Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Mini-Review Article

Tin Oxide Nanoparticles: A Review

Author(s): Aashish Kumar*, Mansi Chitkara and Renu Thakur

Volume 13, Issue 6, 2023

Published on: 16 November, 2023

Article ID: e161123223583 Pages: 10

DOI: 10.2174/0122106812274380231102124853

Price: $65

Abstract

The aim of this review article is an overview of the tin oxide (SnO2) nanoparticles, and the literature addresses the existing research related to the various modifications and characterization of SnO2 nanoparticles with their physicochemical investigations. Among various metal-oxide nanoparticles, SnO2 nanoparticles are considered one of the potential candidates for electronic and electrical device fabrication, sensors, display devices, gas sensing, photovoltaic devices, LIBs (Lithium-ion batteries), photocatalysis and optoelectronic devices, supercapacitors, SnO2 nanowires would provide electrolyte channels for effective transport, catalyst, and anode materials. Apart from their technological supremacy, SnO2 nanoparticles have demonstrated their compatibility with human cervical cancer cells and have successfully achieved hyperthermia temperature when subjected to an alternating current magnetic field. Doping with some of the potential rare-earth dopants via various synthesis methods such as Chemical co-precipitation, sol-gel, polymeric precursor method, and nebulizer spray pyrolysis method is the major highlight of this review article. As per the requirement of the system, SnO2 nanoparticles can be tuned by size, shape, and functionality.

Graphical Abstract

[1]
Elango, G.; Roopan, S.M. Efficacy of SnO 2 nanoparticles toward photocatalytic degradation of methylene blue dye. J. Photochem. Photobiol. B, 2016, 155, 34-38.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.12.010] [PMID: 26724726]
[2]
Oh, H.S.; Nong, H.N.; Strasser, P. Preparation of mesoporous Sb-F, and Indoped SnO2 bulk powder with high surface area for use as catalyst supports in electrolytic cells. Adv. Funct. Mater., 2015, 25(7), 1074-1081.
[http://dx.doi.org/10.1002/adfm.201401919]
[3]
Najjar, M.; Hosseini, H.A.; Masoudi, A.; Hashemzadeh, A.; Darroudi, M. Preparation of tin oxide (IV) nanoparticles by a green chemistry method and investigation of its role in the removal of organic dyes in water purification. Res. Chem. Intermed., 2020, 46(4), 2155-2168.
[http://dx.doi.org/10.1007/s11164-020-04084-0]
[4]
Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci., 2014, 66, 112-255.
[http://dx.doi.org/10.1016/j.pmatsci.2014.06.003]
[5]
Broussous, L.; Santilli, C.V.; Pulcinelli, S.H.; Craievich, A.F. SAXS study of formation and growth of tin oxide nanoparticles in the presence of complexing ligands. J. Phys. Chem. B, 2002, 106(11), 2855-2860.
[http://dx.doi.org/10.1021/jp012700b]
[6]
Ahn, H.J.; Choi, H.C.; Park, K.W.; Kim, S.B.; Sung, Y.E. Investigation of the structural and electrochemical properties of size- controlled SnO2 nanoparticles. J. Phys. Chem. B, 2004, 108(28), 9815-9820.
[http://dx.doi.org/10.1021/jp035769n]
[7]
Chu, D.; Masuda, Y.; Ohji, T.; Kato, K. Fast synthesis, optical and bio-sensor properties of SnO2 nanostructures by electrochemical deposition. Chem. Eng. J., 2011, 168(2), 955-958.
[http://dx.doi.org/10.1016/j.cej.2011.02.029]
[8]
Jain, K.; Pant, R.P.; Lakshmikumar, S.T. Effect of Ni doping on thick film SnO2 gas sensor. Sens. Actuators B Chem., 2006, 113(2), 823-829.
[http://dx.doi.org/10.1016/j.snb.2005.03.104]
[9]
Carreño, N.; Fajardo, H.; Maciel, A.; Valentini, A.; Pontes, F.; Probst, L.; Leite, E.; Longo, E. Selective synthesis of vinyl ketone over SnO2 nanoparticle catalysts doped with rare earths. J. Mol. Catal. Chem., 2004, 207(2), 91-96.
[http://dx.doi.org/10.1016/S1381-1169(03)00496-5]
[10]
Xiao, Y.; Han, G.; Yue, J.; Hou, W.; Wu, J. Multifunctional rare-earth-doped tin oxide compact layers for improving performances of photovoltaic devices. Adv. Mater. Interfaces, 2016, 3(24), 1600881.
[http://dx.doi.org/10.1002/admi.201600881]
[11]
Ren, J.; Huang, Y.; Li, K.; Shen, J.; Zeng, W.; Sheng, C.; Shao, J.; Han, Y.; Zhang, Q. Preparation of rare-earth thulium doped tin-oxide thin films and their applications in thin film transistors. Appl. Surf. Sci., 2019, 493, 63-69.
[http://dx.doi.org/10.1016/j.apsusc.2019.06.300]
[12]
Ren, J.; Li, K.; Shen, J.; Sheng, C.; Huang, Y.; Zhang, Q. Effects of rare-earth erbium doping on the electrical performance of tin-oxide thin film transistors. J. Alloys Compd., 2019, 791, 11-18.
[http://dx.doi.org/10.1016/j.jallcom.2019.03.277]
[13]
Yue, J.; Xiao, Y.; Li, Y.; Han, G.; Zhang, Y.; Hou, W. Enhanced photovoltaic performances of the dye-sensitized solar cell by utilizing rare-earth modified tin oxide compact layer. Org. Electron., 2017, 43, 121-129.
[http://dx.doi.org/10.1016/j.orgel.2017.01.018]
[14]
Arun Kumar, K.D.; Valanarasu, S.; Kathalingam, A.; Jeyadheepan, K. Nd3+ Doping effect on the optical and electrical properties of SnO2 thin films prepared by nebulizer spray pyrolysis for opto-electronic application. Mater. Res. Bull., 2018, 101, 264-271.
[http://dx.doi.org/10.1016/j.materresbull.2018.01.050]
[15]
Wai, T.P.; Yin, Y.; Zhang, X.; Li, Z. Preparation and characterization of rare earth-doped Ti/SnO2- Sb-Mn electrodes for the electrocatalytic performance. J. Nanomater., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/8958043]
[16]
Fernández, J.; García-Revilla, S.; Balda, R.; Cascales, C. Rare-earth-doped wide-bandgap tin-oxide nanocrystals: pumping mechanisms and spectroscopy. In: Optical Components and Materials XV; International Society for Optics and Photonics, 2018; Vol. 10528, p. 1052805.
[http://dx.doi.org/10.1117/12.2290170]
[17]
Sohal, M.K.; Mahajan, A.; Gasso, S.; Nahirniak, S.V.; Dontsova, T.A.; Singh, R.C. Rare earth-tuned oxygen vacancies in gadolinium-doped tin oxide for selective detection of volatile organic compounds. J. Mater. Sci. Mater. Electron., 2020, 31(11), 8446-8455.
[http://dx.doi.org/10.1007/s10854-020-03379-7]
[18]
Fernández, J.; Balda, R.; Cascales, C.; García-Revilla, S.; Prudenzano, F.; Lukowiak, A.; Ferrari, M.; Tran, L.T.N.; Zur, L. Spectral and time-resolved analysis of rare earth-doped SnO2 emission. In: In: Fiber Lasers and Glass Photonics: Materials through Applications II; International Society for Optics and Photonics, 2020; Vol. 11357, p. 113570L.
[http://dx.doi.org/10.1117/12.2554585]
[19]
Singh, G.; Thangaraj, R.; Singh, R.C. Effect of crystallite size, Raman surface modes and surface basicity on the gas sensing behavior of terbium-doped SnO2 nanoparticles. Ceram. Int., 2016, 42(3), 4323-4332.
[http://dx.doi.org/10.1016/j.ceramint.2015.11.111]
[20]
Singh, L.P.; Singh, N.P.; Srivastava, S.K. Terbium doped SnO 2 nanoparticles as white emitters and SnO 2:5Tb/Fe 3 O 4 magnetic luminescent nanohybrids for hyperthermia application and biocompatibility with HeLa cancer cells. Dalton Trans., 2015, 44(14), 6457-6465.
[http://dx.doi.org/10.1039/C4DT03000A] [PMID: 25747103]
[21]
Kwak, C.H.; Kim, T.H.; Jeong, S.Y.; Yoon, J.W.; Kim, J.S.; Lee, J.H. Humidity-independent oxide semiconductor chemiresistors using terbium-doped SnO2 yolk–shell spheres for real-time breath analysis. ACS Appl. Mater. Interfaces, 2018, 10(22), 18886-18894.
[http://dx.doi.org/10.1021/acsami.8b04245] [PMID: 29767956]
[22]
Wang, Z.; Luan, D.; Boey, F.Y.C.; Lou, X.W.D. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J. Am. Chem. Soc., 2011, 133(13), 4738-4741.
[http://dx.doi.org/10.1021/ja2004329] [PMID: 21401090]
[23]
Lou, X.W.; Wang, Y.; Yuan, C.; Lee, J.Y.; Archer, L.A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater., 2006, 18(17), 2325-2329.
[http://dx.doi.org/10.1002/adma.200600733]
[24]
Wang, H.; Rogach, A.L. Hierarchical SnO2 nanostructures: Recent advances in design, synthesis, and applications. Chem. Mater., 2014, 26(1), 123-133.
[http://dx.doi.org/10.1021/cm4018248]
[25]
Jin, Y.H.; Min, K.M.; Seo, S.D.; Shim, H.W.; Kim, D.W. Enhanced Li storage capacity in 3 nm diameter SnO2 nanocrystals firmly anchored on multiwalled carbon nanotubes. J. Phys. Chem. C, 2011, 115(44), 22062-22067.
[http://dx.doi.org/10.1021/jp208021w]
[26]
Ding, S.; Luan, D.; Boey, F.Y.C.; Chen, J.S.; Lou, X.W.D. SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem. Commun., 2011, 47(25), 7155-7157.
[http://dx.doi.org/10.1039/c1cc11968k] [PMID: 21607244]
[27]
Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861), 359-367.
[http://dx.doi.org/10.1038/35104644] [PMID: 11713543]
[28]
Zhang, H.X.; Feng, C.; Zhai, Y.C.; Jiang, K.L.; Li, Q.Q.; Fan, S.S. Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: A novel binder-free and high-capacity anode material for lithium-ion batteries. Adv. Mater., 2009, 21(22), 2299-2304.
[http://dx.doi.org/10.1002/adma.200802290]
[29]
Jiang, L.Y.; Wu, X.L.; Guo, Y.G.; Wan, L.J. SnO2- based hierarchical nanomicrostructures: Facile synthesis and their applications in gas sensors and lithium-ion batteries. J. Phys. Chem. C, 2009, 113(32), 14213-14219.
[http://dx.doi.org/10.1021/jp904209k]
[30]
Wang, Y.; Djerdj, I.; Smarsly, B.; Antonietti, M. Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode. Chem. Mater., 2009, 21(14), 3202-3209.
[http://dx.doi.org/10.1021/cm9007014]
[31]
Wu, P.; Du, N.; Zhang, H.; Yu, J.; Yang, D. CNTs@ SnO2@ C coaxial nanocables with highly reversible lithium storage. J. Phys. Chem. C, 2010, 114(51), 22535-22538.
[http://dx.doi.org/10.1021/jp1102109]
[32]
Yan, J.; Khoo, E.; Sumboja, A.; Lee, P.S. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano, 2010, 4(7), 4247-4255.
[http://dx.doi.org/10.1021/nn100592d] [PMID: 20593844]
[33]
Islam, M.A.; Mou, J.R.; Hossain, M.F.; Karim, A.M.M.T.; Kamruzzaman, M.; Hossain, M.S. Alkaline and rare-earth metals doped transparent conductive tin oxide thin films. J. Sol-Gel Sci. Technol., 2020, 96(2), 304-313.
[http://dx.doi.org/10.1007/s10971-020-05362-4]
[34]
Duhan, M.; Kumar, N.; Gupta, A.; Singh, A.; Kaur, H. Enhanced room temperature ferromagnetism in Cr and Fe co-doped SnO2 nanoparticles synthesized by sol-gel method. Vacuum, 2020, 181, 109635.
[http://dx.doi.org/10.1016/j.vacuum.2020.109635]
[35]
Gao, L.; Wu, G.; Ma, J.; Jiang, T.; Chang, B.; Huang, Y.; Han, S. SnO2 Quantum Dots@Graphene Framework as a high-performance flexible anode electrode for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2020, 12(11), 12982-12989.
[http://dx.doi.org/10.1021/acsami.9b22679] [PMID: 32078288]
[36]
Lee, C.; Lee, W.Y.; Lee, H.; Ha, S.; Bae, J.H.; Kang, I.M.; Kang, H.; Kim, K.; Jang, J. Sol-gel processed yttrium-doped SnO2 thin film transistors. Electronics, 2020, 9(2), 254.
[http://dx.doi.org/10.3390/electronics9020254]
[37]
Duhan, M.; Kaur, H.; Bhardwaj, R.; Kumar, N.; Kumar, S.; Gupta, A.; Gautam, S. Magnetic metamorphosis of structurally enriched sol-gel derived SnO2 nanoparticles. Vacuum, 2019, 166, 385-392.
[http://dx.doi.org/10.1016/j.vacuum.2018.11.025]
[38]
Zulfiqar; Khan, R.; Yuan, Y.; Iqbal, Z.; Yang, J.; Wang, W.; Ye, Z.; Lu, J. Variation of structural, optical, dielectric and magnetic properties of SnO2 nanoparticles. J. Mater. Sci. Mater. Electron., 2017, 28(6), 4625-4636.
[http://dx.doi.org/10.1007/s10854-016-6101-1]
[39]
Mohanta, D.; Ahmaruzzaman, M. Tin oxide nanostructured materials: An overview of recent developments in synthesis, modifications and potential applications. RSC Advances, 2016, 6(112), 110996-111015.
[http://dx.doi.org/10.1039/C6RA21444D]
[40]
Fajardo, H.V.; Longo, E.; Probst, L.; Valentini, A.; Carreño, N.; Nunes, M.R.; Maciel, A.P.; Leite, E.R. Influence of rare earth doping on the structural and catalytic properties of nanostructured tin oxide. Nanoscale Res. Lett., 2008, 3(5), 194-199.
[http://dx.doi.org/10.1007/s11671-008-9135-3]
[41]
Selvan, R.K.; Augustin, C.O.; Sanjeeviraja, C.; Pol, V.G.; Gedanken, A. Optimization of sintering on the structural, electrical and dielectric properties of SnO2 coated CuFe2O4 nanoparticles. Mater. Chem. Phys., 2006, 99(1), 109-116.
[http://dx.doi.org/10.1016/j.matchemphys.2005.10.006]
[42]
Batzill, M.; Diebold, U. The surface and materials science of tin oxide. Prog. Surf. Sci., 2005, 79(2-4), 47-154.
[http://dx.doi.org/10.1016/j.progsurf.2005.09.002]
[43]
Ippommatsu, M.; Ohnishi, H.; Sasaki, H.; Matsumoto, T. Study on the sensing mechanism of tin oxide flammable gas sensors using the Hall effect. J. Appl. Phys., 1991, 69(12), 8368-8374.
[http://dx.doi.org/10.1063/1.347400]
[44]
Babar, A.R.; Shinde, S.S.; Moholkar, A.V.; Rajpure, K.Y. Electrical and dielectric properties of co-precipitated nanocrystalline tin oxide. J. Alloys Compd., 2010, 505(2), 743-749.
[http://dx.doi.org/10.1016/j.jallcom.2010.06.131]
[45]
Borges, P.D.; Scolfaro, L.M.R.; Leite Alves, H.W.; da Silva Jr, E.F. Electronic structure and dielectric properties calculations of pure tin dioxide and of vacancies in tin dioxide. In: In: No. 1; AIP Conference ProceedingsAmerican Institute of Physics,; , 2010; 1199, pp. 124-125.
[http://dx.doi.org/10.1063/1.3295328]
[46]
Wu, S.; Yuan, S.; Shi, L.; Zhao, Y.; Fang, J. Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals. J. Colloid Interface Sci., 2010, 346(1), 12-16.
[http://dx.doi.org/10.1016/j.jcis.2010.02.031] [PMID: 20219206]
[47]
Ahmed, A.; Siddique, M.N.; Ali, T.; Tripathi, P. Defect assisted improved room temperature ferromagnetism in Ce doped SnO2 nanoparticles. Appl. Surf. Sci., 2019, 483, 463-471.
[http://dx.doi.org/10.1016/j.apsusc.2019.03.209]
[48]
Li, S.; Yu, L.; Man, X.; Zhong, J.; Liao, X.; Sun, W. The Synthesis and band gap changes induced by the doping with rare-earth ions in nano-SnO 2. Mater. Sci. Semicond. Process., 2017, 71, 128-132.
[http://dx.doi.org/10.1016/j.mssp.2017.07.017]
[49]
An, D.; Liu, N.; Li, Y.; Zhou, Q.; Wang, Q.; Zou, Y.; Lian, X. Synthesis of Sm doped SnO2 nanoparticles and their ethanol gas traces detection. Ceram. Int., 2021, 47(18), 26501-26510.
[http://dx.doi.org/10.1016/j.ceramint.2021.06.063]
[50]
Agrahari, V.; Gaur, L.K.; Mathpal, M.C.; Agarwal, A. Structural, optical and dilute magnetic semiconducting properties of Gd doped SnO2 nanoparticles. J. Nanosci. Nanotechnol., 2017, 17(12), 8752-8762.
[http://dx.doi.org/10.1166/jnn.2017.14358]
[51]
Pacheco-Salazar, D.G.; Aragón, F.F.H.; Villegas-Lelovsky, L.; Ortiz de Zevallos, A.; Marques, G.E.; Coaquira, J.A.H. Engineering of the band gap induced by Ce surface enrichment in Ce-doped SnO2 nanocrystals. Appl. Surf. Sci., 2020, 527, 146794.
[http://dx.doi.org/10.1016/j.apsusc.2020.146794]
[52]
Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I.H.; Valiev, G.H.; Kianfar, E. Nanomaterial by sol-gel method: Synthesis and application. Adv. Mater. Sci. Eng., 2021, 2021, 1-21.
[http://dx.doi.org/10.1155/2021/5102014]
[53]
Kumar, A.; Kumar, N.; Chitkara, M.; Dhillon, G. Physicochemical investigations of structurally enriched Sm3+ substituted SnO2 nanocrystals. J. Mater. Sci. Mater. Electron., 2022, 33(8), 5283-5296.
[http://dx.doi.org/10.1007/s10854-022-07716-w]
[54]
Kumar, A.; Chitkara, M.; Dhillon, G.; Kumar, N. Facile synthesis and structural, microstructural, and dielectric characteristics of SnO2-CeO2 semiconducting binary nanocomposite. ECS Trans., 2022, 107(1), 3739-3747.
[http://dx.doi.org/10.1149/10701.3739ecst]
[55]
Kumar, A.; Chitkara, M.; Dhillon, G. Effect of gadolinium substitution on structural, morphological, and electrical properties of SnO2 thin films. J. Mater. Sci. Mater. Electron., 2023, 34(4), 319.
[http://dx.doi.org/10.1007/s10854-022-09808-z]
[56]
Pathania, A.; Madan, J.; Pandey, R.; Sharma, R. Effect of structural and temperature variations on perovskite/Mg2Si based monolithic tandem solar cell structure. Appl. Phys., A Mater. Sci. Process., 2020, 126(7), 580.
[http://dx.doi.org/10.1007/s00339-020-03758-1]
[57]
Gohri, S.; Sharma, S.; Pandey, R.; Madan, J.; Sharma, R. June. Influence of SnS and Sn 2 S 3 based BSF layers on the performance of CZTSSe solar cell. In: In: 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), year; , 2020; pp. 2300-2303. IEEE
[58]
Sharma, A.; Kumar, P.; Malik, P. Effect of zinc oxide nanoparticles on dielectric behavior of nematic liquid crystal. In: In: No. 1; AIP Conference ProceedingsAIP Publishing LLC; , 2018; 1953, p. 100037.
[http://dx.doi.org/10.1063/1.5032973]
[59]
Dogra, A.R.; Sharma, V.; Khanra, P.; Kumar, P. Evaporative deposition of SiO 2 nanoparticles multilayer on ITO substrates and application for vertical alignment of liquid crystals - Effect of dichroic dye. J. Phys. Conf. Ser., 2021, 2070(1), 012071.
[http://dx.doi.org/10.1088/1742-6596/2070/1/012071]
[60]
Kumar, A.; Chitkara, M.; Dhillon, G. Effect of varying calcination temperature on the structural and optical properties of tin oxide nanoparticles. Mater. Today Proc., 2023. In Press
[http://dx.doi.org/10.1016/j.matpr.2023.05.207]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy