Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Research Article

FIGNL1 Promotes Hepatocellular Carcinoma Formation via Remodeling ECM-receptor Interaction Pathway Mediated by HMMR

Author(s): Jiabei Wang, Linmao Sun, Yao Liu* and Yunguang Zhang*

Volume 24, Issue 3, 2024

Published on: 31 October, 2023

Page: [249 - 263] Pages: 15

DOI: 10.2174/0115665232274223231017052707

Price: $65

Abstract

Background: The development of novel biomarkers is crucial for the treatment of HCC. In this study, we investigated a new molecular therapeutic target for HCC. Fidgetin-like 1 (FIGNL1) has been reported to play a vital role in lung adenocarcinoma. However, the potential function of FIGNL1 in HCC is still unknown.

Objective: This study aims to investigate the key regulatory mechanisms of FIGNL1 in the formation of HCC.

Methods: The regulatory effect of FIGNL1 on HCC was studied by lentivirus infection. In vitro, the effects of FIGNL1 on the proliferation, migration and apoptosis of cells were investigated by CCK8, colony formation assay, transwell and flow cytometry. Meanwhile, the regulation of FIGNL1 on HCC formation in vivo was studied by subcutaneous transplanted tumors. In addition, using transcriptome sequencing technology, we further explored the specific molecular mechanism of FIGNL1 regulating the formation of HCC.

Results: Functionally, we demonstrated that FIGNL1 knockdown significantly inhibited HCC cell proliferation, migration and promoted cell apoptosis in vitro. Similarly, the knockdown of FIGNL1 meaningfully weakened hepatocarcinogenesis in nude mice. Transcriptome sequencing revealed that FIGNL1 affected the expression of genes involved in extracellular matrix-receptor (ECM-receptor) interaction pathway, such as hyaluronan mediated motility receptor (HMMR). Further validation found that overexpression of HMMR based on knockdown FIGNL1 can rescue the expression abundance of related genes involved in the ECM-receptor interaction pathway.

Conclusion: Our study revealed that FIGNL1 could modulate the ECM-receptor interaction pathway through the regulation of HMMR, thus regulating the formation of HCC.

« Previous
Graphical Abstract

[1]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Raoul JL, Forner A, Bolondi L, Cheung TT, Kloeckner R, de Baere T. Updated use of TACE for hepatocellular carcinoma treatment: How and when to use it based on clinical evidence. Cancer Treat Rev 2019; 72: 28-36.
[http://dx.doi.org/10.1016/j.ctrv.2018.11.002] [PMID: 30447470]
[3]
Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16(10): 589-604.
[http://dx.doi.org/10.1038/s41575-019-0186-y] [PMID: 31439937]
[4]
Gunasekaran G, Bekki Y, Lourdusamy V, Schwartz M. Surgical treatments of hepatobiliary cancers. Hepatology 2021; 73(S1): 128-36.
[http://dx.doi.org/10.1002/hep.31325] [PMID: 32438491]
[5]
Lee YT, Fujiwara N, Yang JD, Hoshida Y. Risk stratification and early detection biomarkers for precision HCC screening. Hepatology 2023; 78(1): 319-62.
[http://dx.doi.org/10.1002/hep.32779] [PMID: 36082510]
[6]
Wang Z, Qin H, Liu S, Sheng J, Zhang X. Precision diagnosis of hepatocellular carcinoma. Chin Med J 2023; 136(10): 1155-65.
[http://dx.doi.org/10.1097/CM9.0000000000002641] [PMID: 36939276]
[7]
Feng J, Dai W, Mao Y, et al. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res 2020; 39(1): 24.
[http://dx.doi.org/10.1186/s13046-020-1528-x] [PMID: 32000827]
[8]
Singal AG, Tayob N, Mehta A, et al. GALAD demonstrates high sensitivity for HCC surveillance in a cohort of patients with cirrhosis. Hepatology 2022; 75(3): 541-9.
[http://dx.doi.org/10.1002/hep.32185] [PMID: 34618932]
[9]
Zhou J, Yu L, Gao X, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol 2011; 29(36): 4781-8.
[http://dx.doi.org/10.1200/JCO.2011.38.2697] [PMID: 22105822]
[10]
Puchades C, Sandate CR, Lander GC. The molecular principles governing the activity and functional diversity of AAA+ proteins. Nat Rev Mol Cell Biol 2020; 21(1): 43-58.
[http://dx.doi.org/10.1038/s41580-019-0183-6] [PMID: 31754261]
[11]
Lin J, Shorter J, Lucius AL. AAA+ proteins: One motor, multiple ways to work. Biochem Soc Trans 2022; 50(2): 895-906.
[http://dx.doi.org/10.1042/BST20200350] [PMID: 35356966]
[12]
Carter AP, Cho C, Jin L, Vale RD. Crystal structure of the dynein motor domain. Science 2011; 331(6021): 1159-65.
[http://dx.doi.org/10.1126/science.1202393] [PMID: 21330489]
[13]
Ranson NA, White HE, Saibil HR. Chaperonins. Biochem J 1998; 333(Pt 2): 233-42.
[14]
Zhang S, Mao Y. AAA+ ATPases in protein degradation: Structures, functions and mechanisms. Biomolecules 2020; 10(4): 629.
[http://dx.doi.org/10.3390/biom10040629] [PMID: 32325699]
[15]
Lee DG, P Bell S. ATPase switches controlling DNA replication initiation. Curr Opin Cell Biol 2000; 12(3): 280-5.
[http://dx.doi.org/10.1016/S0955-0674(00)00089-2] [PMID: 10801458]
[16]
Zhang G, Li S, Cheng KW, Chou TF. AAA ATPases as therapeutic targets: Structure, functions, and small-molecule inhibitors. Eur J Med Chem 2021; 219: 113446.
[http://dx.doi.org/10.1016/j.ejmech.2021.113446] [PMID: 33873056]
[17]
Park SJ, Kim SJ, Rhee Y, et al. Fidgetin-like 1 gene inhibited by basic fibroblast growth factor regulates the proliferation and differentiation of osteoblasts. J Bone Miner Res 2007; 22(6): 889-96.
[http://dx.doi.org/10.1359/jbmr.070311] [PMID: 17352653]
[18]
Yuan J, Chen J. FIGNL1-containing protein complex is required for efficient homologous recombination repair. Proc Natl Acad Sci 2013; 110(26): 10640-5.
[http://dx.doi.org/10.1073/pnas.1220662110] [PMID: 23754376]
[19]
Yang S, Zhang C, Cao Y, et al. FIGNL1 inhibits non-homologous chromosome association and crossover formation. Front Plant Sci 2022; 13: 945893.
[http://dx.doi.org/10.3389/fpls.2022.945893] [PMID: 35898226]
[20]
Hu Z, Feng J, Bo W, et al. Fidgetin regulates cultured astrocyte migration by severing tyrosinated microtubules at the leading edge. Mol Biol Cell 2017; 28(4): 545-53.
[http://dx.doi.org/10.1091/mbc.e16-09-0628] [PMID: 27974640]
[21]
Tao J, Feng C, Rolls MM. The microtubule severing protein fidgetin acts after dendrite injury to promote degeneration. J Cell Sci 2016; 129(17): jcs.188540.
[http://dx.doi.org/10.1242/jcs.188540] [PMID: 27411367]
[22]
Fassier C, Fréal A, Gasmi L, et al. Motor axon navigation relies on Fidgetin-like 1–driven microtubule plus end dynamics. J Cell Biol 2018; 217(5): 1719-38.
[http://dx.doi.org/10.1083/jcb.201604108] [PMID: 29535193]
[23]
L’Hôte D, Vatin M, Auer J, et al. Fidgetin-like1 is a strong candidate for a dynamic impairment of male meiosis leading to reduced testis weight in mice. PLoS One 2011; 6(11): e27582.
[http://dx.doi.org/10.1371/journal.pone.0027582] [PMID: 22110678]
[24]
Li M, Rui Y, Peng W, et al. FIGNL1 promotes non-small cell lung cancer cell proliferation. Int J Oncol 2020; 58(1): 83-99.
[http://dx.doi.org/10.3892/ijo.2020.5154] [PMID: 33367932]
[25]
Meng C, Yang Y, Ren P, et al. FIGNL1 is a potential biomarker of cisplatin resistance in non-small cell lung cancer. Int J Biol Markers 2022; 37(3): 260-9.
[http://dx.doi.org/10.1177/03936155221110249] [PMID: 35791674]
[26]
Missinato MA, Tobita K, Romano N, Carroll JA, Tsang M. Extracellular component hyaluronic acid and its receptor Hmmr are required for epicardial EMT during heart regeneration. Cardiovasc Res 2015; 107(4): 487-98.
[http://dx.doi.org/10.1093/cvr/cvv190] [PMID: 26156497]
[27]
He Z, Mei L, Connell M, Maxwell CA. Hyaluronan mediated motility receptor (HMMR) encodes an evolutionarily conserved homeostasis, mitosis, and meiosis regulator rather than a hyaluronan receptor. Cells 2020; 9(4): 819.
[http://dx.doi.org/10.3390/cells9040819] [PMID: 32231069]
[28]
Mateo F, He Z, Mei L, et al. Modification of BRCA1-associated breast cancer risk by HMMR overexpression. Nat Commun 2022; 13(1): 1895.
[http://dx.doi.org/10.1038/s41467-022-29335-z] [PMID: 35393420]
[29]
Sun Y, Li Z, Song K. AR-mTOR-SRF axis regulates HMMR expression in human prostate cancer cells. Biomol Ther 2021; 29(6): 667-77.
[http://dx.doi.org/10.4062/biomolther.2021.040] [PMID: 34099592]
[30]
Tilghman J, Wu H, Sang Y, et al. HMMR maintains the stemness and tumorigenicity of glioblastoma stem-like cells. Cancer Res 2014; 74(11): 3168-79.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2103] [PMID: 24710409]
[31]
Yang M, Chen B, Kong L, et al. HMMR promotes peritoneal implantation of gastric cancer by increasing cell–cell interactions. Discover Oncology 2022; 13(1): 81.
[http://dx.doi.org/10.1007/s12672-022-00543-9] [PMID: 36002694]
[32]
Li X, Zuo H, Zhang L, Sun Q, Xin Y, Zhang L. Validating HMMR expression and its prognostic significance in lung adenocarcinoma based on data mining and bioinformatics methods. Front Oncol 2021; 11: 720302.
[http://dx.doi.org/10.3389/fonc.2021.720302] [PMID: 34527588]
[33]
Ma X, Xie M, Xue Z, et al. HMMR associates with immune infiltrates and acts as a prognostic biomaker in lung adenocarcinoma. Comput Biol Med 2022; 151(Pt A): 106213.
[http://dx.doi.org/10.1016/j.compbiomed.2022.106213]
[34]
Shang J, Zhang X, Hou G, Qi Y. HMMR potential as a diagnostic and prognostic biomarker of cancer—speculation based on a pan- cancer analysis. Front Surg 2023; 9: 998598.
[http://dx.doi.org/10.3389/fsurg.2022.998598] [PMID: 36704516]
[35]
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014; 15(12): 786-801.
[http://dx.doi.org/10.1038/nrm3904] [PMID: 25415508]
[36]
Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 2014; 15(12): 802-12.
[http://dx.doi.org/10.1038/nrm3896] [PMID: 25355505]
[37]
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97: 4-27.
[http://dx.doi.org/10.1016/j.addr.2015.11.001] [PMID: 26562801]
[38]
Jiang Y, Zhang H, Wang J, Liu Y, Luo T, Hua H. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol 2022; 15(1): 34.
[http://dx.doi.org/10.1186/s13045-022-01252-0] [PMID: 35331296]
[39]
Kanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nat Rev Mol Cell Biol 2023; 24(2): 142-61.
[http://dx.doi.org/10.1038/s41580-022-00531-5] [PMID: 36168065]
[40]
Padhi A, Nain AS. ECM in differentiation: A review of matrix structure, composition and mechanical properties. Ann Biomed Eng 2020; 48(3): 1071-89.
[http://dx.doi.org/10.1007/s10439-019-02337-7] [PMID: 31485876]
[41]
Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S. Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol 2021; 22(1): 22-38.
[http://dx.doi.org/10.1038/s41580-020-00306-w] [PMID: 33188273]
[42]
Najafi M, Farhood B, Mortezaee K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem 2019; 120(3): 2782-90.
[http://dx.doi.org/10.1002/jcb.27681] [PMID: 30321449]
[43]
Muncie JM, Weaver VM. The physical and biochemical properties of the extracellular matrix regulate cell fate. Curr Top Dev Biol 2018; 130: 1-37.
[http://dx.doi.org/10.1016/bs.ctdb.2018.02.002] [PMID: 29853174]
[44]
Karamanos NK. Extracellular matrix: Key structural and functional meshwork in health and disease. FEBS J 2019; 286(15): 2826-9.
[http://dx.doi.org/10.1111/febs.14992] [PMID: 31379113]
[45]
Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 2011; 3(12): a005058.
[http://dx.doi.org/10.1101/cshperspect.a005058] [PMID: 21917992]
[46]
Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J 2019; 286(15): 2830-69.
[http://dx.doi.org/10.1111/febs.14818] [PMID: 30908868]
[47]
Chio JCT, Punjani N, Hejrati N, Zavvarian MM, Hong J, Fehlings MG. Extracellular matrix and oxidative stress following traumatic spinal cord injury: Physiological and pathophysiological roles and opportunities for therapeutic intervention. Antioxid Redox Signal 2022; 37(1-3): 184-207.
[http://dx.doi.org/10.1089/ars.2021.0120] [PMID: 34465134]
[48]
Fan D, Kassiri Z. Modulation of cardiac fibrosis in and beyond cells. Front Mol Biosci 2021; 8: 750626.
[http://dx.doi.org/10.3389/fmolb.2021.750626] [PMID: 34778374]
[49]
Pouw AE, Greiner MA, Coussa RG, et al. Cell–matrix interactions in the eye: From cornea to choroid. Cells 2021; 10(3): 687.
[http://dx.doi.org/10.3390/cells10030687] [PMID: 33804633]
[50]
Huang DQ, Mathurin P, Cortez-Pinto H, Loomba R. Global epidemiology of alcohol-associated cirrhosis and HCC: Trends, projections and risk factors. Nat Rev Gastroenterol Hepatol 2023; 20(1): 37-49.
[http://dx.doi.org/10.1038/s41575-022-00688-6] [PMID: 36258033]
[51]
Ioannou GN. Epidemiology and risk-stratification of NAFLD-associated HCC. J Hepatol 2021; 75(6): 1476-84.
[http://dx.doi.org/10.1016/j.jhep.2021.08.012] [PMID: 34453963]
[52]
Sugawara Y, Hibi T. Surgical treatment of hepatocellular carcinoma. Biosci Trends 2021; 15(3): 138-41.
[http://dx.doi.org/10.5582/bst.2021.01094] [PMID: 33746184]
[53]
Bang A, Dawson LA. Radiotherapy for HCC: Ready for prime time? JHEP Reports 2019; 1(2): 131-7.
[http://dx.doi.org/10.1016/j.jhepr.2019.05.004] [PMID: 32039361]
[54]
Hou Z, Liu J, Jin Z, et al. Use of chemotherapy to treat hepatocellular carcinoma. Biosci Trends 2022; 16(1): 31-45.
[http://dx.doi.org/10.5582/bst.2022.01044] [PMID: 35173139]
[55]
Foerster F, Gairing SJ, Ilyas SI, Galle PR. Emerging immunotherapy for HCC: A guide for hepatologists. Hepatology 2022; 75(6): 1604-26.
[http://dx.doi.org/10.1002/hep.32447] [PMID: 35253934]
[56]
Laface C, Fedele P, Maselli FM, et al. Targeted therapy for hepatocellular carcinoma: Old and new opportunities. Cancers 2022; 14(16): 4028.
[http://dx.doi.org/10.3390/cancers14164028] [PMID: 36011021]
[57]
Li J, Wang X, Ren M, He S, Zhao Y. Advances in experimental animal models of hepatocellular carcinoma. Cancer Med 2023; 12(14): 15261-76.
[http://dx.doi.org/10.1002/cam4.6163] [PMID: 37248746]
[58]
Wu Y, Zhang J, Li Q. Autophagy, an accomplice or antagonist of drug resistance in HCC? Cell Death Dis 2021; 12(3): 266.
[http://dx.doi.org/10.1038/s41419-021-03553-7] [PMID: 33712559]
[59]
Fujiwara N, Friedman SL, Goossens N, Hoshida Y. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol 2018; 68(3): 526-49.
[http://dx.doi.org/10.1016/j.jhep.2017.09.016] [PMID: 28989095]
[60]
Meng H, Niu R, Huang C, Li J. Circular RNA as a novel biomarker and therapeutic target for HCC. Cells 2022; 11(12): 1948.
[http://dx.doi.org/10.3390/cells11121948] [PMID: 35741077]
[61]
Yu LX, Schwabe RF. The gut microbiome and liver cancer: Mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol 2017; 14(9): 527-39.
[http://dx.doi.org/10.1038/nrgastro.2017.72] [PMID: 28676707]
[62]
Hanson PI, Whiteheart SW. AAA+ proteins: Have engine, will work. Nat Rev Mol Cell Biol 2005; 6(7): 519-29.
[http://dx.doi.org/10.1038/nrm1684] [PMID: 16072036]
[63]
Fu J, Zhang J, Chen X, et al. ATPase family AAA domain-containing protein 2 (ATAD2): From an epigenetic modulator to cancer therapeutic target. Theranostics 2023; 13(2): 787-809.
[http://dx.doi.org/10.7150/thno.78840] [PMID: 36632213]
[64]
Jessop M, Felix J, Gutsche I. AAA+ ATPases: Structural insertions under the magnifying glass. Curr Opin Struct Biol 2021; 66: 119-28.
[http://dx.doi.org/10.1016/j.sbi.2020.10.027] [PMID: 33246198]
[65]
Khan YA, White KI, Brunger AT. The AAA+ superfamily: A review of the structural and mechanistic principles of these molecular machines. Crit Rev Biochem Mol Biol 2022; 57(2): 156-87.
[http://dx.doi.org/10.1080/10409238.2021.1979460] [PMID: 34632886]
[66]
Pareek G. AAA+ proteases: The first line of defense against mitochondrial damage. PeerJ 2022; 10: e14350.
[http://dx.doi.org/10.7717/peerj.14350] [PMID: 36389399]
[67]
Duderstadt KE, Berger JM. AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 2008; 43(3): 163-87.
[http://dx.doi.org/10.1080/10409230802058296] [PMID: 18568846]
[68]
Carter AP, Vale RD. Communication between the AAA+ ring and microtubule-binding domain of dynein. This paper is one of a selection of papers published in this special issue entitled 8th International Conference on AAA Proteins and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2010; 88(1): 15-21.
[http://dx.doi.org/10.1139/O09-127] [PMID: 20130675]
[69]
Bouchnak I, van Wijk KJ. Structure, function, and substrates of Clp AAA+ protease systems in cyanobacteria, plastids, and apicoplasts: A comparative analysis. J Biol Chem 2021; 296: 100338.
[http://dx.doi.org/10.1016/j.jbc.2021.100338] [PMID: 33497624]
[70]
Dong Z, Chen X, Li Y, Zhuo R, Lai X, Liu M. Microtubule severing protein fignl2 contributes to endothelial and neuronal branching in zebrafish development. Front Cell Dev Biol 2021; 8: 593234.
[http://dx.doi.org/10.3389/fcell.2020.593234] [PMID: 33585441]
[71]
Shou HF, Jin Z, Yu Y, Lai YC, Wu Q, Gao LL. Microtubule-severing protein Fidgetin-like 1 promotes spindle organization during meiosis of mouse oocytes. Zygote 2022; 30(6): 872-81.
[http://dx.doi.org/10.1017/S0967199422000417] [PMID: 36148793]
[72]
Li M, Zhen Z, Zhong M, Ye L, Ma X. FIGNL1 expression and its prognostic significance in pan-cancer analysis. Comb Chem High Throughput Screen 2022; 25(13): 2180-90.
[http://dx.doi.org/10.2174/1386207325666220301110517] [PMID: 35232348]
[73]
Ma J, Li J, Yao X, et al. FIGNL1 is overexpressed in small cell lung cancer patients and enhances NCI-H446 cell resistance to cisplatin and etoposide. Oncol Rep 2017; 37(4): 1935-42.
[http://dx.doi.org/10.3892/or.2017.5483] [PMID: 28260065]
[74]
Huang J, Zhang L, Wan D, et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021; 6(1): 153.
[http://dx.doi.org/10.1038/s41392-021-00544-0] [PMID: 33888679]
[75]
Karamanos NK, Piperigkou Z, Passi A, Götte M, Rousselle P, Vlodavsky I. Extracellular matrix-based cancer targeting. Trends Mol Med 2021; 27(10): 1000-13.
[http://dx.doi.org/10.1016/j.molmed.2021.07.009] [PMID: 34389240]
[76]
Lu P, Weaver VM, Werb Z. The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol 2012; 196(4): 395-406.
[http://dx.doi.org/10.1083/jcb.201102147] [PMID: 22351925]
[77]
Schaefer L, Reinhardt DP. Special issue: Extracellular matrix: Therapeutic tools and targets in cancer treatment. Adv Drug Deliv Rev 2016; 97: 1-3.
[http://dx.doi.org/10.1016/j.addr.2016.01.001] [PMID: 26872878]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy