Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design and Pharmacophore Study of Triazole Analogues as Aromatase Inhibitors

Author(s): Laxmi Banjare*

Volume 24, Issue 4, 2024

Published on: 02 November, 2023

Page: [288 - 303] Pages: 16

DOI: 10.2174/0118715206265278231026101739

Price: $65

Abstract

Background: In current scenario breast cancer measured as one of the dangerous health issues. An effective therapeutic class of drug known as aromatase inhibitors (AIs) is dominant against estrogen receptorpositive breast cancer. However, there is an urgent need to create target-specific AIs with better anti-breast cancer profiles due to the increased toxicity and adverse effects related to currently existing anti-breast cancer drugs.

Objectives: In the present study, we have designed of 100 novel tiazole analogues as aromatase inhibitors their pharmacophoric features were explored.

Method: Molecular docking was applied to a series of 4-substituted-1, 2, 3-triazoles containing letrozole for their aromatase inhibitory effects. The aromatase inhibitory activity of the compound in a series varies in the range of (IC50 = 0.008–31.26 μM). A hydrogen atom positioned at R1 of the triazole ring in compound (01) was responsible for the most potent compound (IC50 = 0.008 μM) in the series of 28 compounds as compared to letrozole. The self-organizing molecular field study was used to assess the molecular characteristics and biological activities of the compounds. The four models were developed using PLS and MLR methods. The PLS method was good for statistical analysis. The letrozole scaffold-based 100 compounds were designed by selecting an effective pharmacophore responsible for aromatase inhibitory activity. The designed compound was placed on the previous model as a test set, and its IC50 values were calculated.

Result: Hydrogen bonds were established between the potent molecule (01) and the essential residues Met 374 and Arg 115, which were responsible for the aromatase-inhibiting action. Cross-validated q2 (0.6349) & noncross- validated r2 (0.7163) were discovered in the statistical findings as having reliable predictive power. Among 100 designed compounds, seven compounds showed good aromatase inhibitory activities.

Conclusion: The additional final SOMFA model created for the interactions between the aromatase and the triazole inhibitors may be helpful for future modification and enhancement of the inhibitors of this crucial enzyme.

Graphical Abstract

[1]
Fourkala, E.O.; Blyuss, O.; Field, H.; Gunu, R.; Ryan, A.; Barth, J.; Jacobs, I.; Zaikin, A.; Dawnay, A.; Menon, U. Sex hormone measurements using mass spectrometry and sensitive extraction radioimmunoassay and risk of estrogen receptor negative and positive breast cancer: Case control study in UK collaborative cancer trial of ovarian cancer screening (UKCTOCS). Steroids, 2016, 110, 62-69.
[http://dx.doi.org/10.1016/j.steroids.2016.04.003] [PMID: 27091764]
[2]
Omoto, Y.; Iwase, H. Clinical significance of estrogen receptor β in breast and prostate cancer from biological aspects. Cancer Sci., 2015, 106(4), 337-343.
[http://dx.doi.org/10.1111/cas.12613] [PMID: 25611678]
[3]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[4]
Fourkala, E.O.; Zaikin, A.; Burnell, M.; Gentry-Maharaj, A.; Ford, J.; Gunu, R.; Soromani, C.; Hasenbrink, G.; Jacobs, I.; Dawnay, A.; Widschwendter, M.; Lichtenberg-Fraté, H.; Menon, U. Association of serum sex steroid receptor bioactivity and sex steroid hormones with breast cancer risk in postmenopausal women. Endocr. Relat. Cancer, 2012, 19(2), 137-147.
[http://dx.doi.org/10.1530/ERC-11-0310] [PMID: 22199143]
[5]
Henderson, D.; Habenicht, U.F.; Nishino, Y.; Etreby, M.F.E. Estrogens and benign prostatic hyperplasia: The basis for aromatase inhibitor therapy. Steroids, 1987, 50(1-3), 219-233.
[http://dx.doi.org/10.1016/0039-128X(83)90073-9] [PMID: 2460976]
[6]
Löhr, M.; McFadyen, M.C.; Murray, G.I.; Melvin, W.T. Cytochrome P450 enzymes and tumor therapy. Mol. Cancer Ther., 2004, 3(11), 1503-1504.
[http://dx.doi.org/10.1158/1535-7163.1503.3.11] [PMID: 15542789]
[7]
McFadyen, M.C.E.; Melvin, W.T.; Murray, G.I. Cytochrome P 450 enzymes: Novel options for cancer therapeutics. Mol. Cancer Ther., 2004, 3(3), 363-371.
[http://dx.doi.org/10.1158/1535-7163.363.3.3] [PMID: 15026557]
[8]
Miller, W.R. Aromatase inhibitors and breast cancer. Cancer Treat. Rev., 1997, 23(3), 171-187.
[http://dx.doi.org/10.1016/S0305-7372(97)90037-2] [PMID: 9251721]
[9]
Buzdar, A.U.; Jones, S.E.; Vogel, C.L.; Wolter, J.; Plourde, P.; Webster, A. A Phase III trial comparing anastrozole (1 and 10 milligrams), a potent and selective aromatase inhibitor, with megestrol acetate in postmenopausal women with advanced breast carcinoma. Cancer, 1997, 79(4), 730-739.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19970215)79:4<730:AID-CNCR10>3.0.CO;2-0] [PMID: 9024711]
[10]
Ingle, J.N.; Johnson, P.A.; Suman, V.J.; Gerstner, J.B.; Mailliard, J.A.; Camoriano, J.K.; Gesme, D.H., Jr; Loprinzi, C.L.; Hatfield, A.K.; Hartmann, L.C. A randomized Phase II trial of two dosage levels of letrozole as third-line hormonal therapy for women with metastatic breast carcinoma. Cancer, 1997, 80(2), 218-224.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19970715)80:2<218:AID-CNCR8>3.0.CO;2-P] [PMID: 9217033]
[11]
Ahmad, I. Shagufta, Recent developments in steroidal and nonsteroidal aromatase inhibitors for the chemoprevention of estrogen-dependent breast cancer. Eur. J. Med. Chem., 2015, 102, 375-386.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.010] [PMID: 26301554]
[12]
Bhatnagar, A.S.; Häusler, A.; Schieweck, K.; Lang, M.; Bowman, R. Highly selective inhibition of estrogen biosynthesis by CGS 20267, a new non-steroidal aromatase inhibitor. J. Steroid Biochem. Mol. Biol., 1990, 37(6), 1021-1027.
[http://dx.doi.org/10.1016/0960-0760(90)90460-3] [PMID: 2149502]
[13]
Bhatnagar, A.S. The early days of letrozole. Breast Cancer Res. Treat., 2007, 105(S1), 3-5.
[http://dx.doi.org/10.1007/s10549-007-9699-0] [PMID: 17912632]
[14]
Browne, L.J.; Gude, C.; Rodriguez, H.; Steele, R.E.; Bhatnager, A. Fadrozole hydrochloride: A potent, selective, nonsteroidal inhibitor of aromatase for the treatment of estrogen-dependent disease. J. Med. Chem., 1991, 34(2), 725-736.
[http://dx.doi.org/10.1021/jm00106a038] [PMID: 1825337]
[15]
Bhatnagar, A.S. The discovery and mechanism of action of letrozole. Breast Cancer Res. Treat., 2007, 105(S1), 7-17.
[http://dx.doi.org/10.1007/s10549-007-9696-3] [PMID: 17912633]
[16]
Bhatnagar, A.S.; Brodie, A.M.H.; Long, B.J.; Evans, D.B.; Miller, W.R. Intracellular aromatase and its relevance to the pharmacological efficacy of aromatase inhibitors. J. Steroid Biochem. Mol. Biol., 2001, 76(1-5), 199-202.
[http://dx.doi.org/10.1016/S0960-0760(01)00050-4] [PMID: 11384878]
[17]
Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J., 2011, 6(10), 2696-2718.
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
[18]
Marchand, P.; Le Borgne, M.; Palzer, M.; Le Baut, G.; Hartmann, R.W. Preparation and pharmacological profile of 7-(α-Azolylbenzyl)-1H-indoles and indolines as new aromatase inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(9), 1553-1555.
[http://dx.doi.org/10.1016/S0960-894X(03)00182-3] [PMID: 12699753]
[19]
Lézé, M.P.; Le Borgne, M.; Pinson, P.; Palusczak, A.; Duflos, M.; Le Baut, G.; Hartmann, R.W. Synthesis and biological evaluation of 5-[(aryl)(1H-imidazol-1-yl)methyl]-1H-indoles: Potent and selective aromatase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(5), 1134-1137.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.099] [PMID: 16380254]
[20]
Lézé, M.P.; Palusczak, A.; Hartmann, R.W.; Le Borgne, M. Synthesis of 6- or 4-functionalized indoles via a reductive cyclization approach and evaluation as aromatase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(16), 4713-4715.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.094] [PMID: 18640836]
[21]
Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
[22]
Neves, M.A.C.; Dinis, T.C.P.; Colombo, G.; Sá e Melo, M.L. Fast three dimensional pharmacophore virtual screening of new potent non-steroid aromatase inhibitors. J. Med. Chem., 2009, 52(1), 143-150.
[http://dx.doi.org/10.1021/jm800945c] [PMID: 19072235]
[23]
Prachayasittikul, V.; Worachartcheewan, A.; Shoombuatong, W.; Songtawee, N.; Simeon, S.; Prachayasittikul, V.; Nantasenamat, C. Computer-aided drug design of bioactive natural products. Curr. Top. Med. Chem., 2015, 15(18), 1780-1800.
[http://dx.doi.org/10.2174/1568026615666150506151101] [PMID: 25961523]
[24]
Prachayasittikul, V.; Pingaew, R.; Anuwongcharoen, N.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Discovery of novel 1,2,3-triazole derivatives as anticancer agents using QSAR and in silico structural modification. Springerplus, 2015, 4(1), 571.
[http://dx.doi.org/10.1186/s40064-015-1352-5] [PMID: 26543706]
[25]
Prachayasittikul, V.; Pingaew, R.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, anticancer activity and QSAR study of 1,4-naphthoquinone derivatives. Eur. J. Med. Chem., 2014, 84, 247-263.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.024] [PMID: 25019480]
[26]
Pingaew, R.; Prachayasittikul, V.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Novel 1,4-naphthoquinone-based sulfonamides: Synthesis, QSAR, anticancer and antimalarial studies. Eur. J. Med. Chem., 2015, 103, 446-459.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.001] [PMID: 26397393]
[27]
Robinson, D.D.; Winn, P.J.; Lyne, P.D.; Richards, W.G. Self-organizing molecular field analysis: A tool for structure-activity studies. J. Med. Chem., 1999, 42(4), 573-583.
[http://dx.doi.org/10.1021/jm9810607] [PMID: 10052964]
[28]
Soultan, A.H.; Richard, R.; Touré, M.M.; Picot, N.; Richard, R.; Cuperlovic-Culf, M. Synthesis and structureeactivity relationship of 1- and 2-substituted- 1,2,3-triazole letrozole-based analogues as aromatase inhibitors. Eur. J. Med. Chem., 2011, 46, 4010-4024.
[29]
Awasthi, M.; Singh, S.; Pandey, V.P.; Dwivedi, U.N. Molecular docking and 3D-QSAR-based virtual screening of flavonoids as potential aromatase inhibitors against estrogen-dependent breast cancer. J. Biomol. Struct. Dyn., 2015, 33(4), 804-819.
[http://dx.doi.org/10.1080/07391102.2014.912152] [PMID: 24702656]
[30]
Verma, S.K.; Thareja, S. Molecular docking assisted 3D-QSAR study of benzylidene-2,4-thiazolidinedione derivatives as PTP-1B inhibitors for the management of Type-2 diabetes mellitus. RSC Advances, 2016, 6(40), 33857-33867.
[http://dx.doi.org/10.1039/C6RA03067J]
[31]
Verma, S.K.; Rajpoot, T.; Gautam, M.K.; Jain, A.K.; Thareja, S. Design of novel biphenyl-2-thioxothiazolidin-4-one derivatives as potential protein tyrosine phosphatase (PTP)-1B inhibitors using molecular docking study. Lett. Drug Des. Discov., 2016, 13(4), 295-300.
[http://dx.doi.org/10.2174/1570180812666150819002954]
[32]
Protein Data Bank. 2022. Available From: http://www.rcsb.org/pdb/explore/explore.do?structureId=3S79 (Accessed January 01, 2022).
[33]
Verma, S.K.; Sharma, S.K.; Thareja, S. Docking study of novel pyrrolidine derivatives as potential dipeptidyl peptidase-IV (DPPIV) inhibitors. Lett. Drug Des. Discov., 2015, 12, 284-291.
[34]
Thareja, S.; Verma, S.K.; Haksar, D.; Bhardwaj, T.R.; Kumar, M. Discovery of novel cinnamylidene-thiazolidinedione derivatives as PTP-1B inhibitors for the management of type 2 diabetes. RSC Advances, 2016, 6(110), 108928-108940.
[http://dx.doi.org/10.1039/C6RA24501C]
[35]
Al-Sha’er, M.A.; Mansi, I.; Hakooz, N. Docking and pharmacophore mapping of halogenated pyridinium derivatives as heat shock protein 90. J. Chem. Pharm. Res., 2015, 103-112.
[36]
Verma, S.K.; Rajpoot, T.; Gautam, M.K.; Jain, A.K.; Thareja, S. Design of novel biphenyl-2-thioxothiazolidin-4-one derivatives as potential protein tyrosine phosphatase (PTP)-1B inhibitors using molecular docking study. Lett. Drug Des. Discov., 2016, 13, 295-300.
[http://dx.doi.org/10.2174/1570180812666150819002954]
[37]
Thareja, S.; Verma, S.K.; Haksar, D.; Bhardwaj, T.R.; Kumar, M. Discovery of novel cinnamylidene-thiazolidinedione derivatives as PTP-1B inhibitors for the management of type 2 diabetes. RSC Adv., 2016, 6(110), 108928-108940.
[http://dx.doi.org/10.1039/C6RA24501C]
[38]
Golbraikh, A.; Tropsha, A. Beware of q2. J. Mol. Graph. Model., 2002, 20(4), 269-276.
[http://dx.doi.org/10.1016/S1093-3263(01)00123-1] [PMID: 11858635]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy