Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Advances in the Management of Diabetes and Overweight using Incretin-based Pharmacotherapies

Author(s): Shatrudhan Prajapati*

Volume 20, Issue 7, 2024

Published on: 13 November, 2023

Article ID: e131123223544 Pages: 11

DOI: 10.2174/0115733998256797231009062744

Price: $65

Abstract

Throughout the previous three decades, the secretion of glucagon-like peptide-1 hormone has attracted much attention to attain possible therapy goals for the treatment of both hypoglycaemic along type II diabetes militates and overweight. The pharmaceutical generation of peptides similar to hypoglycaemia-based medicines is exemplified by agonists of the GLP- 1R (Glucagon-like peptide-1 receptors). Pharmacokinetic profiles are continuously being improved, beginning with the native hormone with a two- to three-minute quarter and progressing through growth every day with once-drug combinations. Due to contradictory data that indicate stimulation or inhibition of the Glucagon-like peptide receptor, the Glucose-dependent insulin tropic peptide receptor offers favorable effects on systemic metabolism. The recent Glp-1R (Glucagon-like peptide-1 receptor-) targeting monomolecular drugs has demonstrated therapeutic effectiveness and has stoked interest in Glucose-dependent insulin tropic polypeptide antagonism as a treatment for overweight and diabetes mellitus. These drugs have been shown to dramatically improve carbohydrates with body weight management in sick people who have obesity and type II diabetes mellitus. In this study, recent breakthroughs in compelling therapeutic interventions are discussed, and the biology and pharmacology of the glucose-like peptide are reviewed.

[1]
Ganawa S, Santhosh SH, Parry L, Syed AA. Weight loss with glucagon-like peptide-1 receptor agonists in Bardet-Biedl syndrome. Clin Obes 2022; 12(5): e12546.
[http://dx.doi.org/10.1111/cob.12546] [PMID: 35932204]
[2]
Reilly JJ, Kelly J. Long-term impact of childhood obesity on adult morbidity and premature mortality: Systematic review. Int J Obes 2011; 35: 891-8.
[http://dx.doi.org/10.1038/ijo.2010.222]
[3]
Yusefzadeh H, Rashidi A, Rahimi B. Economic burden of obesity: A systematic review. Soc Health Behav 2019; 2(1): 7.
[4]
Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 2012; 8(4): 228-36.
[http://dx.doi.org/10.1038/nrendo.2011.183] [PMID: 22064493]
[5]
Candler TP, Mahmoud O, Lynn RM, Majbar AA, Barrett TG, Shield JPH. Continuing rise of type 2 diabetes incidence in children and young people in the UK. Diabet Med 2018; 35(6): 737-44.
[http://dx.doi.org/10.1111/dme.13609] [PMID: 29460341]
[6]
Fremlin GA, Orpin S, Kaur MR. Clarithromycin, rifampicin and fusidic acid triple combination therapy for chronic folliculocentric pustulosis of the scalp. Clin Exp Dermatol 2017; 42(8): 913-4.
[http://dx.doi.org/10.1111/ced.13199]
[7]
Magliano DJ, Sacre JW, Harding JL, Gregg EW, Zimmet PZ, Shaw JE. Young-onset type 2 diabetes mellitus — implications for morbidity and mortality. Nat Rev Endocrinol 2020; 16(6): 321-31.
[http://dx.doi.org/10.1038/s41574-020-0334-z] [PMID: 32203408]
[8]
Goossens GH, Blaak EE. Adipose tissue dysfunction and impaired metabolic health in human obesity: A matter of oxygen? Front Endocrinol (Lausanne) 2015; 6: 55.
[http://dx.doi.org/10.3389/fendo.2015.00055]
[9]
Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: Advances and challenges. Nat Rev Drug Discov 2022; 21(3): 201-23.
[http://dx.doi.org/10.1038/s41573-021-00337-8] [PMID: 34815532]
[10]
Greenway FL. Physiological adaptations to weight loss and factors favouring weight regain. Int J Obes 2015; 39(8): 1188-96.
[http://dx.doi.org/10.1038/ijo.2015.59] [PMID: 25896063]
[11]
Pigeyre M, Yazdi FT, Kaur Y, Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond) 2016; 130(12): 943-86.
[http://dx.doi.org/10.1042/CS20160136]
[12]
Kaur Y, de Souza RJ, Gibson WT, Meyre D. A systematic review of genetic syndromes with obesity. Obes Rev 2017; 18(6): 603-34.
[http://dx.doi.org/10.1111/obr.12531] [PMID: 28346723]
[13]
Babiker A, Al Dubayee M. Anti-diabetic medications Laurence–Moon– Bardet-Biedl syndrome disorder. Sudan J Paediatr 2017; 17(2): 11.
[http://dx.doi.org/10.24911/SJP.2017.2.12] [PMID: 29545660]
[14]
Onakpoya IJ, Heneghan CJ, Aronson JK. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med 2016; 14(1): 10.
[http://dx.doi.org/10.1186/s12916-016-0553-2] [PMID: 26843061]
[15]
Comerma-Steffensen S, Grann MU, Andersen C, Rungby J, Simonsen U. Cardiovascular effects of current and future anti-obesity drugs. Curr Vasc Pharmacol 2014; 12(3): 493-504.
[http://dx.doi.org/10.2174/1570161112666140423223529]
[16]
Singh G, Krauthamer M, Bjalme-Evans M. Wegovy (semaglutide): a new weight loss drug for chronic weight management. J Investig Med 2022; 70(1): 5-13.
[http://dx.doi.org/10.1136/jim-2021-001952] [PMID: 34706925]
[17]
Min T, Bain SC. The role of tirzepatide, dual GIP and GLP-1 receptor agonist, in the management of type 2 diabetes: The SURPASS clinical trials. Diabetes Ther 2021; 12(1): 143-57.
[http://dx.doi.org/10.1007/s13300-020-00981-0] [PMID: 33325008]
[18]
Del Prato S, Kahn SE, Pavo I, et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): A randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet 2021; 398(10313): 1811-24.
[http://dx.doi.org/10.1016/S0140-6736(21)02188-7] [PMID: 34672967]
[19]
Wilding JP. STEP 1+ 2: Signifikante Gewichtsreduktion unter Semaglutid vs. Placebo. J Med 2021; 384: 989-1002.
[20]
Müller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30(30): 72-130.
[http://dx.doi.org/10.1016/j.molmet.2019.09.010] [PMID: 31767182]
[21]
Müller TD, Finan B, Clemmensen C, DiMarchi RD, Tschöp MH. The new biology and pharmacology of glucagon. Physiol Rev 2017; 97(2): 721-66.
[http://dx.doi.org/10.1152/physrev.00025.2016] [PMID: 28275047]
[22]
Zeigerer A, Sekar R, Kleinert M, Nason S, Habegger KM, Müller TD. Glucagon’s metabolic action in health and disease. Compr Physiol 2021; 11(2): 1759-83.
[http://dx.doi.org/10.1002/cphy.c200013]
[23]
Hirasawa A, Tsumaya K, Awaji T, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 2005; 11(1): 90-4.
[http://dx.doi.org/10.1038/nm1168] [PMID: 15619630]
[24]
Thomsen C, Rasmussen O, Lousen T, et al. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am J Clin Nutr 1999; 69(6): 1135-43.
[http://dx.doi.org/10.1093/ajcn/69.6.1135]
[25]
Kim MY, Choi SW, Chung SK. Antioxidative flavonoids from the garlic (Allium sativum L.) shoot. Food Sci Biotechnol 2000; 9(4): 199-203.
[26]
Gameiro A, Reimann F, Habib AM, et al. The neurotransmitters glycine and GABA stimulate glucagon-like peptide-1 release from the GLUTag cell line. J Physiol 2005; 569(3): 761-72.
[http://dx.doi.org/10.1113/jphysiol.2005.098962] [PMID: 16223757]
[27]
Reimann F, Williams L, da Silva Xavier G, Rutter GA, Gribble FM. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia 2004; 47(9): 1592-601.
[http://dx.doi.org/10.1007/s00125-004-1498-0] [PMID: 15365617]
[28]
Ørskov C, Wettergren A, Holst JJ. Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand J Gastroenterol 1996; 31(7): 665-70.
[http://dx.doi.org/10.3109/00365529609009147]
[29]
Mayo KE, Miller LJ, Bataille D, et al. International Union of Pharmacology. The glucagon receptor family. Pharmacol Rev 2003; 55(1): 167-94.
[http://dx.doi.org/10.1124/pr.55.1.6]
[30]
Novikoff A, O’Brien SL, Bernecker M, et al. Spatiotemporal GLP-1 and GIP receptor signaling and trafficking/recycling dynamics induced by selected receptor mono- and dual-agonists. Mol Metab 2021; 49: 101181.
[http://dx.doi.org/10.1016/j.molmet.2021.101181]
[31]
Sonoda N, Imamura T, Yoshizaki T, Babendure JL, Lu JC, Olefsky JM. B-Arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic β cells. Proceedings of the national academy of sciences. 6614-9.
[http://dx.doi.org/10.1073/pnas.0710402105]
[32]
Pyke C, Heller RS, Kirk RK, et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 2014; 155(4): 1280-90.
[http://dx.doi.org/10.1210/en.2013-1934]
[33]
Richards P, Parker HE, Adriaenssens AE, et al. Identification and characterization of GLP-1 receptor–expressing cells using a new transgenic mouse model. Diabetes 2014; 63(4): 1224-33.
[http://dx.doi.org/10.2337/db13-1440]
[34]
Willms BE, Werner JE, Holst JJ, Orskov C, Creutzfeldt WE, Nauck MA. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: Effects of exogenous glucagon-like peptide-1 (GLP-1)-(7-36) amide in type 2 (noninsulin-dependent) diabetic patients. J Clin Endocrinol Metab 1996; 81(1): 327.
[http://dx.doi.org/10.1210/jcem.81.1.8550773]
[35]
Canfield RL, Henderson CR Jr, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP. Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N Engl J Med 2003; 348(16): 1517-26.
[http://dx.doi.org/10.1056/NEJMoa022848] [PMID: 12700371]
[36]
Kapodistria K, Tsilibary EP, Kotsopoulou E, Moustardas P, Kitsiou P. Liraglutide, a human glucagon-like peptide-1 analogue, stimulates AKT-dependent survival signalling and inhibits pancreatic β-cell apoptosis. J Cell Mol Med 2018; 22(6): 2970-80.
[http://dx.doi.org/10.1111/jcmm.13259] [PMID: 29524296]
[37]
Liao P, Yang D, Liu D, Zheng Y. GLP-1 and ghrelin attenuate high glucose/high lipid-induced apoptosis and senescence of human microvascular endothelial cells. Cell Physiol Biochem 2017; 44(5): 1842-55.
[http://dx.doi.org/10.1159/000485820] [PMID: 29224011]
[38]
Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999; 48(12): 2270-6.
[http://dx.doi.org/10.2337/diabetes.48.12.2270]
[39]
During MJ, Cao L, Zuzga DS, et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med 2003; 9(9): 1173-9.
[http://dx.doi.org/10.1038/nm919] [PMID: 12925848]
[40]
Hare KJ, Vilsbøll T, Asmar M, Deacon CF, Knop FK, Holst JJ. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes 2010; 59(7): 1765-70.
[http://dx.doi.org/10.2337/db09-1414]
[41]
Coskun T, Sloop KW, Loghin C, et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Mol Metab 2018; 18(18): 3-14.
[http://dx.doi.org/10.1016/j.molmet.2018.09.009] [PMID: 30473097]
[42]
Frias JP, Bastyr EJ III, Vignati L, et al. The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. Cell Metab 2017; 26(2): 343-352.e2.
[http://dx.doi.org/10.1016/j.cmet.2017.07.011]
[43]
Frias JP, Nauck MA, Van J, et al. Efficacy and tolerability of tirzepatide, a dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist in patients with type 2 diabetes: A 12-week, randomized, double-blind, placebo-controlled study to evaluate different dose-escalation regimens. Diabetes Obes Metab 2020; 22(6): 938-46.
[http://dx.doi.org/10.1111/dom.13979] [PMID: 31984598]
[44]
Tschöp MH, Finan B, Clemmensen C, et al. Unimolecular polypharmacy for treatment of diabetes and obesity. Cell Metab 2016; 24(1): 51-62.
[http://dx.doi.org/10.1016/j.cmet.2016.06.021]
[45]
Bush MA, Matthews JE, De Boever EH, et al. Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in healthy subjects. Diabetes Obes Metab 2009; 11(5): 498-505.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00992.x] [PMID: 19187286]
[46]
Andersen JT, Dalhus B, Cameron J, et al. Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor. Nat Commun 2012; 3(1): 610.
[http://dx.doi.org/10.1038/ncomms1607] [PMID: 22215085]
[47]
Chaudhury C, Mehnaz S, Robinson JM, et al. The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med 2003; 197(3): 315-22.
[http://dx.doi.org/10.1084/jem.20021829] [PMID: 12566415]
[48]
Kim J, Bronson CL, Hayton WL, et al. Albumin turnover: FcRn-mediated recycling saves as much albumin from degradation as the liver produces. Am J Physiol Gastrointest Liver Physiol 2006; 290(2): G352-60.
[http://dx.doi.org/10.1152/ajpgi.00286.2005] [PMID: 16210471]
[49]
Knudsen LB, Lau J. The discovery and development of liraglutide and semaglutide. Front Endocrinol (Lausanne) 2019; 10: 155.
[http://dx.doi.org/10.3389/fendo.2019.00155] [PMID: 31031702]
[50]
Agersø H, Jensen LB, Elbrønd B, Rolan P, Zdravkovic M. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia 2002; 45(2): 195-202.
[http://dx.doi.org/10.1007/s00125-001-0719-z] [PMID: 11935150]
[51]
Elks CE, Scott RA. The long and short of telomere length and diabetes. Diabetes 2014; 63(1): 65-7.
[http://dx.doi.org/10.2337/db13-1469] [PMID: 24357701]
[52]
Turecek PL, Bossard MJ, Schoetens F, Ivens IA. PEGylation of biopharmaceuticals: A review of chemistry and nonclinical safety information of approved drugs. J Pharm Sci 2016; 105(2): 460-75.
[http://dx.doi.org/10.1016/j.xphs.2015.11.015] [PMID: 26869412]
[53]
Digilio G, Barbero L, Bracco C, et al. NMR structure of two novel polyethylene glycol conjugates of the human growth hormone-releasing factor, hGRF(1-29)-NH2. J Am Chem Soc 2003; 125(12): 3458-70.
[http://dx.doi.org/10.1021/ja021264j] [PMID: 12643708]
[54]
Cooke CE, Lee HY, Tong YP, Haines ST. Persistence with injectable antidiabetic agents in members with type 2 diabetes in a commercial managed care organization. Curr Med Res Opin 2010; 26(1): 231-8.
[http://dx.doi.org/10.1185/03007990903421994] [PMID: 19921965]
[55]
Buckley ST, Bækdal TA, Vegge A, et al. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci Transl Med 2018; 10(467): eaar7047.
[http://dx.doi.org/10.1126/scitranslmed.aar7047] [PMID: 30429357]
[56]
Mehta A, Marso SP, Neeland IJ. Liraglutide for weight management: a critical review of the evidence. Obes Sci Pract 2017; 3(1): 3-14.
[http://dx.doi.org/10.1002/osp4.84] [PMID: 28392927]
[57]
Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2016; 2: 1834-44.
[58]
Giugliano D, Scappaticcio L, Longo M, et al. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol 2021; 20(1): 189.
[http://dx.doi.org/10.1186/s12933-021-01366-8] [PMID: 34526024]
[59]
FDA FDA Approves New Drug Treatment for Chronic Weight Management, First Since 2014. (2021). FDA website in the section of News & Events for Human Drugs. FDA approves weight management drug for patients aged 12 and older. 2021. Available from: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-weight-management-drug-patients-aged-12-and-older
[60]
Davies M, Færch L, Jeppesen OK, et al. Semaglutide 2•4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet 2021; 397(10278): 971-84.
[http://dx.doi.org/10.1016/S0140-6736(21)00213-0] [PMID: 33667417]
[61]
Finan B, Müller TD, Clemmensen C, Perez-Tilve D, DiMarchi RD, Tschöp MH. Reappraisal of GIP pharmacology for metabolic diseases. Trends Mol Med 2016; 22(5): 359-76.
[http://dx.doi.org/10.1016/j.molmed.2016.03.005] [PMID: 27038883]
[62]
DiGruccio MR, Mawla AM, Donaldson CJ, et al. Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets. Mol Metab 2016; 5(7): 449-58.
[http://dx.doi.org/10.1016/j.molmet.2016.04.007] [PMID: 27408771]
[63]
Vilsbøll T, Agersø H, Lauritsen T, et al. The elimination rates of intact GIP as well as its primary metabolite, GIP 3-42, are similar in type 2 diabetic patients and healthy subjects. Regul Pept 2006; 137(3): 168-72.
[http://dx.doi.org/10.1016/j.regpep.2006.07.007] [PMID: 16934887]
[64]
Yip RGC, Boylan MO, Kieffer TJ, Wolfe MM. Functional GIP receptors are present on adipocytes. Endocrinology 1998; 139(9): 4004-7.
[http://dx.doi.org/10.1210/endo.139.9.6288] [PMID: 9724057]
[65]
Mantelmacher FD, Zvibel I, Cohen K, Epshtein A, Pasmanik-Chor M, Vogl T. An enteroendocrine-myeloid cell S100A8/A9 axis controls inflammation and body weight. Nat Metab 2019; 158: 69.
[66]
Metzger VL, Baker RJ, Schingoethe DJ. Responses of rumen microflora to high-concentrate low-roughage diets containing whey products. J Dairy Sci 1976; 59(10): 1769-75.
[http://dx.doi.org/10.3168/jds.S0022-0302(76)84436-0] [PMID: 824331]
[67]
Dowsett GKC, Lam BYH, Tadross JA, et al. A survey of the mouse hindbrain in the fed and fasted states using single-nucleus RNA sequencing. Mol Metab 2021; 53: 101240.
[http://dx.doi.org/10.1016/j.molmet.2021.101240] [PMID: 33962048]
[68]
Christensen M, Vedtofte L, Holst JJ, Vilsbøll T, Knop FK. Glucose-dependent insulinotropic polypeptide: A bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. Diabetes 2011; 60(12): 3103-9.
[http://dx.doi.org/10.2337/db11-0979] [PMID: 21984584]
[69]
Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993; 91(1): 301-7.
[http://dx.doi.org/10.1172/JCI116186] [PMID: 8423228]
[70]
Højberg PV, Vilsbøll T, Rabøl R, et al. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia 2009; 52(2): 199-207.
[http://dx.doi.org/10.1007/s00125-008-1195-5] [PMID: 19037628]
[71]
Stensen S, Gasbjerg LS, Helsted MM, Hartmann B, Christensen MB, Knop FK. GIP and the gut-bone axis – Physiological, pathophysiological and potential therapeutic implications. Peptides 2020; 125: 170197.
[http://dx.doi.org/10.1016/j.peptides.2019.170197] [PMID: 31715213]
[72]
Samms RJ, Coghlan MP, Sloop KW. How may GIP enhance the therapeutic efficacy of GLP-1? Trends Endocrinol Metab 2020; 31(6): 410-21.
[http://dx.doi.org/10.1016/j.tem.2020.02.006] [PMID: 32396843]
[73]
Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 2013; 17(6): 819-37.
[http://dx.doi.org/10.1016/j.cmet.2013.04.008] [PMID: 23684623]
[74]
Campbell JE. Targeting the GIPR for obesity: To agonize or antagonize? Potential mechanisms. Mol Metab 2021; 46: 101139.
[http://dx.doi.org/10.1016/j.molmet.2020.101139] [PMID: 33290902]
[75]
Eckel RH, Fujimoto WY, Brunzell JD. Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes. Diabetes 1979; 28(12): 1141-2.
[http://dx.doi.org/10.2337/diab.28.12.1141] [PMID: 510813]
[76]
Kim SJ, Nian C, McIntosh CHS. GIP increases human adipocyte LPL expression through CREB and TORC2-mediated trans-activation of the LPL gene. J Lipid Res 2010; 51(11): 3145-57.
[http://dx.doi.org/10.1194/jlr.M006841] [PMID: 20693566]
[77]
Wasada T, McCorkle K, Harris V, Kawai K, Howard B, Unger RH. Effect of gastric inhibitory polypeptide on plasma levels of chylomicron triglycerides in dogs. J Clin Invest 1981; 68(4): 1106-7.
[http://dx.doi.org/10.1172/JCI110335] [PMID: 7287903]
[78]
Kim SJ, Nian C, McIntosh CHS. Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade. J Biol Chem 2007; 282(12): 8557-67.
[http://dx.doi.org/10.1074/jbc.M609088200] [PMID: 17244606]
[79]
Thondam SK, Daousi C, Wilding JPH, et al. Glucose-dependent insulinotropic polypeptide promotes lipid deposition in subcutaneous adipocytes in obese type 2 diabetes patients: a maladaptive response. Am J Physiol Endocrinol Metab 2017; 312(3): E224-33.
[http://dx.doi.org/10.1152/ajpendo.00347.2016] [PMID: 28073779]
[80]
Delong T, Baker RL, Reisdorph N, et al. Islet amyloid polypeptide is a target antigen for diabetogenic CD4+ T cells. Diabetes 2011; 60(9): 2325-30.
[http://dx.doi.org/10.2337/db11-0288] [PMID: 21734016]
[81]
Oben J, Morgan L, Fletcher J, Marks V. Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7–36) amide, on fatty acid synthesis in explants of rat adipose tissue. J Endocrinol 1991; 130(2): 267-72.
[http://dx.doi.org/10.1677/joe.0.1300267] [PMID: 1919397]
[82]
Beck B, Max JP. Gastric inhibitory polypeptide enhancement of the insulin effect on fatty acid incorporation into adipose tissue in the rat. Regul Pept 1983; 7(1): 3-8.
[http://dx.doi.org/10.1016/0167-0115(83)90276-8] [PMID: 6359287]
[83]
Gill RK, Saksena S, Tyagi S, et al. Serotonin inhibits Na+/H+ exchange activity via 5-HT4 receptors and activation of PKCα in human intestinal epithelial cells. Gastroenterology 2005; 128(4): 962-74.
[http://dx.doi.org/10.1053/j.gastro.2005.02.011] [PMID: 15825078]
[84]
Golley RK, Maher CA, Matricciani L, Olds TS. Sleep duration or bedtime? Exploring the association between sleep timing behaviour, diet and BMI in children and adolescents. Int J Obes 2013; 37(4): 546-51.
[http://dx.doi.org/10.1038/ijo.2012.212] [PMID: 23295498]
[85]
Miyawaki K, Yamada Y, Yano H, et al. Glucose intolerance caused by a defect in the entero-insular axis: A study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci USA 1999; 96(26): 14843-7.
[http://dx.doi.org/10.1073/pnas.96.26.14843] [PMID: 10611300]
[86]
Joo E, Harada N, Yamane S, et al. Inhibition of gastric inhibitory polypeptide receptor signaling in adipose tissue reduces insulin resistance and hepatic steatosis in high-fat diet–fed mice. Diabetes 2017; 66(4): 868-79.
[http://dx.doi.org/10.2337/db16-0758] [PMID: 28096257]
[87]
Zhang Q, Delessa CT, Augustin R, et al. The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metab 2021; 33(4): 833-844.e5.
[http://dx.doi.org/10.1016/j.cmet.2021.01.015] [PMID: 33571454]
[88]
Beaudry JL, Kaur KD, Varin EM, et al. Physiological roles of the GIP receptor in murine brown adipose tissue. Mol Metab 2019; 28: 14-25.
[http://dx.doi.org/10.1016/j.molmet.2019.08.006] [PMID: 31451430]
[89]
Killion EA, Wang J, Yie J, et al. Anti-obesity effects of GIPR antagonists alone and in combination with GLP-1R agonists in preclinical models. Sci Transl Med 2018; 10(472): eaat3392.
[http://dx.doi.org/10.1126/scitranslmed.aat3392] [PMID: 30567927]
[90]
Holst JJ, Rosenkilde MM. Recent advances of GIP and future horizons. Peptides 2020; 125: 170230.
[http://dx.doi.org/10.1016/j.peptides.2019.170230] [PMID: 31838219]
[91]
Baldassano S, Gasbjerg LS, Kizilkaya HS, Rosenkilde MM, Holst JJ, Hartmann B. Increased body weight and fat mass after subchronic GIP receptor antagonist, but not GLP-2 receptor antagonist, administration in rats. Front Endocrinol (Lausanne) 2019; 10: 492.
[http://dx.doi.org/10.3389/fendo.2019.00492] [PMID: 31447774]
[92]
Mroz PA, Finan B, Gelfanov V, et al. Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism. Mol Metab 2019; 20: 51-62.
[http://dx.doi.org/10.1016/j.molmet.2018.12.001] [PMID: 30578168]
[93]
Kaneko K, Fu Y, Lin HY, et al. Gut-derived GIP activates central Rap1 to impair neural leptin sensitivity during overnutrition. J Clin Invest 2019; 129(9): 3786-91.
[http://dx.doi.org/10.1172/JCI126107] [PMID: 31403469]
[94]
Svendsen B, Capozzi ME, Nui J, et al. Pharmacological antagonism of the incretin system protects against diet-induced obesity. Mol Metab 2020; 32: 44-55.
[http://dx.doi.org/10.1016/j.molmet.2019.11.018] [PMID: 32029229]
[95]
Adriaenssens AE, Gribble FM, Reimann F. The glucose-dependent insulinotropic polypeptide signaling axis in the central nervous system. Peptides 2020; 125: 170194.
[http://dx.doi.org/10.1016/j.peptides.2019.170194] [PMID: 31697967]
[96]
Holst JJ, Rosenkilde MM. GIP as a therapeutic target in diabetes and obesity: insight from incretin co-agonists. J Clin Endocrinol Metab 2020; 105(8): e2710-6.
[http://dx.doi.org/10.1210/clinem/dgaa327] [PMID: 32459834]
[97]
Willard FS, Douros JD, Gabe MBN, et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 2020; 5(17): e140532.
[http://dx.doi.org/10.1172/jci.insight.140532] [PMID: 32730231]
[98]
Hornby PJ. Central neurocircuitry associated with emesis. Am J Med 2001; 111(8) (Suppl. 8A): 106-12.
[http://dx.doi.org/10.1016/S0002-9343(01)00849-X] [PMID: 11749934]
[99]
Hayes MR, Skibicka KP, Grill HJ. Caudal brainstem processing is sufficient for behavioral, sympathetic, and parasympathetic responses driven by peripheral and hindbrain glucagon-like-peptide-1 receptor stimulation. Endocrinology 2008; 149(8): 4059-68.
[http://dx.doi.org/10.1210/en.2007-1743] [PMID: 18420740]
[100]
Zhou Z, Subramanian P, Sevilmis G, et al. Lipoprotein-derived lysophosphatidic acid promotes atherosclerosis by releasing CXCL1 from the endothelium. Cell Metab 2011; 13(5): 592-600.
[http://dx.doi.org/10.1016/j.cmet.2011.02.016] [PMID: 21531341]
[101]
Ludvik B, Giorgino F, Jódar E, et al. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): a randomised, open-label, parallel-group, phase 3 trial. Lancet 2021; 398(10300): 583-98.
[http://dx.doi.org/10.1016/S0140-6736(21)01443-4] [PMID: 34370970]
[102]
Frías JP, Davies MJ, Rosenstock J, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med 2021; 385(6): 503-15.
[http://dx.doi.org/10.1056/NEJMoa2107519] [PMID: 34170647]
[103]
Rosenstock J, Wysham C, Frías JP, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet 2021; 398(10295): 143-55.
[http://dx.doi.org/10.1016/S0140-6736(21)01324-6] [PMID: 34186022]
[104]
Dahl D, Onishi Y, Norwood PA, Huh R, Patel H, Rodriguez A. 80-LB: tirzepatide, a dual GIP/GLP-1 receptor agonist, is effective and safe when added to basal insulin for treatment of type 2 diabetes (SURPASS-5). Diabetes 2021; 70 (Supplement_1): 80-LB.
[105]
Libianto R, Ekinci EI. New agents for the treatment of type 2 diabetes. Crit Care Clin 2019; 35(2): 315-28.
[http://dx.doi.org/10.1016/j.ccc.2018.11.007] [PMID: 30784612]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy