Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

A Novel Fluorescent Aptasensor Based on Mesoporous Silica Nanoparticles for Selective and Sensitive Detection of Saxitoxin in Shellfish

Author(s): Najeeb Ullah, Beenish Noureen, Qurat Ul Ain Zahra, Tariq Aziz, Somia Shehzadi, Mohammad Y. Alfaifif, Serag Eldin I. Elbehairif, Khalid Hussain Thebo, Asmat Ullah* and Haroon Iqbal*

Volume 19, Issue 9, 2023

Published on: 31 October, 2023

Page: [677 - 684] Pages: 8

DOI: 10.2174/0115734110269897231020065609

Price: $65

Abstract

Background: Saxitoxin (STX) stands as one of the most potent marine biotoxins, exhibiting high lethality. Despite its severity, current treatments remain ineffective, and existing detection techniques are limited due to ethical concerns and technical constraints.

Methods: Herein, an innovative approach was constructed for STX detection, utilizing mesoporous silica nanoparticles (MSN) as a foundation. This innovative, easy, and label-free aptamer (Apt)- sensor was fabricated. Apts were employed as molecular identification probes and "gated molecules," while rhodamine 6G was encapsulated within particles to serve as a signal probe. In a lack of STX, Apts immobilized on an MSN surface kept a "gate" closed, preventing signal probe leakage. Upon the presence of STX, the "gate" opened, allowing a particular binding of Apts to STX and a subsequent release of a signal probe.

Results: Experimental results demonstrated a positive correlation between fluorescence intensity and concentrations of STX within a range of 1 to 80 nM, with an exceptional limit of detection of 0.12 nM. Furthermore, the selectivity and stability of a biosensor were rigorously evaluated, validating its reliability.

Conclusion: This newly developed sensing strategy exhibits remarkable performance in STX detection. Its success holds significant promise for advancing portable STX detection equipment, thereby addressing a pressing need for efficient and ethical detection methods in combating marine biotoxin contamination.

Graphical Abstract

[1]
Thottumkara, A.P.; Parsons, W.H.; Du Bois, J. Saxitoxin. Angew. Chem. Int. Ed., 2014, 53(23), 5760-5784.
[http://dx.doi.org/10.1002/anie.201308235] [PMID: 24771635]
[2]
Capper, A.; Flewelling, L.J.; Arthur, K. Dietary exposure to harmful algal bloom (HAB) toxins in the endangered manatee (Trichechus manatus latirostris) and green sea turtle (Chelonia mydas) in Florida, USA. Harmful Algae, 2013, 28, 1-9.
[http://dx.doi.org/10.1016/j.hal.2013.04.009]
[3]
Bricelj, V.M.; Connell, L.; Konoki, K.; MacQuarrie, S.P.; Scheuer, T.; Catterall, W.A.; Trainer, V.L. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. Nature, 2005, 434(7034), 763-767.
[http://dx.doi.org/10.1038/nature03415] [PMID: 15815630]
[4]
Cheng, S.; Zheng, B.; Yao, D.; Kuai, S.; Tian, J.; Liang, H.; Ding, Y. Study of the binding way between saxitoxin and its aptamer and a fluorescent aptasensor for detection of saxitoxin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 204, 180-187.
[http://dx.doi.org/10.1016/j.saa.2018.06.036] [PMID: 29933153]
[5]
Zheng, W.; Liu, X.; Li, Q.; Shu, Z.; Li, Z.; Zhang, L. A simple electrochemical aptasensor for saxitoxin detection. RSC Advances, 2022, 12(37), 23801-23807.
[http://dx.doi.org/10.1039/D2RA03690H] [PMID: 36093254]
[6]
Van Dolah, F.M.; Fire, S.E.; Leighfield, T.A.; Mikulski, C.M.; Doucette, G.J.; Andersson, Å.; Bean, L.; Couture, D.; DeGrasse, S.; DeLeon, A.; Dell’Ovo, V.; Flewelling, L.; Holland, P.; Langlois, G.; Lewis, R.; Masuda, M.; McNabb, P.; Mikulski, C.; Niedzwiadek, B.; Porntepkasemsan, B.; Rawn, D.; Sombrito, E.; Srisuksawad, K.; Suarez, B.; Subsinserm, S.; Tubaro, A. Determination of paralytic shellfish toxins in shellfish by receptor binding assay: Collaborative study. J. AOAC Int., 2012, 95(3), 795-812.
[http://dx.doi.org/10.5740/jaoacint.CS2011_27] [PMID: 22816272]
[7]
Wharton, R.E.; Feyereisen, M.C.; Gonzalez, A.L.; Abbott, N.L.; Hamelin, E.I.; Johnson, R.C. Quantification of saxitoxin in human blood by ELISA. Toxicon, 2017, 133, 110-115.
[http://dx.doi.org/10.1016/j.toxicon.2017.05.009]
[8]
Acunha, T.; Ibáñez, C. García‐Cañas, V.; Cifuentes, A.; Simó, C. CE‐MS in Food Analysis and Foodomics. In: Capillary Electrophoresis–Mass Spectrometry (CE‐MS); Wiley; , 2016; pp. 193-215.
[9]
Cao, C.; Li, P.; Liao, H.; Wang, J.; Tang, X.; Yang, L. Cys-functionalized AuNP substrates for improved sensing of the marine toxin STX by dynamic surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem., 2020, 412(19), 4609-4617.
[http://dx.doi.org/10.1007/s00216-020-02710-9] [PMID: 32548768]
[10]
Qi, X.; Yan, X.; Zhao, L.; Huang, Y.; Wang, S.; Liang, X. A facile label-free electrochemical aptasensor constructed with nanotetrahedron and aptamer-triplex for sensitive detection of small molecule. Saxitoxin. J. Electroanal. Chem., 2020, 858, 113805.
[http://dx.doi.org/10.1016/j.jelechem.2019.113805]
[11]
Jin, X.; Chen, J.; Zeng, X.; Xu, L.; Wu, Y.; Fu, F. A signal-on magnetic electrochemical immunosensor for ultra-sensitive detection of saxitoxin using palladium-doped graphitic carbon nitride-based non-competitive strategy. Biosens. Bioelectron., 2019, 128, 45-51.
[http://dx.doi.org/10.1016/j.bios.2018.12.036] [PMID: 30620920]
[12]
Sato, S.; Takata, Y.; Kondo, S.; Kotoda, A.; Hongo, N.; Kodama, M. Quantitative ELISA kit for paralytic shellfish toxins coupled with sample pretreatment. J. AOAC Int., 2014, 97(2), 339-344.
[http://dx.doi.org/10.5740/jaoacint.SGESato] [PMID: 24830145]
[13]
Lin, B.; Yu, Y.; Li, R.; Cao, Y.; Guo, M. Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer. Sens. Actuators B Chem., 2016, 229, 100-109.
[http://dx.doi.org/10.1016/j.snb.2016.01.114]
[14]
Attia, M.S.; Ali, K.; El-Kemary, M.; Darwish, W.M. Phthalocyanine-doped polystyrene fluorescent nanocomposite as a highly selective biosensor for quantitative determination of cancer antigen 125. Talanta, 2019, 201, 185-193.
[http://dx.doi.org/10.1016/j.talanta.2019.03.119] [PMID: 31122410]
[15]
Ghubish, Z.; Saif, M.; Hafez, H.; Mahmoud, H.; Kamal, R.; El-Kemary, M. Novel red photoluminescence sensor based on Europium ion doped calcium hydroxy stannate CaSn(OH)6:Eu+3 for latent fingerprint detection. J. Mol. Struct., 2020, 1207, 127840.
[http://dx.doi.org/10.1016/j.molstruc.2020.127840]
[16]
Yu, Q.; He, C.; Li, Q.; Zhou, Y.; Duan, N.; Wu, S. Fluorometric determination of acetamiprid using molecularly imprinted upconversion nanoparticles. Mikrochim. Acta, 2020, 187(4), 222.
[http://dx.doi.org/10.1007/s00604-020-4204-0] [PMID: 32166414]
[17]
Álvarez-Martos, I.; Ferapontova, E.E. Electrochemical label-free aptasensor for specific analysis of dopamine in serum in the presence of structurally related neurotransmitters. Analy. Chem., 2016, 88(7), 3608-3616.
[http://dx.doi.org/10.1021/acs.analchem.5b04207]
[18]
Yang, D.; Liu, X.; Zhou, Y.; Luo, L.; Zhang, J.; Huang, A.; Mao, Q.; Chen, X.; Tang, L. Aptamer-based biosensors for detection of lead(II) ion: A review. Anal. Methods, 2017, 9(13), 1976-1990.
[http://dx.doi.org/10.1039/C7AY00477J]
[19]
Chen, X.; Pan, Y.; Liu, H.; Bai, X.; Wang, N.; Zhang, B. Label-free detection of liver cancer cells by aptamer-based microcantilever biosensor. Biosens. Bioelectron., 2016, 79, 353-358.
[http://dx.doi.org/10.1016/j.bios.2015.12.060] [PMID: 26735868]
[20]
Ling, K.; Jiang, H.; Li, Y.; Tao, X.; Qiu, C.; Li, F.R. A self-assembling RNA aptamer-based graphene oxide sensor for the turn-on detection of theophylline in serum. Biosens. Bioelectron., 2016, 86, 8-13.
[http://dx.doi.org/10.1016/j.bios.2016.06.024] [PMID: 27318104]
[21]
Meng, H.M.; Liu, H.; Kuai, H.; Peng, R.; Mo, L.; Zhang, X.B. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem. Soc. Rev., 2016, 45(9), 2583-2602.
[http://dx.doi.org/10.1039/C5CS00645G] [PMID: 26954935]
[22]
Eissa, S.; Ng, A.; Siaj, M.; Zourob, M. Label-free voltammetric aptasensor for the sensitive detection of microcystin-LR using graphene-modified electrodes. Anal. Chem., 2014, 86(15), 7551-7557.
[http://dx.doi.org/10.1021/ac501335k] [PMID: 25011536]
[23]
Du, X.; Jiang, D.; Li, H.; Hao, N.; You, T.; Wang, K. An intriguing signal-off responsive photoelectrochemical aptasensor for ultrasensitive detection of microcystin-LR and its mechanism study. Sens. Actuators B Chem., 2018, 259, 316-324.
[http://dx.doi.org/10.1016/j.snb.2017.12.065]
[24]
Handy, S.M.; Yakes, B.J.; DeGrasse, J.A.; Campbell, K.; Elliott, C.T.; Kanyuck, K.M.; DeGrasse, S.L. First report of the use of a saxitoxin-protein conjugate to develop a DNA aptamer to a small molecule toxin. Toxicon, 2013, 61, 30-37.
[http://dx.doi.org/10.1016/j.toxicon.2012.10.015]
[25]
Zheng, X.; Hu, B.; Gao, S.; Liu, D.; Sun, M.; Jiao, B.; Wang, L. A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation. Toxicon, 2015, 101, 41-47.
[http://dx.doi.org/10.1016/j.toxicon.2015.04.017]
[26]
Hou, L.; Jiang, L.; Song, Y.; Ding, Y.; Zhang, J.; Wu, X.; Tang, D. Amperometric aptasensor for saxitoxin using a gold electrode modified with carbon nanotubes on a self-assembled monolayer, and methylene blue as an electrochemical indicator probe. Mikrochim. Acta, 2016, 183(6), 1971-1980.
[http://dx.doi.org/10.1007/s00604-016-1836-1]
[27]
Shang, L.; Bian, T.; Zhang, B.; Zhang, D.; Wu, L.Z.; Tung, C.H.; Yin, Y.; Zhang, T. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: Robust catalysts for oxidation and reduction reactions. Angew. Chem. Int. Ed., 2014, 53(1), 250-254.
[http://dx.doi.org/10.1002/anie.201306863] [PMID: 24288240]
[28]
Xu, Y.; Kutsanedzie, F.Y.H.; Hassan, M.; Zhu, J.; Ahmad, W.; Li, H.; Chen, Q. Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Food Chem., 2020, 315, 126300.
[http://dx.doi.org/10.1016/j.foodchem.2020.126300] [PMID: 32018077]
[29]
Kong, X.P.; Zhang, B.H.; Wang, J. Multiple roles of mesoporous silica in safe pesticide application by nanotechnology: A review. J. Agric. Food Chem., 2021, 69(24), 6735-6754.
[http://dx.doi.org/10.1021/acs.jafc.1c01091] [PMID: 34110151]
[30]
Yang, J.; Feng, J.; He, K.; Chen, Z.; Chen, W.; Cao, H.; Yuan, S. Preparation of thermosensitive buprofezin‐loaded mesoporous silica nanoparticles by the sol–gel method and their application in pest control. Pest Manag. Sci., 2021, 77(10), 4627-4637.
[http://dx.doi.org/10.1002/ps.6502] [PMID: 34087044]
[31]
Nasir, T.; Herzog, G.; Hébrant, M.; Despas, C.; Liu, L.; Walcarius, A. Mesoporous silica thin films for improved electrochemical detection of paraquat. ACS Sens., 2018, 3(2), 484-493.
[http://dx.doi.org/10.1021/acssensors.7b00920] [PMID: 29338195]
[32]
Palanivelu, J.; Chidambaram, R. Acetylcholinesterase with mesoporous silica: Covalent immobilization, physiochemical characterization, and its application in food for pesticide detection. J. Cell. Biochem., 2019, 120(6), 10777-10786.
[http://dx.doi.org/10.1002/jcb.28369] [PMID: 30672607]
[33]
Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol., 2022, 119, 69-89.
[http://dx.doi.org/10.1016/j.tifs.2021.11.018]
[34]
Venkateswara Raju, C.; Hwan Cho, C.; Mohana Rani, G.; Manju, V.; Umapathi, R.; Suk Huh, Y.; Pil Park, J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord. Chem. Rev., 2023, 476, 214920.
[http://dx.doi.org/10.1016/j.ccr.2022.214920]
[35]
Umapathi, R.; Venkateswara Raju, C.; Majid Ghoreishian, S.; Mohana Rani, G.; Kumar, K.; Oh, M.H.; Pil Park, J.; Suk Huh, Y. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord. Chem. Rev., 2022, 470, 214708.
[http://dx.doi.org/10.1016/j.ccr.2022.214708]
[36]
Ullah, N.; Chen, W.; Noureen, B.; Tian, Y.; Du, L.; Wu, C.; Ma, J. An electrochemical Ti3C2Tx aptasensor for sensitive and label-free detection of marine biological toxins. Sensors, 2021, 21(14), 4938.
[http://dx.doi.org/10.3390/s21144938] [PMID: 34300682]
[37]
Noureen, B.; Ullah, N.; Tian, Y.; Du, L.; Chen, W.; Wu, C.; Wang, P. An electrochemical PAH-modified aptasensor for the label-free and highly-sensitive detection of saxitoxin. Talanta, 2022, 240, 123185.
[http://dx.doi.org/10.1016/j.talanta.2021.123185] [PMID: 34973551]
[38]
Ullah, N.; Noureen, B.; Tian, Y.; Du, L.; Chen, W.; Wu, C. Label-free detection of saxitoxin with field-effect device-based biosensor. Nanomaterials, 2022, 12(9), 1505.
[http://dx.doi.org/10.3390/nano12091505] [PMID: 35564214]
[39]
Moreno-Villaécija, M.Á.; Sedó-Vegara, J.; Guisasola, E.; Baeza, A.; Regí, M.V.; Nador, F.; Ruiz-Molina, D. Polydopamine-like coatings as payload gatekeepers for mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces, 2018, 10(9), 7661-7669.
[http://dx.doi.org/10.1021/acsami.7b08584] [PMID: 28960952]
[40]
Tan, H.; Ma, L.; Guo, T.; Zhou, H.; Chen, L.; Zhang, Y.; Dai, H.; Yu, Y. A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin B1. Anal. Chim. Acta, 2019, 1068, 87-95.
[http://dx.doi.org/10.1016/j.aca.2019.04.014] [PMID: 31072481]
[41]
Chen, Z.; Tan, Y.; Xu, K.; Zhang, L.; Qiu, B.; Guo, L.; Lin, Z.; Chen, G. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination. Biosens. Bioelectron., 2016, 75, 8-14.
[http://dx.doi.org/10.1016/j.bios.2015.08.006] [PMID: 26278045]
[42]
Gounani, Z.; Asadollahi, M.A.; Meyer, R.L.; Arpanaei, A. Loading of polymyxin B onto anionic mesoporous silica nanoparticles retains antibacterial activity and enhances biocompatibility. Int. J. Pharm., 2018, 537(1-2), 148-161.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.039] [PMID: 29278732]
[43]
Serrano, P.C.; Nunes, G.E.; Avila, L.B., Jr; Reis, C.P.S.; Gomes, A.M.C.; Reis, F.T.; Sartorelli, M.L.; Melegari, S.P.; Matias, W.G.; Bechtold, I.H. Electrochemical impedance biosensor for detection of saxitoxin in aqueous solution. Anal. Bioanal. Chem., 2021, 413(25), 6393-6399.
[http://dx.doi.org/10.1007/s00216-021-03603-1] [PMID: 34389880]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy