Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Exploring the Synergistic Effect of Sildenafil and Green Tea Polyphenols on Breast Cancer Stem Cell-like Cells and their Parental Cells: A Potential Novel Therapeutic Approach

Author(s): Marzie Salari Sharif, Habibeh Sadat Mohseni, Mahnaz Khanavi, Shima Ghadami, Emad Jafarzadeh, Shohreh Tavajohi, Shima Aliebrahimi* and Seyed Nasser Ostad*

Volume 24, Issue 4, 2024

Published on: 10 November, 2023

Page: [304 - 315] Pages: 12

DOI: 10.2174/0118715206276925231107060329

Price: $65

Abstract

Background: Many cancer studies have intensely focused on the role of diet, among other factors involved in cancer establishment. The positive effect of green tea polyphenols (GTP) on controlling breast cancer cells has been reported in several studies. Cancer stem cell-like cells (CSC-LCs) possessing self-renewal, metastatic, and drug-resistant capacities are considered prominent therapeutic targets. In many tumors, inducible nitric oxide synthase (iNOS) expression levels are high; however, they have a dual effect on breast cancer pathogenesis.

Objective: This study aimed to investigate the cytotoxicity of the iNOS agonist (Sildenafil) and antagonist (LNAME), both alone and in combination with GTP, on MDA-MB-231, CD44+/CD24- CSC-LCs, and their parental cells (MCF-7).

Methods: The cell viability assay has been studied using the MTT assay. To analyze drug-drug combinations, CompuSyn and Combenefit software were used. The cytotoxicity mechanism was determined using flow cytometric analysis.

Results: L-NAME and GTP showed a synergistic effect on MDA-MB-231 and CSC-LCs. Such an effect was not observed on MCF-7. Sildenafil and GTP, on the other hand, showed synergistic cytotoxicity in all the cells mentioned above. Flow cytometric tests resulted in more than 70% apoptosis in MDA-MB-231 and MCF-7. Also, sub-G1 arrest among MCF-7 cells and a considerable decrease in ROS production by MDA-MB-231 cells following treatment with Sildenafil and GTP were observed.

Conclusion: Sildenafil, in combination with flavonoids, may be considered a novel strategy for cancer treatment.

« Previous
Graphical Abstract

[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[2]
Dawson, S.J.; Rueda, O.M.; Aparicio, S.; Caldas, C. A new genome-driven integrated classification of breast cancer and its implications. EMBO J., 2013, 32(5), 617-628.
[http://dx.doi.org/10.1038/emboj.2013.19] [PMID: 23395906]
[3]
Anderson, W.F.; Rosenberg, P.S.; Prat, A.; Perou, C.M.; Sherman, M.E. How many etiological subtypes of breast cancer: Two, three, four, or more? J. Natl. Cancer Inst., 2014, 106(8), dju165.
[http://dx.doi.org/10.1093/jnci/dju165] [PMID: 25118203]
[4]
Scioli, M.G.; Storti, G.; D’Amico, F.; Gentile, P.; Fabbri, G.; Cervelli, V.; Orlandi, A. The role of breast cancer stem cells as a prognostic marker and a target to improve the efficacy of breast cancer therapy. Cancers (Basel), 2019, 11(7), 1021.
[http://dx.doi.org/10.3390/cancers11071021] [PMID: 31330794]
[5]
Akbarzadeh, M.; Maroufi, N.F.; Tazehkand, A.P.; Akbarzadeh, M.; Bastani, S.; Safdari, R.; Farzane, A.; Fattahi, A.; Nejabati, H.R.; Nouri, M.; Samadi, N. Current approaches in identification and isolation of cancer stem cells. J. Cell. Physiol., 2019, 234(9), 14759-14772.
[http://dx.doi.org/10.1002/jcp.28271] [PMID: 30741412]
[6]
Li, W.; Ma, H.; Zhang, J.; Zhu, L.; Wang, C.; Yang, Y. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci. Rep., 2017, 7(1), 13856.
[http://dx.doi.org/10.1038/s41598-017-14364-2] [PMID: 29062075]
[7]
Liu, X.; Zhang, Y.; Wang, Y.; Yang, M.; Hong, F.; Yang, S. Protein phosphorylation in cancer: Role of nitric oxide signaling pathway. Biomolecules, 2021, 11(7), 1009.
[http://dx.doi.org/10.3390/biom11071009] [PMID: 34356634]
[8]
Zhang, L.; Wu, J.; Ling, M.T.; Zhao, L.; Zhao, K.N. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol. Cancer, 2015, 14(1), 87.
[http://dx.doi.org/10.1186/s12943-015-0361-x] [PMID: 26022660]
[9]
Förstermann, U. Nitric oxide synthases: Regulation and function. Eur. Heart J., 2012, 33(7), 829-837.
[10]
Chatterjee, A.; Catravas, J.D.; Catravas, J.D. Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul. Pharmacol., 2008, 49(4-6), 134-140.
[http://dx.doi.org/10.1016/j.vph.2008.06.008] [PMID: 18692595]
[11]
Vannini, F.; Kashfi, K.; Nath, N. The dual role of iNOS in cancer. Redox Biol., 2015, 6, 334-343.
[http://dx.doi.org/10.1016/j.redox.2015.08.009] [PMID: 26335399]
[12]
Kashfi, K.; Kannikal, J.; Nath, N. Macrophage reprogramming and cancer therapeutics: Role of iNOS-derived NO. Cells, 2021, 10(11), 3194.
[http://dx.doi.org/10.3390/cells10113194] [PMID: 34831416]
[13]
Garrido, P.; Shalaby, A.; Walsh, E.M.; Keane, N.; Webber, M.; Keane, M.M.; Sullivan, F.J.; Kerin, M.J.; Callagy, G.; Ryan, A.E.; Glynn, S.A. Impact of inducible nitric oxide synthase (iNOS) expression on triple negative breast cancer outcome and activation of EGFR and ERK signaling pathways. Oncotarget, 2017, 8(46), 80568-80588.
[http://dx.doi.org/10.18632/oncotarget.19631] [PMID: 29113326]
[14]
J Prud’homme, G. Cancer stem cells and novel targets for antitumor strategies. Curr. Pharm. Des., 2017, 18(19), 2838-2849.
[15]
Ignarro, L.J.; Napoli, C.; Loscalzo, J. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: An overview. Circ. Res., 2002, 90(1), 21-28.
[http://dx.doi.org/10.1161/hh0102.102330] [PMID: 11786514]
[16]
Geller, D.A.; Billiar, T.R. Molecular biology of nitric oxide synthases. Cancer Metastasis Rev., 1998, 17(1), 7-23.
[http://dx.doi.org/10.1023/A:1005940202801] [PMID: 9544420]
[17]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[18]
Kerschbaum, E.; Nüssler, V. Cancer prevention with nutrition and lifestyle. Visc. Med., 2019, 35(4), 204-209.
[http://dx.doi.org/10.1159/000501776] [PMID: 31602380]
[19]
Patra, S.; Nayak, R.; Patro, S.; Pradhan, B.; Sahu, B.; Behera, C.; Bhutia, S.K.; Jena, M. Chemical diversity of dietary phytochemicals and their mode of chemoprevention. Biotechnol. Rep., 2021, 30, e00633.
[http://dx.doi.org/10.1016/j.btre.2021.e00633] [PMID: 34094892]
[20]
Rastegar-Pouyani, N.; Montazeri, V.; Marandi, N.; Aliebrahimi, S.; Andalib, M.; Jafarzadeh, E.; Montazeri, H.; Ostad, S.N. The impact of Cancer-Associated Fibroblasts on drug resistance, stemness, and epithelial-mesenchymal transition in Bladder Cancer: A comparison between recurrent and non-recurrent patient-derived CAFs. Cancer Invest., 2023, 41(7), 656-671.
[http://dx.doi.org/10.1080/07357907.2023.2237576] [PMID: 37462514]
[21]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[22]
Torrens-Mas, M.; Roca, P. Phytoestrogens for cancer prevention and treatment. Biology, 2020, 9(12), 427.
[http://dx.doi.org/10.3390/biology9120427] [PMID: 33261116]
[23]
Wang, T.; Li, Q.; Bi, K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharma.l Sci., 2018, 13(1), 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[24]
Sarma, A.; Bania, R.; Das, M.K. Green tea: Current trends and prospects in nutraceutical and pharmaceutical aspects. J. Herb. Med., 2023, 41, 100694.
[http://dx.doi.org/10.1016/j.hermed.2023.100694]
[25]
Butt, M.S.; Sultan, M.T. Green tea: Nature’s defense against malignancies. Crit. Rev. Food Sci. Nutr., 2009, 49(5), 463-473.
[http://dx.doi.org/10.1080/10408390802145310] [PMID: 19399671]
[26]
Farhan, M. Insights on the role of polyphenols in combating cancer drug resistance. Biomedicines, 2023, 11(6), 1709.
[http://dx.doi.org/10.3390/biomedicines11061709] [PMID: 37371804]
[27]
Romano, A.; Martel, F. The role of EGCG in breast cancer prevention and therapy. Mini Rev. Med. Chem., 2021, 21(7), 883-898.
[http://dx.doi.org/10.2174/18755607MTEyrMzcq0] [PMID: 33319659]
[28]
Kuban-Jankowska, A.; Kostrzewa, T.; Musial, C.; Barone, G.; Lo-Bosco, G.; Lo-Celso, F.; Gorska-Ponikowska, M. Green tea catechins induce inhibition of PTP1B phosphatase in breast cancer cells with potent anti-cancer properties: in vitro assay, molecular docking, and dynamics studies. Antioxidants, 2020, 9(12), 1208.
[http://dx.doi.org/10.3390/antiox9121208] [PMID: 33266280]
[29]
Kciuk, M.; Alam, M.; Ali, N.; Rashid, S. Głowacka, P.; Sundaraj, R.; Celik, I.; Yahya, E.B.; Dubey, A.; Zerroug, E.; Kontek, R. Epigallocatechin-3-gallate therapeutic potential in cancer: Mechanism of action and clinical implications. Molecules, 2023, 28(13), 5246.
[http://dx.doi.org/10.3390/molecules28135246] [PMID: 37446908]
[30]
Van Aller, G.S.; Carson, J.D.; Tang, W.; Peng, H.; Zhao, L.; Copeland, R.A.; Tummino, P.J.; Luo, L. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem. Biophys. Res. Commun., 2011, 406(2), 194-199.
[http://dx.doi.org/10.1016/j.bbrc.2011.02.010] [PMID: 21300025]
[31]
Yap, T.A.; Omlin, A.; de Bono, J.S. Development of therapeutic combinations targeting major cancer signaling pathways. J. Clin. Oncol., 2013, 31(12), 1592-1605.
[http://dx.doi.org/10.1200/JCO.2011.37.6418] [PMID: 23509311]
[32]
Jafarzadeh, E.; Montazeri, V.; Aliebrahimi, S.; Sezavar, A.H.; Ghahremani, M.H.; Ostad, S.N. Combined regimens of cisplatin and metformin in cancer therapy: A systematic review and meta-analysis. Life Sci., 2022, 304, 120680.
[http://dx.doi.org/10.1016/j.lfs.2022.120680] [PMID: 35662589]
[33]
Kydd, J.; Jadia, R.; Velpurisiva, P.; Gad, A.; Paliwal, S.; Rai, P. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics, 2017, 9(4), 46.
[http://dx.doi.org/10.3390/pharmaceutics9040046] [PMID: 29036899]
[34]
Sarighieh, M.A.; Montazeri, V.; Shadboorestan, A.; Ghahremani, M.H.; Ostad, S.N. The inhibitory effect of curcumin on hypoxia inducer factors (Hifs) as a regulatory factor in the growth of tumor cells in breast cancer stem-like cells. Drug Res., 2020, 70(11), 512-518.
[http://dx.doi.org/10.1055/a-1201-2602] [PMID: 32961574]
[35]
Majdzadeh, M.; Aliebrahimi, S.; Vatankhah, M.; Ostad, S.N. Effects of celecoxib and L-NAME on apoptosis and cell cycle ofMCF-7 CD44+/CD24–/low subpopulation. Turk. J. Biol., 2017, 41(5), 826-834.
[http://dx.doi.org/10.3906/biy-1703-101]
[36]
Chou, T-C. The combination index (CI< 1) as the definition of synergism and of synergy claims; Elsevier, 2018, Vol. 7, pp. 49-50.
[37]
Chou, T.-C. Synergistic combination of microtubule targeting anticancer fludelone with cytoprotective panaxytriol derived from panax ginseng against MX-1 cells in vitro: Experimental design and data analysis using the combination index method. Am. J. Cancer Res., 2006, 6(1), 97-104.
[38]
Di Veroli, G.Y.; Fornari, C.; Wang, D.; Mollard, S.; Bramhall, J.L.; Richards, F.M.; Jodrell, D.I. Combenefit: An interactive platform for the analysis and visualization of drug combinations. Bioinformatics, 2016, 32(18), 2866-2868.
[http://dx.doi.org/10.1093/bioinformatics/btw230] [PMID: 27153664]
[39]
Ianevski, A.; He, L.; Aittokallio, T.; Tang, J. SynergyFinder: A web application for analyzing drug combination dose–response matrix data. Bioinformatics, 2017, 33(15), 2413-2415.
[http://dx.doi.org/10.1093/bioinformatics/btx162] [PMID: 28379339]
[40]
Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res., 2010, 70(2), 440-446.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1947] [PMID: 20068163]
[41]
Aggarwal, V.; Tuli, H.; Varol, A.; Thakral, F.; Yerer, M.; Sak, K.; Varol, M.; Jain, A.; Khan, M.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[42]
Faustova, M.; Nikolskaya, E.; Sokol, M.; Zabolotsky, A.; Mollaev, M.; Zhunina, O.; Fomicheva, M.; Lobanov, A.; Severin, E.; Yabbarov, N. High-effective reactive oxygen species inducer based on Mn-tetraphenylporphyrin loaded PLGA nanoparticles in binary catalyst therapy. Free Radic. Biol. Med., 2019, 143, 522-533.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.09.008] [PMID: 31520768]
[43]
Thangapazham, R.L.; Passi, N.; Maheshwari, R.K. Green tea polyphenol and epigallocatechin gallate induce apoptosis and inhibit invasion in human breast cancer cells. Cancer Biol. Ther., 2007, 6(12), 1938-1943.
[http://dx.doi.org/10.4161/cbt.6.12.4974] [PMID: 18059161]
[44]
Moslehi, M.; Rezaei, S.; Talebzadeh, P.; Ansari, M.J.; Jawad, M.A.; Jalil, A.T. Rastegar‐Pouyani, N.; Jafarzadeh, E.; Taeb, S.; Najafi, M. Apigenin in cancer therapy; prevention of genomic instability and anti‐cancer mechanisms. Clin. Exp. Pharmacol. Physiol., 2023, 50(1), 3-18.
[PMID: 36111951]
[45]
Reya, T.; Morrison, S. J.; Clarke, M. F.; Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature, 2001, 414(6859), 105-111.
[46]
Van Bambeke, F.; Balzi, E.; Tulkens, P.M. Antibiotic efflux pumps. Biochem. Pharmacol., 2000, 60(4), 457-470.
[http://dx.doi.org/10.1016/S0006-2952(00)00291-4] [PMID: 10874120]
[47]
Yoon, S.Y.; Lee, Y.J.; Seo, J.H.; Sung, H.J.; Park, K.H.; Choi, I.K.; Kim, S.J.; Oh, S.C.; Choi, C.W.; Kim, B.S.; Shin, S.W.; Kim, Y.H.; Kim, J.S. uPAR expression under hypoxic conditions depends on iNOS modulated ERK phosphorylation in the MDA-MB-231 breast carcinoma cell line. Cell Res., 2006, 16(1), 75-81.
[http://dx.doi.org/10.1038/sj.cr.7310010] [PMID: 16467878]
[48]
Zhai, B.T.; Tian, H.; Sun, J.; Zou, J.B.; Zhang, X.F.; Cheng, J.X.; Shi, Y.J.; Fan, Y.; Guo, D.Y. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J. Transl. Med., 2022, 20(1), 135.
[http://dx.doi.org/10.1186/s12967-022-03329-3] [PMID: 35303878]
[49]
Tao, L.; Forester, S.C.; Lambert, J.D. The role of the mitochondrial oxidative stress in the cytotoxic effects of the green tea catechin, (-)‐epigallocatechin‐3‐gallate, in oral cells. Mol. Nutr. Food Res., 2014, 58(4), 665-676.
[http://dx.doi.org/10.1002/mnfr.201300427] [PMID: 24249144]
[50]
Wu, A.H.; Yu, M.C.; Tseng, C.C.; Hankin, J.; Pike, M.C. Green tea and risk of breast cancer in asian americans. Int. J. Cancer, 2003, 106(4), 574-579.
[http://dx.doi.org/10.1002/ijc.11259] [PMID: 12845655]
[51]
Li, M.; Tse, L.A.; Chan, W.; Kwok, C.; Leung, S.; Wu, C.; Yu, W.; Yu, I.T.; Yu, C.H.T.; Wang, F.; Sung, H.; Yang, X.R. Evaluation of breast cancer risk associated with tea consumption by menopausal and estrogen receptor status among Chinese women in Hong Kong. Cancer Epidemiol., 2016, 40, 73-78.
[http://dx.doi.org/10.1016/j.canep.2015.11.013] [PMID: 26680603]
[52]
Miyazaki, T.; Reed, J.C. A GTP-binding adapter protein couples TRAIL receptors to apoptosis-inducing proteins. Nat. Immunol., 2001, 2(6), 493-500.
[http://dx.doi.org/10.1038/88684] [PMID: 11376335]
[53]
Liu, S-m. Green tea polyphenols induce cell death in breast cancer MCF-7 cells through induction of cell cycle arrest and mitochondrial-mediated apoptosis. J. Zhejiang Univ. Sci., 2017, 18(2), 89-98.
[54]
Xu, P.; Yan, F.; Zhao, Y.; Chen, X.; Sun, S.; Wang, Y.; Ying, L. Green tea polyphenol EGCG attenuates MDSCs-mediated immunosuppression through canonical and non-canonical pathways in a 4T1 murine breast cancer model. Nutrients, 2020, 12(4), 1042.
[http://dx.doi.org/10.3390/nu12041042] [PMID: 32290071]
[55]
Cruz-Burgos, M.; Losada-Garcia, A.; Cruz-Hernández, C.D.; Cortés-Ramírez, S.A.; Camacho-Arroyo, I.; Gonzalez-Covarrubias, V.; Morales-Pacheco, M.; Trujillo-Bornios, S.I.; Rodríguez-Dorantes, M. New approaches in oncology for repositioning drugs: the case of PDE5 inhibitor sildenafil. Front. Oncol., 2021, 11, 627229.
[http://dx.doi.org/10.3389/fonc.2021.627229] [PMID: 33718200]
[56]
Di Iorio, P.; Ronci, M.; Giuliani, P.; Caciagli, F.; Ciccarelli, R.; Caruso, V.; Beggiato, S.; Zuccarini, M. Pros and cons of pharmacological manipulation of cGMP-PDEs in the prevention and treatment of breast cancer. Int. J. Mol. Sci., 2021, 23(1), 262.
[http://dx.doi.org/10.3390/ijms23010262] [PMID: 35008687]
[57]
Iratni, R.; Ayoub, M.A. Sildenafil in combination therapy against cancer: A literature review. Curr. Med. Chem., 2021, 28(11), 2248-2259.
[http://dx.doi.org/10.2174/0929867327666200730165338] [PMID: 32744956]
[58]
Durrant, D.E.; Das, A.; Salloum, F.N.; Kukreja, R.C. Rapamycin Enhances Protective Effect of Sildenafil against Doxorubicin Cardiotoxicity and Potentiates Cancer Cell Killing; Am Heart Assoc, 2012.
[59]
Song, I.S.; Cha, J.S.; Choi, M.K. Characterization, in vivo and in vitro evaluation of solid dispersion of curcumin containing d-α-Tocopheryl polyethylene glycol 1000 succinate and mannitol. Molecules, 2016, 21(10), 1386.
[http://dx.doi.org/10.3390/molecules21101386] [PMID: 27763524]
[60]
Ling, X.; Liu, X.; Zhong, K.; Smith, N.; Prey, J.; Li, F. FL118, a novel camptothecin analogue, overcomes irinotecan and topotecan resistance in human tumor xenograft models. Am. J. Transl. Res., 2015, 7(10), 1765-1781.
[PMID: 26692923]
[61]
Thangapazham, R.L.; Singh, A.K.; Sharma, A.; Warren, J.; Gaddipati, J.P.; Maheshwari, R.K. Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Lett., 2007, 245(1-2), 232-241.
[http://dx.doi.org/10.1016/j.canlet.2006.01.027] [PMID: 16519995]
[62]
Ma, J.; Salamoun, J.; Wipf, P.; Edwards, R.; Van Houten, B.; Qian, W. Combination of a thioxodihydroquinazolinone with cisplatin eliminates ovarian cancer stem cell-like cells (CSC-LCs) and shows preclinical potential. Oncotarget, 2018, 9(5), 6042-6054.
[http://dx.doi.org/10.18632/oncotarget.23679] [PMID: 29464053]
[63]
Ueda, K.; Ogasawara, S.; Akiba, J.; Nakayama, M.; Todoroki, K.; Ueda, K.; Sanada, S.; Suekane, S.; Noguchi, M.; Matsuoka, K.; Yano, H. Aldehyde dehydrogenase 1 identifies cells with cancer stem cell-like properties in a human renal cell carcinoma cell line. PLoS One, 2013, 8(10), e75463.
[http://dx.doi.org/10.1371/journal.pone.0075463] [PMID: 24116047]
[64]
Yamamoto, D.; Kiyozuka, Y.; Adachi, Y.; Takada, H.; Hioki, K.; Tsubura, A. Synergistic action of apoptosis induced by eicosapentaenoic acid and TNP‐470 on human breast cancer cells. Breast Cancer Res. Treat., 1999, 55(2), 147-158.
[http://dx.doi.org/10.1023/A:1006283131240] [PMID: 10481942]
[65]
Trotta, A.P.; Chipuk, J.E. Mitochondrial dynamics as regulators of cancer biology. Cell. Mol. Life Sci., 2017, 74(11), 1999-2017.
[http://dx.doi.org/10.1007/s00018-016-2451-3] [PMID: 28083595]
[66]
Yang, B.; Lin, Y.; Shen, Y-Q. Correcting abnormal mitochondrial dynamics to facilitate tumor treatment; Mitochondrial Commun, 2023.
[http://dx.doi.org/10.1016/j.mitoco.2023.07.001]
[67]
Di Luigi, L.; Duranti, G.; Antonioni, A.; Sgrò, P.; Ceci, R.; Crescioli, C.; Sabatini, S.; Lenzi, A.; Caporossi, D.; Del Galdo, F.; Dimauro, I.; Antinozzi, C. The phosphodiesterase type 5 inhibitor sildenafil improves dna stability and redox homeostasis in systemic sclerosis fibroblasts exposed to reactive oxygen species. Antioxidants, 2020, 9(9), 786.
[http://dx.doi.org/10.3390/antiox9090786] [PMID: 32854347]
[68]
Kniotek, M.; Boguska, A. Sildenafil can affect innate and adaptive immune system in both experimental animals and patients. J. Immunol. Res, 2017, 2017
[http://dx.doi.org/10.1155/2017/4541958]
[69]
Yuan, Z.; Hein, T.W.; Rosa, R.H., Jr; Kuo, L. Sildenafil (Viagra) evokes retinal arteriolar dilation: dual pathways via NOS activation and phosphodiesterase inhibition. Invest. Ophthalmol. Vis. Sci., 2008, 49(2), 720-725.
[http://dx.doi.org/10.1167/iovs.07-1208] [PMID: 18235020]
[70]
Tetsi, L.; Charles, A.L.; Georg, I.; Goupilleau, F.; Lejay, A.; Talha, S.; Maumy-Bertrand, M.; Lugnier, C.; Geny, B. Effect of the phosphodiesterase 5 inhibitor sildenafil on ischemia-reperfusion-induced muscle mitochondrial dysfunction and oxidative stress. Antioxidants, 2019, 8(4), 93.
[http://dx.doi.org/10.3390/antiox8040093] [PMID: 30959961]
[71]
Olivares-González, L.; Martínez-Fernández de la Cámara, C.; Hervás, D.; Marín, M.P.; Lahoz, A.; Millán, J.M.; Rodrigo, R. cGMP-phosphodiesterase inhibition prevents hypoxia-induced cell death activation in porcine retinal explants. PLoS One, 2016, 11(11), e0166717.
[http://dx.doi.org/10.1371/journal.pone.0166717] [PMID: 27861632]
[72]
Comşa, Ş.; Cîmpean, A.M.; Raica, M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res., 2015, 35(6), 3147-3154.
[PMID: 26026074]
[73]
Hefti, M.M.; Hu, R.; Knoblauch, N.W.; Collins, L.C.; Haibe-Kains, B.; Tamimi, R.M.; Beck, A.H. Estrogen receptor negative/progesterone receptor positive breast cancer is not a reproducible subtype. Breast Cancer Res., 2013, 15(4), R68.
[http://dx.doi.org/10.1186/bcr3462] [PMID: 23971947]
[74]
Kumar, M.; Salem, K.; Tevaarwerk, A.J.; Strigel, R.M.; Fowler, A.M. Recent advances in imaging steroid hormone receptors in breast cancer. J. Nucl. Med., 2020, 61(2), 172-176.
[http://dx.doi.org/10.2967/jnumed.119.228858] [PMID: 31732674]
[75]
Brouckaert, O.; Paridaens, R.; Floris, G.; Rakha, E.; Osborne, K.; Neven, P. A critical review why assessment of steroid hormone receptors in breast cancer should be quantitative. Ann. Oncol., 2013, 24(1), 47-53.
[http://dx.doi.org/10.1093/annonc/mds238] [PMID: 22847811]
[76]
Jokar, F.; Mahabadi, J.A.; Salimian, M.; Taherian, A.; Hayat, S.M.G.; Sahebkar, A.; Atlasi, M.A. Differential expression of HSP90β in MDA-MB-231 and MCF-7 cell lines after treatment with doxorubicin. J. Pharmacopuncture, 2019, 22(1), 28-34.
[http://dx.doi.org/10.3831/KPI.2019.22.003] [PMID: 30988998]
[77]
Ghosh, K.; De, S.; Das, S.; Mukherjee, S.; Sengupta Bandyopadhyay, S. Withaferin A induces ROS-mediated paraptosis in human breast cancer cell-lines MCF-7 and MDA-MB-231. PLoS One, 2016, 11(12), e0168488.
[http://dx.doi.org/10.1371/journal.pone.0168488] [PMID: 28033383]
[78]
KS, U.S.; Govindaraju, K. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7). Appl. Surf. Sci., 2016, 371, 415-424.
[http://dx.doi.org/10.1016/j.apsusc.2016.03.004]
[79]
Grubczak, K.; Kretowska-Grunwald, A.; Groth, D.; Poplawska, I.; Eljaszewicz, A.; Bolkun, L.; Starosz, A.; Holl, J.M.; Mysliwiec, M.; Kruszewska, J.; Wojtukiewicz, M.Z.; Moniuszko, M. Differential response of MDA-MB-231 and MCF-7 breast cancer cells to in vitro inhibition with CTLA-4 and PD-1 through cancer-immune cells modified interactions. Cells, 2021, 10(8), 2044.
[http://dx.doi.org/10.3390/cells10082044] [PMID: 34440813]
[80]
Núñez-Iglesias, M.J.; Novio, S.; García, C.; Pérez-Muñuzuri, M.E.; Martínez, M.C.; Santiago, J.L.; Boso, S.; Gago, P.; Freire-Garabal, M. Co-adjuvant therapy efficacy of catechin and procyanidin B2 with docetaxel on hormone-related cancers in vitro. Int. J. Mol. Sci., 2021, 22(13), 7178.
[http://dx.doi.org/10.3390/ijms22137178] [PMID: 34281228]
[81]
Pronk, L.C.; Stoter, G.; Verweij, J. Docetaxel (Taxotere): Single agent activity, development of combination treatment and reducing side-effects. Cancer Treat. Rev., 1995, 21(5), 463-478.
[http://dx.doi.org/10.1016/0305-7372(95)90030-6] [PMID: 8556719]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy