Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Mini-Review Article

Phytochemicals and their Potential Mechanisms against Insulin Resistance

Author(s): Pranay Wal*

Volume 20, Issue 7, 2024

Published on: 08 November, 2023

Article ID: e081123223322 Pages: 13

DOI: 10.2174/0115733998262924231020083353

Price: $65

Abstract

Insulin's inception dates back to 1921 and was unveiled through a momentous revelation. Diabetes is a dangerous, long-term disease in which the body fails to generate enough insulin or utilize the insulin it creates adequately. This causes hyperglycemia, a state of high blood sugar levels, which can even put a person into a coma if not managed. Activation of the insulin receptor corresponds to two crucial metabolic functions, i.e., uptake of glucose and storage of glycogen. Type 2 diabetes mellitus (T2DM) exists as one of the most challenging medical conditions in the 21st century. The sedentary lifestyle and declining quality of food products have contributed to the rapid development of metabolic disorders. Hence, there is an urgent need to lay some reliable, significant molecules and modalities of treatment to combat and manage this epidemic. In this review, we have made an attempt to identify and enlist the major phytoconstituents along with the associated sources and existing mechanisms against insulin resistance. The conducted study may offer potential sustainable solutions for developing and formulating scientifically validated molecules and phytoconstituents as formulations for the management of this metabolic disorder.

[1]
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14(2): 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[2]
Garg SK, Rewers AH, Akturk HK. Ever-increasing insulin-requiring patients globally. Diabetes Technol Ther 2018; 20(S2): S2-1-4.
[http://dx.doi.org/10.1089/dia.2018.0101] [PMID: 29873518]
[3]
Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab 2007; 5(4): 237-52.
[http://dx.doi.org/10.1016/j.cmet.2007.03.006] [PMID: 17403369]
[4]
Zimmet PZ, Magliano DJ, Herman WH, Shaw JE. Diabetes: A 21st century challenge. Lancet Diabetes Endocrinol 2014; 2(1): 56-64.
[http://dx.doi.org/10.1016/S2213-8587(13)70112-8] [PMID: 24622669]
[5]
Ozougwu O. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J Physiol Pathophysiol 2013; 4(4): 46-57.
[http://dx.doi.org/10.5897/JPAP2013.0001]
[6]
American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2020. Diabetes Care 2020; 43 (Suppl. 1): S14-31.
[http://dx.doi.org/10.2337/dc20-S002] [PMID: 31862745]
[7]
Handorf AM, Sollinger HW, Alam T. Insulin gene therapy for type 1 diabetes mellitus. Exp Clin Transplant 2015; 13 (Suppl. 1): 37-45.
[http://dx.doi.org/10.6002/ect.mesot2014.L67] [PMID: 25894126]
[8]
de Alba Garcia JG, Rocha ALS, Lopez I, Baer RD, Dressler W, Weller SC. “Diabetes is my companion”: Lifestyle and self-management among good and poor control Mexican diabetic patients. Soc Sci Med 2007; 64(11): 2223-35.
[http://dx.doi.org/10.1016/j.socscimed.2007.02.001] [PMID: 17383785]
[9]
Zhang M, Lv XY, Li J, Xu ZG, Chen L. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res 2008; 2008: 1-9.
[http://dx.doi.org/10.1155/2008/704045] [PMID: 19132099]
[10]
Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci 2014; 11(11): 1185-200.
[http://dx.doi.org/10.7150/ijms.10001] [PMID: 25249787]
[11]
Cooke DW, Plotnick L. Type 1 diabetes mellitus in pediatrics. Pediatr Rev 2008; 29(11): 374-85.
[http://dx.doi.org/10.1542/pir.29.11.374] [PMID: 18977856]
[12]
Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med 2016; 48(3): e219.
[http://dx.doi.org/10.1038/emm.2016.6] [PMID: 26964835]
[13]
Jennings RE, Berry AA, Strutt JP, Gerrard DT, Hanley NA. Human Pancreas Development. Development 2015; 142(18): 3126-7.
[14]
Pandeti S, Arha D, Mishra A, et al. Glucose uptake stimulatory potential and antidiabetic activity of the Arnebin-1 from Arnabia nobelis. Eur J Pharmacol 2016; 789: 449-57.
[http://dx.doi.org/10.1016/j.ejphar.2016.08.010] [PMID: 27521155]
[15]
Kaul K, Tarr JM, Ahmad SI, Kohner EM, Chibber R. Introduction to Diabetes Mellitus. Adv Exp Med Biol 2013; 771: 1-11.
[http://dx.doi.org/10.1007/978-1-4614-5441-0_1] [PMID: 23393665]
[16]
Chambers AP, Sorrell JE, Haller A, et al. The role of pancreatic preproglucagon in glucose homeostasis in mice. Cell Metab 2017; 25(4): 927-934.e3.
[http://dx.doi.org/10.1016/j.cmet.2017.02.008] [PMID: 28325479]
[17]
Kharroubi AT, Darwish HM. Diabetes mellitus: The epidemic of the century. World J Diabetes 2015; 6(6): 850-67.
[http://dx.doi.org/10.4239/wjd.v6.i6.850] [PMID: 26131326]
[18]
Shirsath NR, Goswami AK. Natural phytochemicals and their therapeutic role in management of several diseases: A review. Curr Tradit Med 2019; 2019: 2215083805666190807111817.
[http://dx.doi.org/10.2174/2215083805666190807111817]
[19]
Alam S, Sarker MMR, Sultana TN, et al. Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Front Endocrinol 2022; 13: 800714.
[20]
Rafieian-kopaei M, Nasri H, Shirzad H, Baradaran A. Antioxidant plants and diabetes mellitus. J Res Med Sci 2015; 20(5): 491-502.
[http://dx.doi.org/10.4103/1735-1995.163977] [PMID: 26487879]
[21]
Huseini H, Kianbakht S, Hajiaghaee R, Dabaghian F. Anti-hyperglycemic and anti-hypercholesterolemic effects of Aloe vera leaf gel in hyperlipidemic type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Planta Med 2012; 78(4): 311-6.
[http://dx.doi.org/10.1055/s-0031-1280474] [PMID: 22198821]
[22]
McKinlay J, Marceau L. US public health and the 21st century: Diabetes mellitus. Lancet 2000; 356(9231): 757-61.
[http://dx.doi.org/10.1016/S0140-6736(00)02641-6] [PMID: 11085708]
[23]
Ghorbani A. Best herbs for managing diabetes: A review of clinical studies. Braz J Pharm Sci 2013; 49(3): 413-22.
[http://dx.doi.org/10.1590/S1984-82502013000300003]
[24]
Gupta A, Gupta R, Lal B. Effect of Trigonella foenum-graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: A double blind placebo controlled study. J Assoc Physicians India 2001; 49: 1057-61.
[PMID: 11868855]
[25]
Kim NY, Thomas SS, Hwang DI, Lee JH, Kim KA, Cha YS. Anti-obesity effects of Morus alba L. and aronia melanocarpa in a high-fat diet-induced obese C57BL/6J mouse model. Foods 2021; 10(8): 1914.
[http://dx.doi.org/10.3390/foods10081914] [PMID: 34441691]
[26]
Desai SD, Saheb SH, Das KK, Haseena S. Phytochemical analysis of Nigella sativa and it’s antidiabetic effect. J Pharm Sci Res 2015.
[27]
Yagi A, Hegazy S, Kabbash A, Wahab EAE. Possible hypoglycemic effect of Aloe vera L. high molecular weight fractions on type 2 diabetic patients. Saudi Pharm J 2009; 17(3): 209-15.
[http://dx.doi.org/10.1016/j.jsps.2009.08.007] [PMID: 23964163]
[28]
Muñiz-Ramirez A, Perez RM, Garcia E, Garcia FE. Antidiabetic activity of Aloe vera leaves. Evid Based Complement Alternat Med 2020; 2020: 6371201.
[http://dx.doi.org/10.1155/2020/6371201]
[29]
Beppu H, Shimpo K, Chihara T, et al. Antidiabetic effects of dietary administration of Aloe arborescens Miller components on multiple low-dose streptozotocin-induced diabetes in mice: Investigation on hypoglycemic action and systemic absorption dynamics of aloe components. J Ethnopharmacol 2006; 103(3): 468-77.
[http://dx.doi.org/10.1016/j.jep.2005.10.034] [PMID: 16406411]
[30]
Moniruzzaman M, Rokeya B, Ahmed S, Bhowmik A, Khalil M, Gan S. In vitro antioxidant effects of Aloe barbadensis Miller extracts and the potential role of these extracts as antidiabetic and antilipidemic agents on streptozotocin-induced type 2 diabetic model rats. Molecules 2012; 17(11): 12851-67.
[http://dx.doi.org/10.3390/molecules171112851] [PMID: 23117427]
[31]
Hammeso WW, Emiru YK, Getahun KA, Kahaliw W. Antidiabetic and antihyperlipidemic activities of the leaf latex extract of aloe megalacantha baker (Aloaceae) in streptozotocin-induced diabetic model. Evidence-based Complement Altern Med 2019; 2019: 8263786.
[http://dx.doi.org/10.1155/2019/8263786]
[32]
Perez-Gutierrez RM, Damian-Guzman M. Meliacinolin: A potent α-glucosidase and α-amylase inhibitor isolated from Azadirachta indica leaves and in vivo antidiabetic property in streptozotocin-nicotinamide-induced type 2 diabetes in mice. Biol Pharm Bull 2012; 35(9): 1516-24.
[http://dx.doi.org/10.1248/bpb.b12-00246] [PMID: 22975503]
[33]
Dholi SK, Raparla R, Mankala SK, Nagappan K. In vivo antidiabetic evaluation of neem leaf extract in alloxan induced rats. J Appl Pharm Sci 2011.
[34]
Jalil A, Ashfaq UA, Shahzadi S, et al. Screening and design of anti-diabetic compounds sourced from the leaves of neem (Azadirachta indica). Bioinformation 2013; 9(20): 1031-5.
[http://dx.doi.org/10.6026/97320630091031] [PMID: 24497731]
[35]
Ezeigwe OC. Antidiabetic property and antioxidant potentials of ethanol extract of Azadirachta indica leaf in streptozotocin-induced diabetic rats. Biosci J 2020.
[36]
Ahmad Z, Zamhuri KF, Yaacob A, et al. In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd). Molecules 2012; 17(8): 9631-40.
[http://dx.doi.org/10.3390/molecules17089631] [PMID: 22885359]
[37]
Fernandes NPC, Lagishetty CV, Panda VS, Naik SR. An experimental evaluation of the antidiabetic and antilipidemic properties of a standardized Momordica charantia fruit extract. BMC Complement Altern Med 2007; 7(1): 29.
[http://dx.doi.org/10.1186/1472-6882-7-29] [PMID: 17892543]
[38]
Leung L, Birtwhistle R, Kotecha J, Hannah S, Cuthbertson S. Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): A mini review. Br J Nutr 2009; 102(12): 1703-8.
[http://dx.doi.org/10.1017/S0007114509992054] [PMID: 19825210]
[39]
Saifi A, Namdeo KP, Chauhan R, Dwivedi J. Evaluation of pharmacognostical, phytochemical and antidiabetic activity fruits of Momordica charantia linn. Asian J Pharm Clin Res 2014; 7(3): 152-6.
[40]
Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2012; 2(4): 320-30.
[http://dx.doi.org/10.1016/S2221-1691(12)60032-X] [PMID: 23569923]
[41]
Eidi A, Eidi M, Esmaeili E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 2006; 13(9-10): 624-9.
[http://dx.doi.org/10.1016/j.phymed.2005.09.010] [PMID: 17085291]
[42]
Masjedi F, Gol A, Dabiri S. Preventive effect of garlic (Allium sativum L.) on serum biochemical factors and histopathology of pancreas and liver in streptozotocin- induced diabetic rats. Iran J Pharm Res 2013; 12(3): 325-38.
[PMID: 24250639]
[43]
Liu CT, Hsu TW, Chen KM, Tan YP, Lii CK, Sheen LY. The antidiabetic effect of garlic oil is associated with ameliorated oxidative stress but not ameliorated level of pro-inflammatory cytokines in skeletal muscle of streptozotocin-induced diabetic rats. J Tradit Complement Med 2012; 2(2): 135-44.
[http://dx.doi.org/10.1016/S2225-4110(16)30087-6] [PMID: 24716126]
[44]
Swaroop A, Bagchi M, Kumar P, et al. Safety, efficacy and toxicological evaluation of a novel, patented anti-diabetic extract of Trigonella Foenum-Graecum seed extract (Fenfuro). Toxicol Mech Methods 2014; 24(7): 495-503.
[http://dx.doi.org/10.3109/15376516.2014.943443] [PMID: 25045923]
[45]
Helmy N, El-Soud A, Khalil MY, et al. Antidiabetic effects of fenugreek alkaliod extract in streptozotocin induced hyperglycemic Rats. J Appl Sci Res 2007.
[46]
Kumar GS, Shetty AK, Sambaiah K, Salimath PV. Antidiabetic property of fenugreek seed mucilage and spent turmeric in streptozotocin-induced diabetic rats. Nutr Res 2005; 25(11): 1021-8.
[http://dx.doi.org/10.1016/j.nutres.2005.09.012]
[47]
Baset M, Ali T, Elshamy H, et al. Anti-diabetic effects of fenugreek (Trigonella foenum-graecum): A comparison between oral and intraperitoneal administration - an animal study. Int J Funct Nutr 2020.
[http://dx.doi.org/10.3892/ijfn.2020.2]
[48]
Przeor M. Some common medicinal plants with antidiabetic activity, known and available in Europe. Pharmaceuticals 2022; 15(1): 65.
[http://dx.doi.org/10.3390/ph15010065] [PMID: 35056122]
[49]
Attele AS, Zhou YP, Xie JT, et al. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 2002; 51(6): 1851-8.
[http://dx.doi.org/10.2337/diabetes.51.6.1851] [PMID: 12031973]
[50]
Liu Z, Li W, Li X, et al. Antidiabetic effects of malonyl ginsenosides from Panax ginseng on type 2 diabetic rats induced by high-fat diet and streptozotocin. J Ethnopharmacol 2013; 145(1): 233-40.
[http://dx.doi.org/10.1016/j.jep.2012.10.058] [PMID: 23147499]
[51]
Murthy HN, Dandin VS, Lee EJ, Paek KY. Efficacy of ginseng adventitious root extract on hyperglycemia in streptozotocin-induced diabetic rats. J Ethnopharmacol 2014; 153(3): 917-21.
[http://dx.doi.org/10.1016/j.jep.2014.03.062] [PMID: 24709314]
[52]
Vafaeipour Z, Razavi BM, Hosseinzadeh H. Effects of turmeric (Curcuma longa) and its constituent (curcumin) on the metabolic syndrome: An updated review. J Integr Med 2022; 20(3): 193-203.
[http://dx.doi.org/10.1016/j.joim.2022.02.008] [PMID: 35292209]
[53]
Kuroda M, Mimaki Y, Nishiyama T, et al. Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic KK-Ay mice. Biol Pharm Bull 2005; 28(5): 937-9.
[http://dx.doi.org/10.1248/bpb.28.937] [PMID: 15863912]
[54]
Sayeli VK, Shenoy AK. Antidiabetic effect of bio-enhanced preparation of turmeric in streptozotocin-nicotinamide induced type 2 diabetic Wistar rats. J Ayurveda Integr Med 2021; 12(3): 474-9.
[http://dx.doi.org/10.1016/j.jaim.2021.04.010] [PMID: 34353691]
[55]
Alam F, Islam MA, Kamal MA, Gan SH. Updates on managing type 2 diabetes mellitus with natural products: Towards antidiabetic drug development. Curr Med Chem 2016; 2016: 0929867323666160813222436.
[http://dx.doi.org/10.2174/0929867323666160813222436] [PMID: 27528060]
[56]
Srinivasan P, Vijayakumar S, Kothandaraman S, Palani M. Anti-diabetic activity of quercetin extracted from phyllanthus emblica l. fruit: In silico and in vivo approaches. J Pharm Anal 2018; 8(2): 109-18.
[http://dx.doi.org/10.1016/j.jpha.2017.10.005]
[57]
Elobeid MA, Ahmed EA. Antidiabetic efficacy of aqueous fruit extract of amla (Emblica officinalis, Gaertn) in streptozotocin-induced diabetes mellitus in male rats. Trop J Pharm Res 2015; 14(5): 801.
[http://dx.doi.org/10.4314/tjpr.v14i5.9]
[58]
Rao TP, Sakaguchi N, Juneja LR, Wada E, Yokozawa T. Amla (Emblica officinalis Gaertn.) extracts reduce oxidative stress in streptozotocin-induced diabetic rats. J Med Food 2005; 8(3): 362-8.
[http://dx.doi.org/10.1089/jmf.2005.8.362] [PMID: 16176148]
[59]
Verspohl EJ, Bauer K, Neddermann E. Antidiabetic effect of cinnamomum cassia and cinnamomum zeylanicum in vivo and in vitro. Phytother Res 2005; 19(3): 203-6.
[http://dx.doi.org/10.1002/ptr.1643]
[60]
Kim SH, Hyun SH, Choung SY. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J Ethnopharmacol 2006; 104(1-2): 119-23.
[http://dx.doi.org/10.1016/j.jep.2005.08.059] [PMID: 16213119]
[61]
Ping H, Zhang G, Ren G. Antidiabetic effects of cinnamon oil in diabetic KK-Ay mice. Food Chem Toxicol 2010; 48(8-9): 2344-9.
[http://dx.doi.org/10.1016/j.fct.2010.05.069] [PMID: 20561948]
[62]
Cheng DM, Kuhn P, Poulev A, Rojo LE, Lila MA, Raskin I. In vivo and in vitro antidiabetic effects of aqueous cinnamon extract and cinnamon polyphenol-enhanced food matrix. Food Chem 2012; 135(4): 2994-3002.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.117] [PMID: 22980902]
[63]
Maideen NMP. Antidiabetic activity of nigella sativa (black seeds) and its active constituent (Thymoquinone): A review of human and experimental animal studies. Chonnam Med J 2021; 57(3): 169-75.
[http://dx.doi.org/10.4068/cmj.2021.57.3.169] [PMID: 34621636]
[64]
Bensiameur-Touati K. In vivo subacute toxicity and antidiabetic effect of aqueous extract of Nigella sativa. Evid Based Complement Alternat Med 2017; 2017: 8427034.
[http://dx.doi.org/10.1155/2017/8427034]
[65]
Saeed SA, Anwar N, Jabeen Q, Gilani AH. Aqueous extract of nigella sativa seeds suppresses testicular steroidogenesis in mice leydig cells in vitro. Iran J Pharmacol Ther 2013; 12(1): 5.
[66]
Banjari I, Misir A, Šavikin K, et al. Antidiabetic effects of aronia melanocarpa and its other therapeutic properties. Front Nutr 2017; 4: 53.
[http://dx.doi.org/10.3389/fnut.2017.00053] [PMID: 29164127]
[67]
Valcheva-Kuzmanova S, Kuzmanov K, Tancheva S, Belcheva A. Hypoglycemic and hypolipidemic effects of Aronia melanocarpa fruit juice in streptozotocin-induced diabetic rats. Methods Find Exp Clin Pharmacol 2007; 29(2): 101-5.
[http://dx.doi.org/10.1358/mf.2007.29.2.1075349] [PMID: 17440626]
[68]
Raczkowska E, Nowicka P. Wojdyło A, Styczyńska M, Lazar Z. Chokeberry pomace as a component shaping the content of bioactive compounds and nutritional, health-promoting (anti-diabetic and antioxidant) and sensory properties of shortcrust pastries sweetened with sucrose and erythritol. Antioxidants 2022; 11(2): 190.
[http://dx.doi.org/10.3390/antiox11020190] [PMID: 35204072]
[69]
Gajic D, Saksida T, Koprivica I, et al. Chokeberry (Aronia melanocarpa) fruit extract modulates immune response in vivo and in vitro. J Funct Foods 2020; 66: 103836.
[http://dx.doi.org/10.1016/j.jff.2020.103836]
[70]
Uuh-Narvaez JJ, Negrete-León E, Acevedo-Fernández JJ, Segura-Campos MR. Antihyperglycemic and hypoglycemic activity of Mayan plant foods in rodent models. J Sci Food Agric 2021; 101(10): 4193-200.
[http://dx.doi.org/10.1002/jsfa.11057] [PMID: 33420740]
[71]
Stohs SJ. Safety and efficacy of bixa orellana (achiote, annatto) leaf extracts. Phytother Res 2014; 2014: 5088.
[http://dx.doi.org/10.1002/ptr.5088]
[72]
Kim Y, Hirai S, Goto T, et al. Potent pparα activator derived from tomato juice, 13-oxo-9,11-octadecadienoic acid, decreases plasma and hepatic triglyceride in obese diabetic mice. PLoS One 2012; 7(2): e31317.
[http://dx.doi.org/10.1371/journal.pone.0031317]
[73]
Eggen T, Lillo C, Antidiabetic II. Antidiabetic II drug metformin in plants: Uptake and translocation to edible parts of cereals, oily seeds, beans, tomato, squash, carrots, and potatoes. J Agric Food Chem 2012; 60(28): 6929-35.
[http://dx.doi.org/10.1021/jf301267c] [PMID: 22712757]
[74]
Yani F, Bellatasie R, Fauziah F. Antidiabetic potential of G. Mangostana extract and α-mangostin compounds from mangosteen (Garcinia mangostana Linn.). J Pharm Pharmacol 2021; 0990.
[http://dx.doi.org/10.36349/easjpp.2021.v03i05.001]
[75]
Zhao X, Liu J. Chemical constituents from the fruits of ligustrum lucidum w.t.aiton and their role on the medicinal treatment. Nat Prod Commun 2020.
[76]
Nagmoti DM, Kothavade PS, Bulani VD, Gawali NB, Juvekar AR. Antidiabetic and antihyperlipidemic activity of Pithecellobium dulce (Roxb.) Benth seeds extract in streptozotocin-induced diabetic rats. Eur J Integr Med 2015; 7(3): 263-73.
[http://dx.doi.org/10.1016/j.eujim.2015.01.001]
[77]
Setyaningsih EP, Saputri FC, Mun’im A. The antidiabetic effectivity of indonesian plants extracts via DPP-IV inhibitory mechanism. J Young Pharm 2019; 11(2): 161-4.
[http://dx.doi.org/10.5530/jyp.2019.11.34]
[78]
Xue J, Ding W, Liu Y. Anti-diabetic effects of emodin involved in the activation of PPARγ on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice. Fitoterapia 2010; 81(3): 173-7.
[http://dx.doi.org/10.1016/j.fitote.2009.08.020] [PMID: 19699280]
[79]
Gandhi GR, Vanlalhruaia P, Stalin A, Irudayaraj SS, Ignacimuthu S, Paulraj MG. Polyphenols-rich Cyamopsis tetragonoloba (L.) Taub. beans show hypoglycemic and β-cells protective effects in type 2 diabetic rats. Food Chem Toxicol 2014; 66: 358-65.
[http://dx.doi.org/10.1016/j.fct.2014.02.001] [PMID: 24525096]
[80]
Takimoto T, Kanbayashi Y, Toyoda T, et al. 4β-Hydroxywithanolide E isolated from Physalis pruinosa calyx decreases inflammatory responses by inhibiting the NF-κB signaling in diabetic mouse adipose tissue. Int J Obes 2014; 38(11): 1432-9.
[http://dx.doi.org/10.1038/ijo.2014.33] [PMID: 24566854]
[81]
Xiong M, Huang Y, Liu Y, et al. Antidiabetic activity of ergosterol from pleurotus ostreatus in KK‐Ay mice with spontaneous type 2 diabetes mellitus. Mol Nutr Food Res 2018; 62(3): 1700444.
[http://dx.doi.org/10.1002/mnfr.201700444] [PMID: 29080247]
[82]
Cui L, Wang J, Wang M, et al. Chemical composition and glucose uptake effect on 3T3-L1 adipocytes of Ligustrum lucidum Ait. flowers. Food Sci Hum Wellness 2020; 9(2): 124-9.
[http://dx.doi.org/10.1016/j.fshw.2020.02.002]
[83]
Mazumder K, Rabiul Hossain M, Aktar A, Dash R, Farahnaky A. Biofunctionalities of unprocessed and processed flours of Australian lupin cultivars: Antidiabetic and organ protective potential studies. Food Res Int 2021; 147: 110536.
[http://dx.doi.org/10.1016/j.foodres.2021.110536] [PMID: 34399513]
[84]
Ferreira EB, Fernandes LC, Galende SB, Cortez DAG, Bazotte RB. Hypoglycemic effect of the hydroalcoholic extract of leaves of Averrhoa carambola L. (Oxalidaceae). Rev Bras Farmacogn 2008; 18(3)
[http://dx.doi.org/10.1590/S0102-695X2008000300005]
[85]
Lakmal K, Yasawardene P, Jayarajah U, Seneviratne SL. Nutritional and medicinal properties of Star fruit (Averrhoa carambola): A review. Food Sci Nutr 2021; 9(3): 1810-23.
[http://dx.doi.org/10.1002/fsn3.2135] [PMID: 33747490]
[86]
Tangka J, Barung EN, Lyrawati D, Soeatmadji D, Nurdiana N. DPP-IV inhibitory activity of the ethanolic extract of red gedi leaves Abelmoschus manihot L. Medic. Open Access Maced J Med Sci 2022; 10(A): 207-13.
[http://dx.doi.org/10.3889/oamjms.2022.8356]
[87]
Luan F, Wu Q, Yang Y, et al. Traditional uses, chemical constituents, biological properties, clinical settings, and toxicities of Abelmoschus manihot L.: A comprehensive review. Front Pharmacol 2020; 11: 1068.
[http://dx.doi.org/10.3389/fphar.2020.01068] [PMID: 32973492]
[88]
Zhou L, An XF, Teng SC, et al. Pretreatment with the total flavone glycosides of Flos Abelmoschus manihot and hyperoside prevents glomerular podocyte apoptosis in streptozotocin-induced diabetic nephropathy. J Med Food 2012; 15(5): 461-8.
[http://dx.doi.org/10.1089/jmf.2011.1921] [PMID: 22439874]
[89]
Lertpatipanpong P, Janpaijit S, Park EY, Kim CT, Baek SJ. Potential anti-diabetic activity of Pueraria lobata flower (flos puerariae) extracts. Molecules 2020; 25(17): 3970.
[http://dx.doi.org/10.3390/molecules25173970] [PMID: 32878147]
[90]
Ekayanti M, Sauriasari R, Elya B. Dipeptidyl peptidase iv inhibitory activity of fraction from white tea ethanolic extract (Camellia sinensis (L.) kuntze) ex vivo. Pharmacogn J 2018.
[http://dx.doi.org/10.5530/pj.2018.1.32]
[91]
Ardiana L, Sauriasari R, Elya B. Antidiabetic activity studies of white tea (Camellia sinensis (L.) O. Kuntze) ethanolic extracts in streptozotocin-nicotinamide induced diabetic rats. Pharmacogn J 2018.
[http://dx.doi.org/10.5530/pj.2018.1.31]
[92]
Kim HJ, Kim D, Yoon H, Choi CS, Oh YS, Jun HS. Prevention of oxidative stress-induced pancreatic beta cell damage by Broussonetia kazinoki siebold fruit extract via the ERK-Nox4 pathway. Antioxidants 2020; 9(5): 406.
[http://dx.doi.org/10.3390/antiox9050406] [PMID: 32397640]
[93]
Karim N, Rahman A, Chanudom L, Thongsom M, Tangpong J. Mangosteen Vinegar Rind from Garcinia mangostana Prevents High‐Fat Diet and Streptozotocin‐Induced Type II Diabetes Nephropathy and Apoptosis. J Food Sci 2019; 84(5): 1208-15.
[http://dx.doi.org/10.1111/1750-3841.14511] [PMID: 31012974]
[94]
Qin N, Hu X, Li S, et al. Hypoglycemic effect of silychristin A from Silybum marianum fruit via protecting pancreatic islet β cells from oxidative damage and inhibiting α -glucosidase activity in vitro and in rats with type 1 diabetes. J Funct Foods 2017; 38: 168-79.
[http://dx.doi.org/10.1016/j.jff.2017.09.013]
[95]
Marmouzi I, Bouyahya A, Ezzat SM, El Jemli M, Kharbach M. The food plant Silybum marianum (L.) Gaertn.: Phytochemistry, Ethnopharmacology and clinical evidence. J Ethnopharmacol 2021; 265: 113303.
[http://dx.doi.org/10.1016/j.jep.2020.113303] [PMID: 32877720]
[96]
Enoki T, Ohnogi H, Nagamine K, et al. Antidiabetic activities of chalcones isolated from a Japanese Herb, Angelica keiskei. J Agric Food Chem 2007; 55(15): 6013-7.
[http://dx.doi.org/10.1021/jf070720q] [PMID: 17583349]
[97]
Kweon M, Lee H, Park C, Choi YH, Ryu JH. A chalcone from ashitaba (Angelica keiskei) stimulates myoblast differentiation and inhibits dexamethasone-induced muscle atrophy. Nutrients 2019; 11(10): 2419.
[http://dx.doi.org/10.3390/nu11102419] [PMID: 31658768]
[98]
Gaur R, Yadav KS, Verma RK, Yadav NP, Bhakuni RS. In vivo anti-diabetic activity of derivatives of isoliquiritigenin and liquiritigenin. Phytomedicine 2014; 21(4): 415-22.
[http://dx.doi.org/10.1016/j.phymed.2013.10.015] [PMID: 24262065]
[99]
Hasan MK, Ara I, Mondal MSA, Kabir Y. Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon 2021; 7(6): e07240.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07240]
[100]
Mai TT, Chuyen NV. Anti-hyperglycemic activity of an aqueous extract from flower buds of Cleistocalyx operculatus (Roxb.) Merr and Perry. Biosci Biotechnol Biochem 2007; 71(1): 69-76.
[http://dx.doi.org/10.1271/bbb.60373] [PMID: 17213665]
[101]
Tarigan C, Pramastya H, Insanu M, Fidrianny I. Syzygium samarangense: review of phytochemical compounds and pharmacological activities. Biointerface Res Appl Chem 2022.
[102]
Kozuharova E, Matkowski A, Woźniak D, et al. Amorpha fruticosa – a noxious invasive alien plant in Europe or a medicinal plant against metabolic disease? Front Pharmacol 2017; 8: 333.
[http://dx.doi.org/10.3389/fphar.2017.00333] [PMID: 28642702]
[103]
Kamboj J. In vivo anti-diabetic and anti-oxidant potential of psoralea corylifolia seeds in streptozotocin induced type-2 diabetic rats. J Health Sci 2011; 57(3): 225-35.
[http://dx.doi.org/10.1248/jhs.57.225]
[104]
Singh N, Gautam GK, Ved A, Shukla KS. Anti diabetic evaluation of methanolic extract of Psoralea corylifolia L. & Psoralea esculenta L. Seeds in streptozotocin induced diabetic rats and histopathological changes in diabetic rats pancreas: A comparative study. Nat Prod J 2020; 2020: 2210315510999201230114214.
[http://dx.doi.org/10.2174/2210315510999201230114214]
[105]
Pichiah PBT, Moon HJ, Park JE, Moon YJ, Cha YS. Ethanolic extract of seabuckthorn (Hippophae rhamnoides L.) prevents high-fat diet–induced obesity in mice through down-regulation of adipogenic and lipogenic gene expression. Nutr Res 2012; 32(11): 856-64.
[http://dx.doi.org/10.1016/j.nutres.2012.09.015] [PMID: 23176796]
[106]
Panossian A, Wagner H. From traditional to evidence-based use of Hippophae rhamnoides L.: Chemical composition, experimental, and clinical pharmacology of sea buckthorn berries and leaves extracts.Evidence and Rational Based Research on Chinese Drugs. Vienna: Springer 2013.
[107]
Waisundara VY, Hsu A, Huang D, Tan BKH. Scutellaria baicalensis enhances the anti-diabetic activity of metformin in streptozotocin-induced diabetic Wistar rats. Am J Chin Med 2008; 36(3): 517-40.
[http://dx.doi.org/10.1142/S0192415X08005953] [PMID: 18543386]
[108]
Gaire BP, Moon S-K, Kim H. Scutellaria baicalensis in stroke management: Nature’s blessing in traditional Eastern medicine. Chin J Integr Med 2014; 20(9): 712-20.
[http://dx.doi.org/10.1007/s11655-014-1347-9]
[109]
Huang M, Xie Y, Chen L, et al. Antidiabetic effect of the total polyphenolic acids fraction from salvia miltiorrhiza bunge in diabetic rats. Phytother Res 2012; 2012: 3654.
[http://dx.doi.org/10.1002/ptr.3654]
[110]
Zhang Y, Feng F, Chen T, Li Z, Shen QW. Antidiabetic and antihyperlipidemic activities of Forsythia suspensa (Thunb.) Vahl (fruit) in streptozotocin-induced diabetes mice. J Ethnopharmacol 2016; 192: 256-63.
[http://dx.doi.org/10.1016/j.jep.2016.07.002] [PMID: 27377336]
[111]
Kim HM, Kang JS, Park SK, et al. Antidiabetic activity of angelan isolated from Angelica gigas Nakai. Arch Pharm Res 2008; 31(11): 1489-96.
[http://dx.doi.org/10.1007/s12272-001-2135-9] [PMID: 19023547]
[112]
Hwang JT, Kim SH, Hur HJ, et al. Decursin, an active compound isolated from angelica gigas, inhibits fat accumulation, reduces adipocytokine secretion and improves glucose tolerance in mice fed a high-fat diet. Phytother Res 2012; 2012: 3612.
[http://dx.doi.org/10.1002/ptr.3612]
[113]
Lestari K, Hwang J, Hartini Kariadi S, Wijaya A, Ahmad T, Subarnas A. Screening for ppar γ agonist from myristica fragrans houtt seeds for the treatment of type 2 diabetes by in vitro and in vivo. Med Health Sci J 2012; 2012: 37.
[http://dx.doi.org/10.15208/mhsj.2012.37]
[114]
Pashapoor A, Mashhadyrafie S, Mortazavi P. The antioxidant potential and antihyperlipidemic activity of myristica fragrans seed (nutmeg) extract in diabetic rats. J Human. Environ Heal Promot 2020; 2020: 7.
[http://dx.doi.org/10.29252/jhehp.6.2.7]
[115]
Saghir F, Hussain K, Tahir MN, et al. Antidiabetic screening, activity-guided isolation and molecular docking studies of flower extracts of Pongamia pinnata (L.) pierre. J Med plants By-product 2021; 1085-92.
[116]
Badole SL, Bodhankar SL. Antidiabetic activity of cycloart-23-ene-3β 25-diol (B2) isolated from Pongamia pinnata (L. Pierre) in streptozotocin–nicotinamide induced diabetic mice. Eur J Pharmacol 2010; 632(1-3): 103-9.
[http://dx.doi.org/10.1016/j.ejphar.2010.01.019] [PMID: 20122920]
[117]
Al Muqarrabun LMR, Ahmat N, Ruzaina SAS, Ismail NH, Sahidin I. Medicinal uses, phytochemistry and pharmacology of Pongamia pinnata (L.) Pierre: A review. J Ethnopharmacol 2013; 150(2): 395-420.
[http://dx.doi.org/10.1016/j.jep.2013.08.041] [PMID: 24016802]
[118]
Hu X, Sun J, Fu X, et al. Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice. Drug Des Devel Ther 2015; 9: 6327-42.
[http://dx.doi.org/10.2147/DDDT.S92777] [PMID: 26674084]
[119]
Yimam M, Jiao P, Hong M, et al. UP601, a standardized botanical composition composed of Morus alba, Yerba mate and Magnolia officinalis for weight loss. BMC Complement Altern Med 2017; 17(1): 114.
[http://dx.doi.org/10.1186/s12906-017-1627-1] [PMID: 28209193]
[120]
Deshkar N, Tilloo S, Pande V. A Comprehensive Review of Rubia Cordifolia Linn. Pharmacogn Rev 2008.
[121]
Khan MS, Aziz S, Khan MZ, et al. Antihyperglycemic effect and phytochemical investigation of Rubia cordifolia (Indian Madder) leaves extract. Open Chem 2021; 19(1): 586-99.
[http://dx.doi.org/10.1515/chem-2021-0053]
[122]
Wang Y, Xiang L, Wang C, Tang C, He X. Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract. PLoS One 2013; 8(7): e71144.
[http://dx.doi.org/10.1371/journal.pone.0071144] [PMID: 23936259]
[123]
Hunyadi A, Martins A, Hsieh TJ, Seres A, Zupkó I. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS One 2012; 7(11): e50619.
[http://dx.doi.org/10.1371/journal.pone.0050619] [PMID: 23185641]
[124]
Singh AB, Khaliq T, Chaturvedi JP, Narender T, Srivastava AK. Anti-diabetic and anti-oxidative effects of 4-hydroxypipecolic acid in C57BL/KsJ- db/db mice. Hum Exp Toxicol 2012; 31(1): 57-65.
[http://dx.doi.org/10.1177/0960327111407227] [PMID: 21653626]
[125]
Komeili G, Hashemi M, Bameri-Niafar M. Evaluation of antidiabetic and antihyperlipidemic effects of peganum harmala seeds in diabetic rats. Cholesterol 2016; 2016: 1-6.
[http://dx.doi.org/10.1155/2016/7389864] [PMID: 27190643]
[126]
Dineshkumar B, Mitra A, Mahadevappa M. Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murraya koenigii (rutaceae) leaves. Int J Phytomedicine 2010; 2010: 02004.
[127]
El-Amin M, Virk P, Elobeid MAR, et al. Anti-diabetic effect of Murraya koenigii (L) and Olea europaea (L) leaf extracts on streptozotocin induced diabetic rats. Pak J Pharm Sci 2013; 26(2): 359-65.
[PMID: 23455208]
[128]
Harada E, Morizono T, Saito M. Blood glucose-reducing and fat-reducing effects of a novel medicinal mushroom, grifola gargal (Agaricomycetes). Int J Med Mushrooms 2017; 19(12): 1071-81.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2017024614] [PMID: 29431068]
[129]
Khursheed R, Singh SK, Wadhwa S, Gulati M, Awasthi A. Therapeutic potential of mushrooms in diabetes mellitus: Role of polysaccharides. Int J Biol Macromol 2020; 164: 1194-205.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.145] [PMID: 32693144]
[130]
Yang X, Yang J, Xu C, et al. Antidiabetic effects of flavonoids from Sophora flavescens EtOAc extract in type 2 diabetic KK-ay mice. J Ethnopharmacol 2015; 171: 161-70.
[http://dx.doi.org/10.1016/j.jep.2015.05.043] [PMID: 26051831]
[131]
Yang Y, Liu Y, Gao Y, et al. Exploring the anti-diabetic effects and the underlying mechanisms of ethyl acetate extract from sophora flavescens by integrating network pharmacology and pharmacological evaluation. Tradit Med Res 2022; TMR2021: 0824242.
[http://dx.doi.org/10.53388/TMR20210824242]
[132]
Liu Q, Liu S, Gao L, et al. Anti-diabetic effects and mechanisms of action of a Chinese herbal medicine preparation JQ-R in vitro and in diabetic KK Ay mice. Acta Pharm Sin B 2017; 7(4): 461-9.
[http://dx.doi.org/10.1016/j.apsb.2017.04.010] [PMID: 28752031]
[133]
Qin Z, Wang W, Liao D, Wu X, Li X. UPLC-Q/TOF-MS-based serum metabolomics reveals hypoglycemic effects of rehmannia glutinosa, coptis chinensis and their combination on high-fat-diet-induced diabetes in KK-Ay mice. Int J Mol Sci 2018; 19(12): 3984.
[http://dx.doi.org/10.3390/ijms19123984] [PMID: 30544908]
[134]
Niu HS, Liu IM, Cheng JT, Lin CL, Hsu FL. Hypoglycemic effect of syringin from Eleutherococcus senticosus in streptozotocin-induced diabetic rats. Planta Med 2008; 74(2): 109-13.
[http://dx.doi.org/10.1055/s-2008-1034275] [PMID: 18203055]
[135]
Sundaram Chinna Krishnan S, Pillai Subramanian I, Pillai Subramanian S. Isolation, characterization of syringin, phenylpropanoid glycoside from musa paradisiaca tepal extract and evaluation of its antidiabetic effect in streptozotocin-induced diabetic rats. Biomed Prev Nutr 2014; 009.
[http://dx.doi.org/10.1016/j.bionut.2013.12.009]
[136]
Moghaddam MS, Kumar PA, Reddy GB, Ghole VS. Effect of Diabecon on sugar-induced lens opacity in organ culture: Mechanism of action. J Ethnopharmacol 2005; 97(2): 397-403.
[http://dx.doi.org/10.1016/j.jep.2004.11.032] [PMID: 15707781]
[137]
Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TPA. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr 2007; 40(3): 163-73.
[http://dx.doi.org/10.3164/jcbn.40.163] [PMID: 18398493]
[138]
Saravanan R, Pari L. Antihyperlipidemic and antiperoxidative effect of Diasulin, a polyherbal formulation in alloxan induced hyperglycemic rats. BMC Complement Altern Med 2005; 5(1): 14.
[http://dx.doi.org/10.1186/1472-6882-5-14] [PMID: 15969768]
[139]
Nille GC, Mishra S, Trigunayat A, Reddy KRC. Comparative antidiabetic investigation of talapotaka churna and avartaki churna in STZ-induced diabetic rats. Asian J Pharm 2016.
[140]
Ghorbani A. Clinical and experimental studies on polyherbal formulations for diabetes: Current status and future prospective. J Integr Med 2014; 12(4): 336-45.
[http://dx.doi.org/10.1016/S2095-4964(14)60031-5] [PMID: 25074883]
[141]
Dwivedi C, Daspaul S. Antidiabetic herbal drugs and polyherbal formulation used for diabetes: A review. J Phytopharm 2013; 2013: 201308.
[http://dx.doi.org/10.31254/phyto.2013.21308]
[142]
Upadhyay RK. Antidiabetic potential of plant natural products: A review. Int J Green Pharm 2016; 10(3): S96-S113.
[143]
Raj V, Saboo B. Find prevalence of type 2 diabetes mellitus (DM) in Age, BMI, symptoms and comorbidities (Hypertension, Dyslipidimia) in indian scenario. Endocr Abstr 2019; 2019: 193.
[http://dx.doi.org/10.1530/endoabs.63.P193]
[144]
Shrivastava SK, Dwivedi S. Insights into the natural hypoglycemic principles: Translating traditional molecular target knowledge into modern therapy. Biochemistry, Biophysics, and Molecular Chemistry Academic Press 2020.
[145]
Yaqub K. A review- phytomedicines used in treatment of diabetes. Int J Pharmacogn 2014.
[146]
Dixit PP, Devasagayam TPA, Ghaskadbi S. Formulated antidiabetic preparation Syndrex® has a strong antioxidant activity. Eur J Pharmacol 2008; 581(1-2): 216-25.
[http://dx.doi.org/10.1016/j.ejphar.2007.11.052] [PMID: 18206869]
[147]
Dixit PP, Misar A, Mujumdar AM, Ghaskadbi S. Pre-treatment of Syndrex® protects mice from becoming diabetic after streptozotocin injection. Fitoterapia 2010; 81(5): 403-12.
[http://dx.doi.org/10.1016/j.fitote.2009.11.011] [PMID: 20004234]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy