Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

A Comprehensive Review on Molecular Mechanism Involved in Arsenic Trioxide Mediated Cerebral Neurodegenerative and Infectious Diseases

Author(s): Vaishali Negi, Prabhat Singh*, Lubhan Singh, Rupesh Kumar Pandey and Sokindra Kumar

Volume 24, Issue 3, 2024

Published on: 13 November, 2023

Article ID: e131123223549 Pages: 9

DOI: 10.2174/0118715265262440231103094609

Price: $65

Abstract

Arsenic is an environmental toxicant and its toxicity is a global health problem affecting millions of people. Arsenic exposure occurs from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Both cancerous, noncancerous and immunological complications are possible after arsenic exposure. The many other target organs like lungs, thymus, spleen, liver, heart, kidney, and brain. Arsenic-mediated neuro, as well as immunotoxicity, is the main concern of this review. Long-term arsenic exposure can lead to various neurological dysfunctions, which may cause neurobehavioral defects and biochemical impairment in the brain, this might negatively affect one's quality of life in later stages. Arsenic also alters the levels of various neurotransmitters such as serotonin, dopamine and norepinephrine in the brain which produces neurotoxic effects and immunological deficiency. So, it is crucial to understand the neurotoxic mechanism of arsenic trioxide-mediated cerebro neurodegenerative and immunerelated alterations. One of the major mechanisms by which it exerts its toxic effect is through an impairment of cellular respiration by inhibition of various mitochondrial enzymes, and the uncoupling of oxidative phosphorylation. This review focuses on the various toxic mechanisms responsible for arsenic-mediated neurobehavioral and immune-related changes. Therefore, this review provides a critical analysis of mitochondrial dysfunctions, oxidative stress, glutamate excitatory, inflammatory and apoptosis-related mechanistic aspects in arsenic-mediated immunotoxicity, neurotoxicity, and neurodegenerative changes.

Graphical Abstract

[1]
Guo H, Li X, Zhang Y, et al. Metabolic characteristics related to the hazardous effects of environmental arsenic on humans: A metabolomic review. Ecotoxicol Environ Saf 2022; 236: 113459.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113459] [PMID: 35367889]
[2]
Susan A, Rajendran K, Sathyasivam K, Krishnan UM. An overview of plant-based interventions to ameliorate arsenic toxicity. Biomed Pharmacother 2019; 109: 838-52.
[http://dx.doi.org/10.1016/j.biopha.2018.10.099] [PMID: 30551538]
[3]
Steinmaus C, Carrigan K, Kalman D, Atallah R, Yuan Y, Smith AH. Dietary intake and arsenic methylation in a U.S. population. Environ Health Perspect 2005; 113(9): 1153-9.
[http://dx.doi.org/10.1289/ehp.7907] [PMID: 16140620]
[4]
Tchounwou PB, Centeno JA, Patlolla AK. Arsenic toxicity, mutagenesis, and carcinogenesis-a health risk assessment and management approach. Mol Cell Biochem 2004; 255(1/2): 47-55.
[http://dx.doi.org/10.1023/B:MCBI.0000007260.32981.b9] [PMID: 14971645]
[5]
Hoang DH, Buettner R, Valerio M, et al. Arsenic Trioxide and Venetoclax Synergize against AML progenitors by ROS induction and inhibition of Nrf2 activation. Int J Mol Sci 2022; 23(12): 6568.
[http://dx.doi.org/10.3390/ijms23126568] [PMID: 35743010]
[6]
Ratnaike RN. Acute and chronic arsenic toxicity. Postgrad Med J 2003; 79(933): 391-6.
[http://dx.doi.org/10.1136/pmj.79.933.391] [PMID: 12897217]
[7]
Shayan M, Barangi S, Hosseinzadeh H, Mehri S. The protective effect of natural or chemical compounds against arsenic-induced neurotoxicity: Cellular and molecular mechanisms. Food Chem Toxicol 2023; 175: 113691.
[http://dx.doi.org/10.1016/j.fct.2023.113691] [PMID: 36871878]
[8]
Najafi N, Rezaee R, Hayes AW, Karimi G. A review of mechanisms underlying the protective effects of natural compounds against arsenic-induced neurotoxicity. Biometals 2022; 1-5.
[PMID: 36564665]
[9]
Gan R, Liu H, Wu S, et al. Curcumin alleviates arsenic trioxide–induced inflammation and pyroptosis via the NF-κB/NLRP3 signaling pathway in the hypothalamus of ducks. Biol Trace Elem Res 2022; 1-9.
[PMID: 35737258]
[10]
Farzan SF, Li Z, Korrick SA, et al. Infant infections and respiratory symptoms in relation to in utero arsenic exposure in a U.S. Cohort. Environ Health Perspect 2016; 124(6): 840-7.
[http://dx.doi.org/10.1289/ehp.1409282] [PMID: 26359651]
[11]
Brown E, Yedjou CG, Tchounwou PB. Cytotoxicity and oxidative stress in human liver carcinoma cells exposed to arsenic trioxide (HepG2). Met Ions Biol Med 2008; 10: 583-7.
[12]
M Walker A,. J Stevens J, Ndebele K, Tchounwou PB. Evaluation of arsenic trioxide potential for lung cancer treatment: Assessment of apoptotic mechanisms and oxidative damage. J Cancer Sci Ther 2016; 8(1): 1-9.
[http://dx.doi.org/10.4172/1948-5956.1000379] [PMID: 27158419]
[13]
Bjørklund G, Oliinyk P, Lysiuk R, et al. Arsenic intoxication: General aspects and chelating agents. Arch Toxicol 2020; 94(6): 1879-97.
[http://dx.doi.org/10.1007/s00204-020-02739-w] [PMID: 32388818]
[14]
Howe PD, Hughes M, Kenyon E, et al. Arsenic and arsenic compounds. World Health Organization 2001.
[15]
Al Rmalli SW, Haris PI, Harrington CF, Ayub M. A survey of arsenic in foodstuffs on sale in the United Kingdom and imported from Bangladesh. Sci Total Environ 2005; 337(1-3): 23-30.
[http://dx.doi.org/10.1016/j.scitotenv.2004.06.008] [PMID: 15626376]
[16]
Le XC, Cullen WR, Reimer KJ. Human urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp. Clin Chem 1994; 40(4): 617-24.
[http://dx.doi.org/10.1093/clinchem/40.4.617] [PMID: 8149620]
[17]
Nemec M, Holson J, Farr C, Hood R. Developmental toxicity assessment of arsenic acid in mice and rabbits. Reprod Toxicol 1998; 12(6): 647-58.
[http://dx.doi.org/10.1016/S0890-6238(98)00053-7] [PMID: 9875698]
[18]
Ravenscroft P, Brammer H, Richards K. Arsenic in North America and Europe. In: Arsenic Pollution: A Global Synthesis. 2009; pp. 387-454.
[http://dx.doi.org/10.1002/9781444308785.ch9]
[19]
Chung JY, Yu SD, Hong YS. Environmental source of arsenic exposure. J Prev Med Public Health 2014; 47(5): 253-7.
[http://dx.doi.org/10.3961/jpmph.14.036] [PMID: 25284196]
[20]
Gu S, Chen C, Jiang X, Zhang Z. ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction underlie apoptosis induced by resveratrol and arsenic trioxide in A549 cells. Chem Biol Interact 2016; 245: 100-9.
[http://dx.doi.org/10.1016/j.cbi.2016.01.005] [PMID: 26772155]
[21]
Soignet SL, Maslak P, Wang ZG, et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 1998; 339(19): 1341-8.
[http://dx.doi.org/10.1056/NEJM199811053391901] [PMID: 9801394]
[22]
Porcelli AJ, Delgado MR. Stress and decision making: effects on valuation, learning, and risk-taking. Curr Opin Behav Sci 2017; 14: 33-9.
[http://dx.doi.org/10.1016/j.cobeha.2016.11.015] [PMID: 28044144]
[23]
Bjelaković G, Beninati S, Pavlović D, et al. Glucocorticoids and oxidative stress. J Basic Clin Physiol Pharmacol 2007; 18(2): 115-27.
[http://dx.doi.org/10.1515/JBCPP.2007.18.2.115] [PMID: 17715567]
[24]
Sreekumar R, Unnikrishnan J, Fu A, et al. Effects of caloric restriction on mitochondrial function and gene transcripts in rat muscle. Am J Physiol Endocrinol Metab 2002; 283(1): E38-43.
[http://dx.doi.org/10.1152/ajpendo.00387.2001] [PMID: 12067840]
[25]
Mansour HH, Hafez HF, Fahmy NM. Silymarin modulates Cisplatin-induced oxidative stress and hepatotoxicity in rats. J Biochem Mol Biol 2006; 39(6): 656-61.
[PMID: 17129399]
[26]
Wasserman GA, Liu X, Parvez F, et al. Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 2004; 112(13): 1329-33.
[http://dx.doi.org/10.1289/ehp.6964] [PMID: 15345348]
[27]
Chandravanshi LP, Yadav RS, Shukla RK, et al. Reversibility of changes in brain cholinergic receptors and acetylcholinesterase activity in rats following early life arsenic exposure. Int J Dev Neurosci 2014; 34(1): 60-75.
[http://dx.doi.org/10.1016/j.ijdevneu.2014.01.007] [PMID: 24517892]
[28]
Zhong G, Wan F, Wu S, et al. Corrigendum to “Arsenic or/and antimony induced mitophagy and apoptosis associated with metabolic abnormalities and oxidative stress in the liver of mice”. Sci otal Environ (2021) volume 777, 10 July 2021, 146082] Sci Total Environ 2022; 817: 152983.
[http://dx.doi.org/10.1016/j.scitotenv.2022.152983] [PMID: 35033841]
[29]
Cohen SM, Arnold LL, Eldan M, Lewis AS, Beck BD. Methylated arsenicals: the implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit Rev Toxicol 2006; 36(2): 99-133.
[http://dx.doi.org/10.1080/10408440500534230] [PMID: 16736939]
[30]
Guerra-Castellano A, Díaz-Quintana A, Pérez-Mejías G, et al. Oxidative stress is tightly regulated by cytochrome c phosphorylation and respirasome factors in mitochondria. Proc Natl Acad Sci USA 2018; 115(31): 7955-60.
[http://dx.doi.org/10.1073/pnas.1806833115] [PMID: 30018060]
[31]
Forman HJ. Redox signaling: An evolution from free radicals to aging. Free Radic Biol Med 2016; 97: 398-407.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.07.003] [PMID: 27393004]
[32]
Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 2014; 121(8): 799-817.
[http://dx.doi.org/10.1007/s00702-014-1180-8] [PMID: 24578174]
[33]
Yeşilören E, Yalcin GD. The Regulation of GLT-1 Degradation Pathway by SIRT4. Neurochem Res 2023; 48(9): 2847-56.
[http://dx.doi.org/10.1007/s11064-023-03947-3] [PMID: 37178383]
[34]
Prakash C, Soni M, Kumar V. Biochemical and Molecular Alterations Following Arsenic-Induced Oxidative Stress and Mitochondrial Dysfunction in Rat Brain. Biol Trace Elem Res 2015; 167(1): 121-9.
[http://dx.doi.org/10.1007/s12011-015-0284-9] [PMID: 25764338]
[35]
Dwivedi N, Mehta A, Yadav A, Binukumar BK, Gill KD, Flora SJS. MiADMSA reverses impaired mitochondrial energy metabolism and neuronal apoptotic cell death after arsenic exposure in rats. Toxicol Appl Pharmacol 2011; 256(3): 241-8.
[http://dx.doi.org/10.1016/j.taap.2011.04.004] [PMID: 21513725]
[36]
Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 2004; 25(4): 365-451.
[http://dx.doi.org/10.1016/j.mam.2004.03.001] [PMID: 15302203]
[37]
Rizzuto R, Bernardi P, Pozzan T. Mitochondria as all-round players of the calcium game. J Physiol 2000; 529(1): 37-47.
[http://dx.doi.org/10.1111/j.1469-7793.2000.00037.x] [PMID: 11080249]
[38]
Scorrano L. The changing shape of mitochondrial apoptosis. Trends in Endocrinology & Metabolism. 2009 Aug 1;20(6):287-94. Wasilewski M, Scorrano L. The changing shape of mitochondrial apoptosis. Trends Endocrinol Metab 2009; 20(6): 287-94.
[PMID: 19647447]
[39]
Piquereau J, Caffin F, Novotova M, et al. Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol 2013; 4: 102.
[http://dx.doi.org/10.3389/fphys.2013.00102] [PMID: 23675354]
[40]
Tseng H-P, Wang Y-H, Wu M-M. Association between chronic exposure to arsenic and slow nerve conduction velocity among adolescents in Taiwan. J Health Popul Nutr 2006.
[41]
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14: 1114231.
[http://dx.doi.org/10.3389/fphys.2023.1114231] [PMID: 37179826]
[42]
Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 2003; 9(5-8): 125-34.
[http://dx.doi.org/10.1007/BF03402177] [PMID: 14571320]
[43]
Koj A. Termination of acute-phase response: role of some cytokines and anti-inflammatory drugs. Gen Pharmacol 1998; 31(1): 9-18.
[http://dx.doi.org/10.1016/S0306-3623(97)00435-7] [PMID: 9595271]
[44]
Gollnick SO, Evans SS, Baumann H, et al. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br J Cancer 2003; 88(11): 1772-9.
[http://dx.doi.org/10.1038/sj.bjc.6600864] [PMID: 12771994]
[45]
Li J, Li N, Yan S, et al. Ursolic acid alleviates inflammation and against diabetes induced nephropathy through TLR4 mediated inflammatory pathway. Mol Med Rep 2018; 18(5): 4675-81.
[http://dx.doi.org/10.3892/mmr.2018.9429] [PMID: 30221655]
[46]
Jiang X, Liu J, Lin Q, et al. Proanthocyanidin prevents lipopolysaccharide-induced depressive-like behavior in mice via neuroinflammatory pathway. Brain Res Bull 2017; 135: 40-6.
[http://dx.doi.org/10.1016/j.brainresbull.2017.09.010] [PMID: 28941603]
[47]
Braida D, Sacerdote P, Panerai AE, et al. Cognitive function in young and adult IL (interleukin)-6 deficient mice. Behav Brain Res 2004; 153(2): 423-9.
[http://dx.doi.org/10.1016/j.bbr.2003.12.018] [PMID: 15265638]
[48]
Jiang M, Qin P, Yang X. Comorbidity between depression and asthma via immune-inflammatory pathways: A meta-analysis. J Affect Disord 2014; 166: 22-9.
[http://dx.doi.org/10.1016/j.jad.2014.04.027] [PMID: 25012406]
[49]
Jin X, Gao X, Lan M, Li C, Sun J, Zhang H. Study the mechanism of peimisine derivatives on NF-κB inflammation pathway on mice with acute lung injury induced by lipopolysaccharide. Chem Biol Drug Des 2022; 99(5): 717-26.
[http://dx.doi.org/10.1111/cbdd.14013] [PMID: 34939324]
[50]
Herlenius E, Lagercrantz H. Development of neurotransmitter systems during critical periods. Exp Neurol 2004; 190 (Suppl. 1): 8-21.
[http://dx.doi.org/10.1016/j.expneurol.2004.03.027] [PMID: 15498537]
[51]
Venugopal A, Iyer M, Balasubramanian V, Vellingiri B. Mitochondrial calcium uniporter as a potential therapeutic strategy for Alzheimer’s disease. Acta Neuropsychiatr 2020; 32(2): 65-71.
[http://dx.doi.org/10.1017/neu.2019.39] [PMID: 31556366]
[52]
Lu C, Wang Y, Xu T, et al. Genistein ameliorates scopolamine-induced amnesia in mice through the regulation of the cholinergic neurotransmission, antioxidant system and the ERK/CREB/BDNF signaling. Front Pharmacol 2018; 9: 1153.
[http://dx.doi.org/10.3389/fphar.2018.01153] [PMID: 30369882]
[53]
Mandal BK, Suzuki KT. Arsenic round the world: a review. Talanta 2002; 58(1): 201-35.
[http://dx.doi.org/10.1016/S0039-9140(02)00268-0] [PMID: 18968746]
[54]
Rusyniak DE, Nañagas KA. Organophosphate poisoning 2004.
[http://dx.doi.org/10.1055/s-2004-830907]
[55]
Erb C, Troost J, Kopf S, et al. Compensatory mechanisms enhance hippocampal acetylcholine release in transgenic mice expressing human acetylcholinesterase. J Neurochem 2001; 77(2): 638-46.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00287.x] [PMID: 11299326]
[56]
Wyllie AH. Apoptosis: an overview. Br Med Bull 1997; 53(3): 451-65.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a011623] [PMID: 9374030]
[57]
D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 2019; 43(6): 582-92.
[http://dx.doi.org/10.1002/cbin.11137] [PMID: 30958602]
[58]
Doonan F, Cotter TG. Morphological assessment of apoptosis. Methods 2008; 44(3): 200-4.
[http://dx.doi.org/10.1016/j.ymeth.2007.11.006] [PMID: 18314050]
[59]
Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S. Mechanisms of action of arsenic trioxide. Cancer Res 2002; 62(14): 3893-903.
[PMID: 12124315]
[60]
Ling J, Wang Q, Liang H, Liu Q, Yin D, Lin L. Flavonoid-Rich Extract of Oldenlandia diffusa (Willd.) Roxb. Inhibits Gastric Cancer by Activation of Caspase-Dependent Mitochondrial Apoptosis. Chin J Integr Med 2023; 29(3): 213-23.
[http://dx.doi.org/10.1007/s11655-022-3679-4] [PMID: 36044114]
[61]
Zheng CY, Lam SK, Li YY, Ho J. Arsenic trioxide-induced cytotoxicity in small cell lung cancer via altered redox homeostasis and mitochondrial integrity. Int J Oncol 2015; 46(3): 1067-78.
[http://dx.doi.org/10.3892/ijo.2015.2826] [PMID: 25572414]
[62]
Lagares D, Santos A, Grasberger PE, et al. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci Transl Med 2017; 9(420): eaal3765.
[http://dx.doi.org/10.1126/scitranslmed.aal3765] [PMID: 29237758]
[63]
Simeonova PP, Luster MI. 2000.
[64]
Matrisian LM. The matrix-degrading metalloproteinases. BioEssays 1992; 14(7): 455-63.
[http://dx.doi.org/10.1002/bies.950140705] [PMID: 1445287]
[65]
McCawley LJ, Matrisian LM. Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 2001; 13(5): 534-40.
[http://dx.doi.org/10.1016/S0955-0674(00)00248-9] [PMID: 11544020]
[66]
McQuibban GA, Gong JH, Tam EM, McCulloch CAG, Clark-Lewis I, Overall CM. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 2000; 289(5482): 1202-6.
[http://dx.doi.org/10.1126/science.289.5482.1202] [PMID: 10947989]
[67]
Mannello F, Luchetti F, Falcieri E, Papa S. Multiple roles of matrix metalloproteinases during apoptosis. Apoptosis 2005; 10(1): 19-24.
[http://dx.doi.org/10.1007/s10495-005-6058-7] [PMID: 15711919]
[68]
Szklarczyk A, Lapinska J, Rylski M, McKay RDG, Kaczmarek L. Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci 2002; 22(3): 920-30.
[http://dx.doi.org/10.1523/JNEUROSCI.22-03-00920.2002] [PMID: 11826121]
[69]
Lorente L, Martín MM, Ramos L, et al. Serum tissue inhibitor of matrix metalloproteinase-1 levels are associated with mortality in patients with malignant middle cerebral artery infarction. BMC Neurol 2015; 15(1): 111.
[http://dx.doi.org/10.1186/s12883-015-0364-7] [PMID: 26162891]
[70]
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010; 119(1): 7-35.
[http://dx.doi.org/10.1007/s00401-009-0619-8] [PMID: 20012068]
[71]
Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S. Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci 2010; 118(2): 586-601.
[http://dx.doi.org/10.1093/toxsci/kfq266] [PMID: 20829427]
[72]
Kushwaha R, Mishra J, Tripathi S, et al. Arsenic attenuates heparin-binding EGF-like growth factor/EGFR signaling that promotes matrix metalloprotease 9-dependent astrocyte damage in the developing rat brain. Toxicol Sci 2018; 162(2): 406-28.
[http://dx.doi.org/10.1093/toxsci/kfx264] [PMID: 29228391]
[73]
Islam J, Islam Z, Haque N, et al. Fenugreek seed powder protects mice against arsenic-induced neurobehavioral changes. Current Research in Toxicology 2023; 5: 100114.
[http://dx.doi.org/10.1016/j.crtox.2023.100114] [PMID: 37554151]
[74]
Gopnar VV, Rakshit D, Bandakinda M, Kulhari U, Sahu BD, Mishra A. Fisetin attenuates arsenic and fluoride subacute co-exposure induced neurotoxicity via regulating TNF-α mediated activation of NLRP3 inflammasome. Neurotoxicology 2023; 97: 133-49.
[http://dx.doi.org/10.1016/j.neuro.2023.06.006] [PMID: 37331635]
[75]
Xiong L, Huang J, Gao Y, et al. Sodium arsenite induces spatial learning and memory impairment associated with oxidative stress and activates the Nrf2/PPARγ pathway against oxidative injury in mice hippocampus. Toxicol Res (Camb) 2021; 10(2): 277-83.
[http://dx.doi.org/10.1093/toxres/tfab007] [PMID: 33884178]
[76]
Hu X, Yuan X, Yang M, Han M, Ommati MM, Ma Y. Arsenic exposure induced anxiety-like behaviors in male mice via influencing the GABAergic Signaling in the prefrontal cortex. Environ Sci Pollut Res Int 2023; 30(36): 86352-64.
[http://dx.doi.org/10.1007/s11356-023-28426-8] [PMID: 37402917]
[77]
Lu Z, Wang F, Xia Y, et al. Involvement of gut-brain communication in arsenite-induced neurobehavioral impairments in adult male mice. Ecotoxicol Environ Saf 2023; 249: 114370.
[http://dx.doi.org/10.1016/j.ecoenv.2022.114370] [PMID: 36508802]
[78]
Tripathi S, Fhatima S, Parmar D, et al. Therapeutic effects of CoenzymeQ10, Biochanin A and Phloretin against arsenic and chromium induced oxidative stress in mouse (Mus musculus) brain. PubMed Central 2022; 12(5) .
[79]
Zhou H, Ling H, Li Y, et al. Downregulation of beclin 1 restores arsenite-induced impaired autophagic flux by improving the lysosomal function in the brain. Ecotoxicol Environ Saf 2022; 229: 113066.
[http://dx.doi.org/10.1016/j.ecoenv.2021.113066] [PMID: 34929507]
[80]
Silva-Adaya D, Ramos-Chávez LA, Petrosyan P, González-Alfonso WL, Pérez-Acosta A, Gonsebatt ME. Early neurotoxic effects of inorganic arsenic modulate cortical GSH levels associated with the activation of the Nrf2 and NFκB pathways, expression of amino acid transporters and NMDA receptors and the production of hydrogen sulfide. Front Cell Neurosci 2020; 14: 17.
[http://dx.doi.org/10.3389/fncel.2020.00017] [PMID: 32194376]
[81]
Nelson-Mora J, Escobar ML, Rodríguez-Durán L, et al. Gestational exposure to inorganic arsenic (iAs3+) alters glutamate disposition in the mouse hippocampus and ionotropic glutamate receptor expression leading to memory impairment. Arch Toxicol 2018; 92(3): 1037-48.
[http://dx.doi.org/10.1007/s00204-017-2111-x] [PMID: 29204679]
[82]
Smith E, Juhasz AL, Weber J, Naidu R. Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water. Sci Total Environ 2008; 392(2-3): 277-83.
[http://dx.doi.org/10.1016/j.scitotenv.2007.11.023] [PMID: 18164371]
[83]
Allanbutterfield D, Castegna A, Lauderback C, Drake J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death1. Neurobiol Aging 2002; 23(5): 655-64.
[http://dx.doi.org/10.1016/S0197-4580(01)00340-2] [PMID: 12392766]
[84]
Gupta K, Vishwakarma J, Garg A, et al. Arsenic Induces GSK3β-Dependent p-Tau, Neuronal Apoptosis, and Cognitive Impairment via an Interdependent Hippocampal ERα and IL-1/IL-1R1 Mechanism in Female Rats. Toxicol Sci 2022; 190(1): 79-98.
[http://dx.doi.org/10.1093/toxsci/kfac087] [PMID: 35993674]
[85]
Pandey R, Garg A, Gupta K, et al. Arsenic induces differential neurotoxicity in male, female, and E2-deficient females: Comparative effects on hippocampal neurons and cognition in adult rats. Mol Neurobiol 2022; 59(5): 2729-44.
[http://dx.doi.org/10.1007/s12035-022-02770-1] [PMID: 35175559]
[86]
Sun H, Yang Y, Gu M, et al. The role of Fas-FasL-FADD signaling pathway in arsenic-mediated neuronal apoptosis in vivo and in vitro. Toxicol Lett 2022; 356: 143-50.
[http://dx.doi.org/10.1016/j.toxlet.2021.11.012] [PMID: 34953944]
[87]
Virk D, Kumar A, Jaggi AS, Singh N. Ameliorative role of rolipram, PDE-4 inhibitor, against sodium arsenite–induced vascular dementia in rats. Environ Sci Pollut Res Int 2021; 28(44): 63250-62.
[http://dx.doi.org/10.1007/s11356-021-15189-3] [PMID: 34226994]
[88]
Wu S, Rao G, Wang R, et al. The neuroprotective effect of curcumin against ATO triggered neurotoxicity through Nrf2 and NF-κB signaling pathway in the brain of ducks. Ecotoxicol Environ Saf 2021; 228: 112965.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112965] [PMID: 34775344]
[89]
Zhang C, Li Y, Yu H, et al. Nanoplastics promote arsenic-induced ROS accumulation, mitochondrial damage and disturbances in neurotransmitter metabolism of zebrafish (Danio rerio). Sci Total Environ 2023; 863: 161005.
[http://dx.doi.org/10.1016/j.scitotenv.2022.161005] [PMID: 36539083]
[90]
Rachamalla M, Salahinejad A, Khan M, Datusalia AK, Niyogi S. Chronic dietary exposure to arsenic at environmentally relevant concentrations impairs cognitive performance in adult zebrafish (Danio rerio) via oxidative stress and dopaminergic dysfunction. Sci Total Environ 2023; 886: 163771.
[http://dx.doi.org/10.1016/j.scitotenv.2023.163771] [PMID: 37164085]
[91]
Aydin Y, Orta-Yilmaz B. Synergistic effects of arsenic and fluoride on oxidative stress and apoptotic pathway in Leydig and Sertoli cells. Toxicology 2022; 475: 153241.
[http://dx.doi.org/10.1016/j.tox.2022.153241] [PMID: 35714946]
[92]
Woo SH, Park IC, Park MJ, et al. Arsenic trioxide sensitizes CD95/Fas-induced apoptosis through ROS-mediated upregulation of CD95/Fas by NF-κB activation. Int J Cancer 2004; 112(4): 596-606.
[http://dx.doi.org/10.1002/ijc.20433] [PMID: 15382040]
[93]
Bellamri N, Morzadec C, Fardel O, Vernhet L. Arsenic and the immune system. Curr Opin Toxicol 2018; 10: 60-8.
[http://dx.doi.org/10.1016/j.cotox.2018.01.003]
[94]
Nouri K, Ricotti CA Jr, Bouzari N, Chen H, Ahn E, Bach A. The incidence of recurrent herpes simplex and herpes zoster infection during treatment with arsenic trioxide. J Drugs Dermatol 2006; 5(2): 182-5.
[PMID: 16485889]
[95]
Isik A, Wysocki AP,. Memiş U, Sezgin E, Yezhikova A, Islambekov Y. Factors associated with the occurrence and healing of umbilical pilonidal sinus: a rare clinical entity. Adv Skin Wound Care 2022; 35(8): 1-4.
[http://dx.doi.org/10.1097/01.ASW.0000833608.27136.d1] [PMID: 35856614]
[96]
Hunt KM, Srivastava RK, Elmets CA, Athar M. The mechanistic basis of arsenicosis: Pathogenesis of skin cancer. Cancer Lett 2014; 354(2): 211-9.
[http://dx.doi.org/10.1016/j.canlet.2014.08.016] [PMID: 25173797]
[97]
Srivastava RK, Li C, Chaudhary SC, et al. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption. Toxicol Appl Pharmacol 2013; 272(3): 879-87.
[http://dx.doi.org/10.1016/j.taap.2013.08.004] [PMID: 23954561]
[98]
Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140(6): 883-99.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[99]
Rychlik KA, Illingworth EJ, Sanchez IF, et al. Long-term effects of prenatal arsenic exposure from gestational day 9 to birth on lung, heart, and immune outcomes in the C57BL/6 mouse model. Toxicol Lett 2023; 383: 17-32.
[http://dx.doi.org/10.1016/j.toxlet.2023.05.011] [PMID: 37244563]
[100]
Ray M, Hor P, Singh SN, Mondal KC. Multipotent antioxidant and antitoxicant potentiality of an indigenous probiotic Bifidobacterium sp. MKK4. J Food Sci Technol 2021; 58(12): 4795-804.
[http://dx.doi.org/10.1007/s13197-021-04975-z] [PMID: 34629544]
[101]
Li J, Zhao L, Zhang Y, et al. Imbalanced immune responses involving inflammatory molecules and immune-related pathways in the lung of acute and subchronic arsenic-exposed mice. Environ Res 2017; 159: 381-93.
[http://dx.doi.org/10.1016/j.envres.2017.08.036] [PMID: 28843991]
[102]
Duan X, Gao S, Li J, et al. Acute arsenic exposure induces inflammatory responses and CD4+ T cell subpopulations differentiation in spleen and thymus with the involvement of MAPK, NF-kB, and Nrf2. Mol Immunol 2017; 81: 160-72.
[http://dx.doi.org/10.1016/j.molimm.2016.12.005] [PMID: 27978490]
[103]
Henderson MW, Madenspacher JH, Whitehead GS, et al. Effects of orally ingested arsenic on respiratory epithelial permeability to bacteria and small molecules in mice. Environ Health Perspect 2017; 125(9): 097024.
[http://dx.doi.org/10.1289/EHP1878] [PMID: 28960179]
[104]
States JC, Barchowsky A, Cartwright IL, Reichard JF, Futscher BW, Lantz RC. Arsenic toxicology: translating between experimental models and human pathology. Environ Health Perspect 2011; 119(10): 1356-63.
[http://dx.doi.org/10.1289/ehp.1103441] [PMID: 21684831]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy