Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Study on Separation Mechanism of Ephedrine and Pseudoephedrine in Borax Buffer by Capillary Electrophoresis

Author(s): Jinqiu Xu, Yinhua Gong, Rongrong Huang, Liangliang Cai* and Xiaofei Ma*

Volume 19, Issue 9, 2023

Published on: 07 November, 2023

Page: [685 - 692] Pages: 8

DOI: 10.2174/0115734110270003231101115858

Price: $65

Abstract

Background: In borax buffer, ephedrine (EPH) and pseudoephedrine (PSE) can be well separated (Rs>10) in capillary electrophoresis (CE) without adding any other compounds, but the specific mechanism remains unclear.

Methods: Titration analysis, nuclear magnetic resonance analysis, mass spectrum analysis and molecular modeling were used to investigate the separation mechanism.

Results: Tetrahydroxy borate (a hydrolyzate of borax or boric acid) could react with ephedrine and pseudoephedrine to form self-assembled complexes, but the two complexes had different stabilities and electrophoretic mobilities resulting from the different steric configurations of analytes.

Conclusion: The complexation based on borax was responsible for the separation.

« Previous
Graphical Abstract

[1]
Krait, S.; Konjaria, M.L.; Scriba, G.K.E. Advances of capillary electrophoresis enantioseparations in pharmaceutical analysis (2017–2020). Electrophoresis, 2021, 42(17-18), 1709-1725.
[http://dx.doi.org/10.1002/elps.202000359] [PMID: 33433919]
[2]
Chankvetadze, B.; Scriba, G.K.E. Cyclodextrins as chiral selectors in capillary electrophoresis: Recent trends in mechanistic studies. TrAC-Trend. Anal. Chem., 2023, 160, 116987.
[3]
de Koster, N.; Clark, C.P.; Kohler, I. Past, present, and future developments in enantioselective analysis using capillary electromigration techniques. Electrophoresis, 2021, 42(1-2), 38-57.
[http://dx.doi.org/10.1002/elps.202000151] [PMID: 32914880]
[4]
Bernardo-Bermejo, S.; Sanchez-Lopez, E.; Castro-Puyana, M.; Marina, M.L. Chiral capillary electrophoresis. TrAC-Trend. Anal. Chem., 2020, 124, 115807.
[5]
Peluso, P.; Chankvetadze, B. Native and substituted cyclodextrins as chiral selectors for capillary electrophoresis enantioseparations: Structures, features, application, and molecular modeling. Electrophoresis, 2021, 42(17-18), 1676-1708.
[http://dx.doi.org/10.1002/elps.202100053] [PMID: 33956995]
[6]
Konjaria, M.L.; Kakava, R.; Volonterio, A.; Chankvetadze, B.; Scriba, G.K.E. Enantioseparation of chiral (benzylsulfinyl)benzamide sulfoxides by capillary electrophoresis using cyclodextrins as chiral selectors. J. Chromatogr. A, 2022, 1672, 463027.
[http://dx.doi.org/10.1016/j.chroma.2022.463027] [PMID: 35430479]
[7]
Lee, T.; Lee, W.; Hyun, M.H.; Park, J.H. Enantioseparation of α-amino acids on an 18-crown-6-tetracarboxylic acid-bonded silica by capillary electrochromatography. J. Chromatogr. A, 2010, 1217(8), 1425-1428.
[http://dx.doi.org/10.1016/j.chroma.2009.12.064] [PMID: 20060534]
[8]
Rizvi, S.A.A.; Shamsi, S.A. Synthesis, characterization, and application of chiral ionic liquids and their polymers in micellar electrokinetic chromatography. Anal. Chem., 2006, 78(19), 7061-7069.
[http://dx.doi.org/10.1021/ac060878u] [PMID: 17007537]
[9]
Ratih, R.; Wätzig, H.; Stein, M.; El Deeb, S. Investigation of the enantioselective interaction between selected drug enantiomers and human serum albumin by mobility shift‐affinity capillary electrophoresis. J. Sep. Sci., 2020, 43(20), 3960-3968.
[http://dx.doi.org/10.1002/jssc.202000372] [PMID: 32823373]
[10]
Zhang, Q.; Ren, S.; Xue, S. Investigation of fusidic acid as a chiral selector in capillary electrophoresis. Separ. Purif. Tech., 2020, 242, 116768.
[http://dx.doi.org/10.1016/j.seppur.2020.116768]
[11]
Jang, M.G.; Jang, M.D.; Park, J.H. Doxycycline as a new chiral selector in capillary electrophoresis. J. Chromatogr. A, 2017, 1508, 176-181.
[http://dx.doi.org/10.1016/j.chroma.2017.06.019] [PMID: 28619591]
[12]
Scriba, G.K.E. Chiral recognition in separation sciences. Part I: Polysaccharide and cyclodextrin selectors. Trac-trend. Anal. Chem., 2019, 120, 115639.
[13]
An, N.; Wang, L.; Zhao, J.; Lv, L.; Wang, N.; Guo, H. Enantioseparation of fourteen amino alcohols by nonaqueous capillary electrophoresis using lactobionic acid/ D -(+)-xylose–boric acid complexes as chiral selectors. Anal. Methods, 2016, 8(5), 1127-1134.
[http://dx.doi.org/10.1039/C5AY02686E]
[14]
Ma, X.; Cao, J.; Yu, J.; Cai, L. Evaluation of an ionic liquid chiral selector based on sulfobutylether-β-cyclodextrin in capillary electrophoresis. J. Mol. Liq., 2022, 362, 119782.
[http://dx.doi.org/10.1016/j.molliq.2022.119782]
[15]
Ma, X.; Chen, B.; Cai, L. Investigation on improvement of enantioseparation in capillary electrophoresis based on maltodextrin by chiral ionic liquids. J. Sep. Sci., 2022, 45(18), 3604-3613.
[http://dx.doi.org/10.1002/jssc.202200408] [PMID: 35916273]
[16]
Ren, S.; Zhang, Q.; Xue, S.; Liu, S.; Rui, M. Use of gamithromycin as a chiral selector in capillary electrophoresis. J. Chromatogr. A, 2020, 1624, 461099.
[http://dx.doi.org/10.1016/j.chroma.2020.461099] [PMID: 32327223]
[17]
Dixit, S.; Park, J.H. Application of rifampicin as a chiral selector for enantioresolution of basic drugs using capillary electrophoresis. J. Chromatogr. A, 2016, 1453, 138-142.
[http://dx.doi.org/10.1016/j.chroma.2016.05.055] [PMID: 27240943]
[18]
Deng, D.; Deng, H.; Zhang, L.; Su, Y. Determination of ephedrine and pseudoephedrine by field-amplified sample injection capillary electrophoresis. J. Chromatogr. Sci., 2014, 52(4), 357-362.
[http://dx.doi.org/10.1093/chromsci/bmt039] [PMID: 23619557]
[19]
Amini, A.; Barclay, V.; Rundlöf, T.; Jönsson, S.; Karlsson, A.; Arvidsson, T. Determination of ephedrine, pseudoephedrine and caffeine in a dietary product by capillary electrophoresis. Chromatographia, 2006, 63(3-4), 143-148.
[http://dx.doi.org/10.1365/s10337-006-0726-9]
[20]
Phinney, K.W.; Ihara, T.; Sander, L.C. Determination of ephedrine alkaloid stereoisomers in dietary supplements by capillary electrophoresis. J. Chromatogr. A, 2005, 1077(1), 90-97.
[http://dx.doi.org/10.1016/j.chroma.2005.04.068] [PMID: 15988991]
[21]
Snopek, J.; Jelínek, I.; Smolková-Keulemansová, E. Use of cyclodextrins in isotachophoresis. J. Chromatogr. A, 1988, 438, 211-218.
[http://dx.doi.org/10.1016/S0021-9673(00)90251-6]
[22]
Ye, N.; Li, J.; Xie, Y.; Liu, C. Graphene oxide coated capillary for chiral separation by CE. Electrophoresis, 2013, 34(6), 841-845.
[http://dx.doi.org/10.1002/elps.201200516] [PMID: 23307565]
[23]
Li, F.; Ding, Z.; Cao, Q.E. Separation and determination of ephedrine and pseudoephedrine in Ephedrae Herba by CZE modified with a Cu(II)–L-lysine complex. Electrophoresis, 2008, 29(3), 658-664.
[http://dx.doi.org/10.1002/elps.200700334] [PMID: 18228536]
[24]
Liu, J.; Du, Y.; Sun, X.; Feng, Z.; Ma, X.; Li, J. Synthesis and application of amino triazolium-modified lactobionic acid as chiral selector in capillary electrophoresis. J. Chromatogr. A, 2019, 1594, 199-207.
[http://dx.doi.org/10.1016/j.chroma.2019.02.009] [PMID: 30837164]
[25]
Zhang, Q.; Du, Y.; Du, S.; Zhang, J.; Feng, Z.; Zhang, Y.; Li, X. Tetramethylammonium‐lactobionate: A novel ionic liquid chiral selector based on saccharides in capillary electrophoresis. Electrophoresis, 2015, 36(9-10), 1216-1223.
[http://dx.doi.org/10.1002/elps.201400358] [PMID: 25782175]
[26]
Ma, X.; Kan, Z.; Du, Y.; Yang, J.; Feng, Z.; Zhu, X.; Chen, C. Enantioseparation of amino alcohol drugs by nonaqueous capillary electrophoresis with a maltobionic acid-based ionic liquid as the chiral selector. Analyst, 2019, 144(24), 7468-7477.
[http://dx.doi.org/10.1039/C9AN01162E]
[27]
Zhang, Q.; Ren, S.; Gu, C.; Li, A.; Xue, S. Enhanced enantioselectivity of tartaric acid in capillary electrophoresis: From tartaric acid to tartaric acid-based ionic liquid. J. Mol. Liq., 2021, 327, 114840.
[http://dx.doi.org/10.1016/j.molliq.2020.114840]
[28]
Zhang, Q.; Ren, S.; Li, A.; Zhang, J.; Xue, S.; Sun, X. Tartaric acid-based ionic liquid-type chiral selectors: Effect of cation species on their enantioseparation performance in capillary electrophoresis. Separ. Purif. Tech., 2021, 275, 119228.
[http://dx.doi.org/10.1016/j.seppur.2021.119228]
[29]
Chen, B.; Du, Y.; Li, P. Investigation of enantiomeric separation of basic drugs by capillary electrophoresis using clindamycin phosphate as a novel chiral selector. Electrophoresis, 2009, 30(15), 2747-2754.
[http://dx.doi.org/10.1002/elps.200800452] [PMID: 19621372]
[30]
Dong, X.; Dong, J.; Ou, J.; Zhu, Y.; Zou, H. Preparation and evaluation of a vancomycin‐immobilized silica monolith as chiral stationary phase for CEC. Electrophoresis, 2007, 28(15), 2606-2612.
[http://dx.doi.org/10.1002/elps.200600605] [PMID: 17592611]
[31]
Zhu, X.; Chen, C.; Chen, J.; Xu, G.; Du, Y.; Ma, X.; Sun, X.; Feng, Z.; Huang, Z. Synthesis and application of tetramethylammonium-carboxymethylated-β-cyclodextrin: A novel ionic liquid in capillary electrophoresis enantioseparation. J. Pharm. Biomed. Anal., 2020, 180, 113030.
[http://dx.doi.org/10.1016/j.jpba.2019.113030]
[32]
Hu, S. Zhang, M.; Li, F.; Breadmore, M.C. β-Cyclodextrin-copper (II) complex as chiral selector in capillary electrophoresis for the enantioseparation of β-blockers. J. Chromatogr. A, 2019, 1596, 233-240.
[http://dx.doi.org/10.1016/j.chroma.2019.03.019] [PMID: 30955838]
[33]
Daali, Y.; Bekkouche, K.; Cherkaoui, S.; Christen, P.; Veuthey, J.L. Use of borate complexation for the separation of non-UV-absorbing calystegines by capillary electrophoresis. J. Chromatogr. A, 2000, 903(1-2), 237-244.
[http://dx.doi.org/10.1016/S0021-9673(00)00902-X] [PMID: 11153947]
[34]
Hoffstetter-Kuhn, S.; Paulus, A.; Gassmann, E.; Widmer, H.M. Influence of borate complexation on the electrophoretic behavior of carbohydrates in capillary electrophoresis. Anal. Chem., 1991, 63(15), 1541-1547.
[http://dx.doi.org/10.1021/ac00015a009]
[35]
Morin, P.; Villard, F.; Dreux, M.; André, P. Borate complexation of flavonoid-O-glycosides in capillary electrophoresis. J. Chromatogr. A, 1993, 628(1), 161-169.
[http://dx.doi.org/10.1016/0021-9673(93)80345-9] [PMID: 8429074]
[36]
Narala, V.R.; Zagorska, J.; Sarenkova, I.; Ciprovica, I.; Majore, K. Acid whey valorization for biotechnological lactobionic acid bio-production. J. Hum. Earth, Future, 2022, 3, 46-55.
[http://dx.doi.org/10.28991/HEF-SP2022-01-04]
[37]
Pato, U.; Ayu, D.F.; Riftyan, E.; Restuhadi, F.; Pawenang, W.T.; Firdaus, R.; Rahma, A.; Jaswir, I. Cellulose microfiber encapsulated probiotic: Viability, acid and bile tolerance during storage at different temperature. Emerg. Sci. J., 2022, 6(1), 106-117.
[http://dx.doi.org/10.28991/ESJ-2022-06-01-08]
[38]
Smieszek, S.; Polymeropoulos, M.H. Study of regions of homozygosity (ROH) patterns to evaluate the use of dogs’ genome in human drug development. J. Hum. Earth, Future, 2022, 3, 22-29.
[http://dx.doi.org/10.28991/HEF-SP2022-01-02]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy