100742.
[http://dx.doi.org/10.1016/j.cdc.2021.100742]
[110]
Fathi, E.M.; Sroor, F.M.; Mahrous, K.F.; Mohamed, M.F.; Mahmoud, K.; Emara, M.; Elwahy, A.H.M.; Abdelhamid, I.A. Design, synthesis, in silico and in vitro anticancer activity of novel bis-furanyl-chalcone derivatives linked through alkyl spacers. ChemistrySelect, 2021, 6(24), 6202-6211.
[http://dx.doi.org/10.1002/slct.202100884]
[111]
Abbas, S.H.; Abd El-Hafeez, A.A.; Shoman, M.E.; Montano, M.M.; Hassan, H.A. New quinoline/chalcone hybrids as anti-cancer agents: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Bioorg. Chem., 2019, 82, 360-377.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.064] [PMID: 30428415]
[112]
Abu Bakar, A.; Akhtar, M.; Mohd Ali, N.; Yeap, S.; Quah, C.; Loh, W.S.; Alitheen, N.; Zareen, S.; Ul-Haq, Z.; Shah, S. Design, synthesis and docking studies of flavokawain b type chalcones and their cytotoxic effects on MCF-7 and MDA-MB-231 cell lines. Molecules, 2018, 23(3), 616.
[http://dx.doi.org/10.3390/molecules23030616] [PMID: 29518053]
[113]
Zhao, T.Q.; Zhao, Y.D.; Liu, X.Y.; Li, Z.H.; Wang, B.; Zhang, X.H.; Cao, Y.Q.; Ma, L.Y.; Liu, H.M. Novel 3-(2,6,9-trisubstituted-9H-purine)-8-chalcone derivatives as potent anti-gastric cancer agents: Design, synthesis and structural optimization. Eur. J. Med. Chem., 2019, 161, 493-505.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.058] [PMID: 30388465]
[114]
Ahmed, M.F.; Santali, E.Y.; El-Haggar, R. Novel piperazine–chalcone hybrids and related pyrazoline analogues targeting VEGFR-2 kinase; design, synthesis, molecular docking studies, and anticancer evaluation. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 308-319.
[http://dx.doi.org/10.1080/14756366.2020.1861606] [PMID: 33349069]
[115]
Alam, M.J.; Alam, O.; Perwez, A.; Rizvi, M.A.; Naim, M.J.; Naidu, V.; Imran, M.; Ghoneim, M.M.; Alshehri, S.; Shakeel, F. Design, synthesis, molecular docking, and biological evaluation of pyrazole hybrid chalcone conjugates as potential anticancer agents and tubulin polymerization inhibitors. Pharmaceuticals, 2022, 15(3), 280.
[http://dx.doi.org/10.3390/ph15030280] [PMID: 35337078]
[116]
Musa, A.; Mostafa, E.M.; Bukhari, S.N.A.; Alotaibi, N.H.; El-Ghorab, A.H.; Farouk, A.; Nayl, A.A.; Ghoneim, M.M.; Abdelgawad, M.A. EGFR and COX-2 dual inhibitor: The design, synthesis, and biological evaluation of novel chalcones. Molecules, 2022, 27(4), 1158.
[http://dx.doi.org/10.3390/molecules27041158] [PMID: 35208952]
[117]
Farzaneh, S.; Shahhosseini, S.; Arefi, H.; Daraei, B.; Esfahanizadeh, M.; Zarghi, A. Design, synthesis and biological evaluation of new 1, 3-diphenyl-3-(phenylamino) propan-1-ones as selective cyclooxygenase (COX-2) inhibitors. Med. Chem., 2018, 14(7), 652-659.
[http://dx.doi.org/10.2174/1573406414666180525133221] [PMID: 29804536]
[118]
Bayanati, M.; Daraei, B.; Zarghi, A. Design, synthesis, docking studies, enzyme inhibitory and antiplatelet aggregation activities of New 1, 3-Diphenyl-3-(Phenylthio) propan-1-one derivatives as selective cox-2 inhibitors. Anticancer. Agents Med. Chem., 2022.
[PMID: 35692149]
[119]
Rudrapal, M.; Khan, J.; Dukhyil, A.A.B.; Alarousy, R.M.I.I.; Attah, E.I.; Sharma, T.; Khairnar, S.J.; Bendale, A.R. Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics. Molecules, 2021, 26(23), 7177.
[http://dx.doi.org/10.3390/molecules26237177] [PMID: 34885754]
[120]
Berning, L.; Scharf, L.; Aplak, E.; Stucki, D.; von Montfort, C.; Reichert, A.S.; Stahl, W.; Brenneisen, P. In vitro selective cytotoxicity of the dietary chalcone cardamonin (CD) on melanoma compared to healthy cells is mediated by apoptosis. PLoS One, 2019, 14(9), e0222267.
[http://dx.doi.org/10.1371/journal.pone.0222267] [PMID: 31553748]
[121]
Delor, R.A.; Petering, H.G. The action of pteroylglutamic acid on blood dyscrasias induced by thiouracil and propylthiouracil. Blood, 1950, 5(2), 155-160.
[http://dx.doi.org/10.1182/blood.V5.2.155.155] [PMID: 15402271]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy