Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Research Article

Prediction of SARS-CoV-2 Infection Phosphorylation Sites and Associations of these Modifications with Lung Cancer Development

Author(s): Wei Li, Gen Li, Yuzhi Sun, Liyuan Zhang, Xinran Cui, Yuran Jia* and Tianyi Zhao*

Volume 24, Issue 3, 2024

Published on: 08 November, 2023

Page: [239 - 248] Pages: 10

DOI: 10.2174/0115665232268074231026111634

Price: $65

Abstract

Introduction: Since the emergence of SARS-CoV-2 viruses, multiple mutant strains have been identified. Infection with SARS-CoV-2 virus leads to alterations in host cell phosphorylation signal, which systematically modulates the immune response.

Methods: Identification and analysis of SARS-CoV-2 virus infection phosphorylation sites enable insight into the mechanisms of viral infection and effects on host cells, providing important fundamental data for the study and development of potent drugs for the treatment of immune inflammatory diseases. In this paper, we have analyzed the SARS-CoV-2 virus-infected phosphorylation region and developed a transformer-based deep learning-assisted identification method for the specific identification of phosphorylation sites in SARS-CoV-2 virus-infected host cells.

Results: Furthermore, through association analysis with lung cancer, we found that SARS-CoV-2 infection may affect the regulatory role of the immune system, leading to an abnormal increase or decrease in the immune inflammatory response, which may be associated with the development and progression of cancer.

Conclusion: We anticipate that this study will provide an important reference for SARS-CoV-2 virus evolution as well as immune-related studies and provide a reliable complementary screening tool for anti-SARS-CoV-2 virus drug and vaccine design.

Graphical Abstract

[1]
Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 2020; 26(6): 845-8.
[http://dx.doi.org/10.1038/s41591-020-0897-1] [PMID: 32350462]
[2]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[3]
Stukalov A, Girault V, Grass V, et al. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature 2021; 594(7862): 246-52.
[http://dx.doi.org/10.1038/s41586-021-03493-4] [PMID: 33845483]
[4]
Thorne LG, Bouhaddou M, Reuschl AK, et al. Evolution of enhanced innate immune evasion by SARS-CoV-2. Nature 2022; 602(7897): 487-95.
[http://dx.doi.org/10.1038/s41586-021-04352-y] [PMID: 34942634]
[5]
Lamers MM, Beumer J, Van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes. Science 2020; 369(6499): 50-4.
[http://dx.doi.org/10.1126/science.abc1669] [PMID: 32358202]
[6]
Chen DY, Khan N, Close BJ, et al. SARS-CoV-2 disrupts proximal elements in the JAK-STAT pathway. J Virol 2021; 95(19): e00862-21.
[http://dx.doi.org/10.1128/JVI.00862-21] [PMID: 34260266]
[7]
Sharma A, Garcia G Jr, Wang Y, et al. Human iPSC-derived cardiomyocytes are susceptible to SARS-CoV-2 infection. Cell Rep Med 2020; 1(4): 100052.
[http://dx.doi.org/10.1016/j.xcrm.2020.100052] [PMID: 32835305]
[8]
Liu JF, Peng WJ, Wu Y, et al. Proteomic and phosphoproteomic characteristics of the cortex, hippocampus, thalamus, lung, and kidney in COVID-19-infected female K18-hACE2 mice. EBioMedicine 2023; 90: 104518.
[http://dx.doi.org/10.1016/j.ebiom.2023.104518] [PMID: 36933413]
[9]
Shemesh M, Aktepe TE, Deerain JM, et al. SARS-CoV-2 suppresses IFNβ production mediated by NSP1, 5, 6, 15, ORF6 and ORF7b but does not suppress the effects of added interferon. PLoS Pathog 2021; 17(8): e1009800.
[http://dx.doi.org/10.1371/journal.ppat.1009800] [PMID: 34437657]
[10]
Bouhaddou M, Memon D, Meyer B, et al. The global phosphorylation landscape of SARS-CoV-2 infection. Cell 2020; 182(3): 685-712.e19.
[http://dx.doi.org/10.1016/j.cell.2020.06.034] [PMID: 32645325]
[11]
Klann K, Bojkova D, Tascher G, Ciesek S, Münch C, Cinatl J. Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication. Mol Cell 2020; 80(1): 164-174.e4.
[http://dx.doi.org/10.1016/j.molcel.2020.08.006] [PMID: 32877642]
[12]
Gao J, Thelen JJ, Dunker AK, Xu D. Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol Cell Proteomics 2010; 9(12): 2586-600.
[http://dx.doi.org/10.1074/mcp.M110.001388] [PMID: 20702892]
[13]
Li F, Li C, Marquez-Lago TT, et al. Quokka: A comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome. Bioinformatics 2018; 34(24): 4223-31.
[http://dx.doi.org/10.1093/bioinformatics/bty522] [PMID: 29947803]
[14]
Liu Q, Luo X, Li J, Wang G. scESI: evolutionary sparse imputation for single-cell transcriptomes from nearest neighbor cells. Brief Bioinform 2022; 23(5): bbac144.
[http://dx.doi.org/10.1093/bib/bbac144] [PMID: 35512331]
[15]
Liu Q, Zhao X, Wang G. A clustering ensemble method for cell type detection by multiobjective particle optimization. IEEE/ACM Trans Comput Biol Bioinformatics 2023; 20(1): 1-14.
[PMID: 34860653]
[16]
Wang D, Zeng S, Xu C, et al. MusiteDeep: A deep-learning framework for general and kinase-specific phosphorylation site prediction. Bioinformatics 2017; 33(24): 3909-16.
[http://dx.doi.org/10.1093/bioinformatics/btx496] [PMID: 29036382]
[17]
Guo L, Wang Y, Xu X, et al. DeepPSP: A global–local information-based deep neural network for the prediction of protein phosphorylation sites. J Proteome Res 2021; 20(1): 346-56.
[http://dx.doi.org/10.1021/acs.jproteome.0c00431] [PMID: 33241931]
[18]
Lv H, Dao FY, Zulfiqar H, Lin H. DeepIPs: Comprehensive assessment and computational identification of phosphorylation sites of SARS-CoV-2 infection using a deep learning-based approach. Brief Bioinform 2021; 22(6): bbab244.
[http://dx.doi.org/10.1093/bib/bbab244] [PMID: 34184738]
[19]
Stukalov A, Girault V, Grass V, et al. Multi-level proteomics reveals host-perturbation strategies of SARS-CoV-2 and SARS-CoV. bioRxiv 2020.
[20]
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22(13): 1658-9.
[http://dx.doi.org/10.1093/bioinformatics/btl158] [PMID: 16731699]
[21]
Vaswani A, Shazeer N, Parmar N, et al. Polosukhin IJa. Attention Is All You Need. In: Advances in neural information processing. 2017; p. 30.
[22]
Li Z, Jin J, Wang Y, et al. ExamPle: Explainable deep learning framework for the prediction of plant small secreted peptides. Bioinformatics 2023; 39(3): btad108.
[http://dx.doi.org/10.1093/bioinformatics/btad108] [PMID: 36897030]
[23]
Charoenkwan P, Nantasenamat C, Hasan MM, Manavalan B, Shoombuatong W. BERT4Bitter: A bidirectional encoder representations from transformers (BERT)-based model for improving the prediction of bitter peptides. Bioinformatics 2021; 37(17): 2556-62.
[http://dx.doi.org/10.1093/bioinformatics/btab133] [PMID: 33638635]
[24]
Ji Y, Zhou Z, Liu H, Davuluri RV. DNABERT: pre-trained bidirectional encoder representations from transformers model for dna-language in genome. Bioinformatics 2021; 37(15): 2112-20.
[http://dx.doi.org/10.1093/bioinformatics/btab083] [PMID: 33538820]
[25]
Nie L, Quan L, Wu T, He R, Lyu Q. TransPPMP: Predicting pathogenicity of frameshift and non-sense mutations by a transformer based on protein features. Bioinformatics 2022; 38(10): 2705-11.
[http://dx.doi.org/10.1093/bioinformatics/btac188] [PMID: 35561183]
[26]
Cho K, van Merrienboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Arxiv 2014.
[http://dx.doi.org/10.3115/v1/D14-1179]
[27]
Jia Y, Huang S, Zhang TKK-DBP. A multi-feature fusion method for dna-binding protein identification based on random forest. Front Genet 2021; 12: 811158.
[http://dx.doi.org/10.3389/fgene.2021.811158] [PMID: 34912382]
[28]
Zhang T, Jia Y, Li H, Xu D, Zhou J, Wang G. CRISPRCasStack: A stacking strategy-based ensemble learning framework for accurate identification of Cas proteins. Brief Bioinform 2022; 23(5): bbac335.
[http://dx.doi.org/10.1093/bib/bbac335] [PMID: 35998924]
[29]
Ardito F, Giuliani M, Perrone D, Troiano G, Muzio LL. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med 2017; 40(2): 271-80.
[http://dx.doi.org/10.3892/ijmm.2017.3036] [PMID: 28656226]
[30]
Ashton TM, McKenna WG, Kunz-Schughart LA, Higgins GS. Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res 2018; 24(11): 2482-90.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3070] [PMID: 29420223]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy