Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Mini-Review Article

Overview of Natural Supplements for the Management of Diabetes and Obesity

Author(s): Sonia Singh*, Arpit Shukla and Shiwangi Sharma

Volume 20, Issue 7, 2024

Published on: 06 November, 2023

Article ID: e061123223235 Pages: 20

DOI: 10.2174/0115733998262859231020071715

Price: $65

Abstract

Bioactive compounds found in various natural sources, such as fruits, vegetables, and herbs, have been studied for their potential benefits in managing obesity and diabetes. These compounds include polyphenols, flavonoids, other antioxidants, fiber, and certain fatty acids. Studies have found that these compounds may improve insulin sensitivity, regulate blood sugar levels, and promote weight loss. However, the effects of these compounds can vary depending on the type and amount consumed, as well as individual factors, such as genetics and lifestyle. Nutraceutical substances have multifaceted therapeutic advantages, and they have been reported to have disease-prevention and health-promoting properties. Several clinically used nutraceuticals have been shown to target the pathogenesis of diabetes mellitus, obesity, and metabolic syndrome and their complications and modulate various clinical outcomes favorably. This review aims to highlight and comment on some of the most prominent natural components used as antidiabetics and in managing obesity.

[1]
Desai MY, Dalal D, Santos RD, Carvalho JAM, Nasir K, Blumenthal RS. Association of body mass index, metabolic syndrome, and leukocyte count. Am J Cardiol 2006; 97(6): 835-8.
[http://dx.doi.org/10.1016/j.amjcard.2005.10.021] [PMID: 16516585]
[2]
Rani N, Sharma SK, Vasudeva N. Assessment of antiobesity potential of Achyranthes aspera Linn. seed. Evid Based Complement Alternat Med 2012; 2012: 1-7.
[http://dx.doi.org/10.1155/2012/715912] [PMID: 22919417]
[3]
Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Koplan JP. The continuing epidemics of obesity and diabetes in the United States. JAMA 2001; 286(10): 1195-200.
[http://dx.doi.org/10.1001/jama.286.10.1195] [PMID: 11559264]
[4]
Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999-2004. JAMA 2006; 295(13): 1549-55.
[http://dx.doi.org/10.1001/jama.295.13.1549] [PMID: 16595758]
[5]
Devendra D, Liu E, Eisenbarth GS. Type 1 diabetes: recent developments. BMJ 2004; 328(7442): 750-4.
[http://dx.doi.org/10.1136/bmj.328.7442.750] [PMID: 15044291]
[6]
Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014; 103(2): 137-49.
[http://dx.doi.org/10.1016/j.diabres.2013.11.002] [PMID: 24630390]
[7]
Shi Y, Hu FB. The global implications of diabetes and cancer. Lancet 2014; 383(9933): 1947-8.
[http://dx.doi.org/10.1016/S0140-6736(14)60886-2] [PMID: 24910221]
[8]
da Rocha Fernandes J, Ogurtsova K, Linnenkamp U, et al. IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res Clin Pract 2016; 117: 48-54.
[http://dx.doi.org/10.1016/j.diabres.2016.04.016] [PMID: 27329022]
[9]
Kawser Hossain M, Abdal Dayem A, Han J, et al. Recent advances in disease modeling and drug discovery for diabetes mellitus using induced pluripotent stem cells. Int J Mol Sci 2016; 17(2): 256.
[http://dx.doi.org/10.3390/ijms17020256] [PMID: 26907255]
[10]
Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes 2008; 26(2): 77-82.
[http://dx.doi.org/10.2337/diaclin.26.2.77]
[11]
Patel DK, Kumar R, Laloo D, Hemalatha S. Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac J Trop Biomed 2012; 2(5): 411-20.
[http://dx.doi.org/10.1016/S2221-1691(12)60067-7] [PMID: 23569941]
[12]
Sandborn WJ, Faubion WA. Clinical pharmacology of inflammatory bowel disease therapies. Curr Gastroenterol Rep 2000; 2(6): 440-5.
[http://dx.doi.org/10.1007/s11894-000-0005-0] [PMID: 11079044]
[13]
Prasad S, Phromnoi K, Yadav V, Chaturvedi M, Aggarwal B. Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Med 2010; 76(11): 1044-63.
[http://dx.doi.org/10.1055/s-0030-1250111] [PMID: 20635307]
[14]
Castellarin SD, Di Gaspero G. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol 2007; 7(1): 46.
[http://dx.doi.org/10.1186/1471-2229-7-46] [PMID: 17760970]
[15]
Xie B, Waters MJ, Schirra HJ. Investigating potential mechanisms of obesity by metabolomics. J Biomed Biotechnol 2012; 2012: 805683.
[http://dx.doi.org/10.1155/2012/805683]
[16]
Algoblan A, Alalfi M, Khan M. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes 2014; 7: 587-91.
[http://dx.doi.org/10.2147/DMSO.S67400] [PMID: 25506234]
[17]
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112(12): 1796-808.
[http://dx.doi.org/10.1172/JCI200319246] [PMID: 14679176]
[18]
Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112(12): 1821-30.
[http://dx.doi.org/10.1172/JCI200319451] [PMID: 14679177]
[19]
Maury E, Ehala-Aleksejev K, Guiot Y, Detry R, Vandenhooft A, Brichard SM. Adipokines oversecreted by omental adipose tissue in human obesity. Am J Physiol Endocrinol Metab 2007; 293(3): E656-65.
[http://dx.doi.org/10.1152/ajpendo.00127.2007] [PMID: 17578888]
[20]
Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 2004; 145(5): 2273-82.
[http://dx.doi.org/10.1210/en.2003-1336] [PMID: 14726444]
[21]
Yu R, Kim CS, Kwon BS, Kawada T. Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice. Obesity (Silver Spring) 2006; 14(8): 1353-62.
[http://dx.doi.org/10.1038/oby.2006.153] [PMID: 16988077]
[22]
Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9(5): 367-77.
[http://dx.doi.org/10.1038/nrm2391] [PMID: 18401346]
[23]
Khorami SA, Movahedi AR, Huzwah K, Sokhini AM. PI3K/AKT pathway in modulating glucose homeostasis and its alteration in diabetes. Ann Med Biomed Sci 2015; 1(2): 46-55.
[24]
Bouzakri K, Roques M, Gual P, et al. Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 2003; 52(6): 1319-25.
[http://dx.doi.org/10.2337/diabetes.52.6.1319] [PMID: 12765939]
[25]
Cheon H, Cho JM, Kim S, et al. Role of JNK activation in pancreatic β-cell death by streptozotocin. Mol Cell Endocrinol 2010; 321(2): 131-7.
[http://dx.doi.org/10.1016/j.mce.2010.02.016] [PMID: 20176078]
[26]
Schaffer JE. Lipotoxicity: Many roads to cell dysfunction and cell death: Introduction to a thematic review series. J Lipid Res 2016; 57(8): 1327-8.
[http://dx.doi.org/10.1194/jlr.E069880] [PMID: 27260998]
[27]
van Niekerk G, du Toit A, Loos B, Engelbrecht AM. Nutrient excess and autophagic deficiency: Explaining metabolic diseases in obesity. Metabolism 2018; 82: 14-21.
[http://dx.doi.org/10.1016/j.metabol.2017.12.007] [PMID: 29289514]
[28]
Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat Prod Rep 2009; 26(8): 1001-43.
[http://dx.doi.org/10.1039/b802662a] [PMID: 19636448]
[29]
Yamamoto Y, Oue E. Antihypertensive effect of quercetin in rats fed with a high-fat high-sucrose diet. Biosci Biotechnol Biochem 2006; 70(4): 933-9.
[http://dx.doi.org/10.1271/bbb.70.933] [PMID: 16636461]
[30]
Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T. Quercetin reduces blood pressure in hypertensive subjects. J Nutr 2007; 137(11): 2405-11.
[http://dx.doi.org/10.1093/jn/137.11.2405] [PMID: 17951477]
[31]
Kreft S, Knapp M, Kreft I. Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. J Agric Food Chem 1999; 47(11): 4649-52.
[http://dx.doi.org/10.1021/jf990186p] [PMID: 10552865]
[32]
Huang W, Zhang H, Liu W, Li C. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J Zhejiang Univ Sci B 2012; 13(2): 94-102.
[http://dx.doi.org/10.1631/jzus.B1100137] [PMID: 22302422]
[33]
Prince PSM, Kamalakkannan N. Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes. J Biochem Mol Toxicol 2006; 20(2): 96-102.
[http://dx.doi.org/10.1002/jbt.20117] [PMID: 16615078]
[34]
Yokozawa T, Kim HY, Cho EJ, Choi JS, Chung HY. Antioxidant effects of isorhamnetin 3,7-di-O-β-D-glucopyranoside isolated from mustard leaf (Brassica juncea) in rats with streptozotocin-induced diabetes. J Agric Food Chem 2002; 50(19): 5490-5.
[http://dx.doi.org/10.1021/jf0202133] [PMID: 12207497]
[35]
Lee YS, Lee S, Lee HS, Kim BK, Ohuchi K, Shin KH. Inhibitory effects of isorhamnetin-3-O-β-D-glucoside from Salicornia herbacea on rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. Biol Pharm Bull 2005; 28(5): 916-8.
[http://dx.doi.org/10.1248/bpb.28.916] [PMID: 15863906]
[36]
Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Törrönen AR. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 1999; 47(6): 2274-9.
[http://dx.doi.org/10.1021/jf9811065] [PMID: 10794622]
[37]
Nirmala P, Ramanathan M. Effect of kaempferol on lipid peroxidation and antioxidant status in 1,2-dimethyl hydrazine induced colorectal carcinoma in rats. Eur J Pharmacol 2011; 654(1): 75-9.
[http://dx.doi.org/10.1016/j.ejphar.2010.11.034] [PMID: 21172346]
[38]
Jorge AP, Horst H, Sousa E, Pizzolatti MG, Silva FRMB. Insulinomimetic effects of kaempferitrin on glycaemia and on 14C-glucose uptake in rat soleus muscle. Chem Biol Interact 2004; 149(2-3): 89-96.
[http://dx.doi.org/10.1016/j.cbi.2004.07.001] [PMID: 15501431]
[39]
Hiermann A, Schramm HW, Laufer S. Anti-inflammatory activity of myricetin-3-O-β-D-glucuronide and related compounds. Inflamm Res 1998; 47(11): 421-7.
[http://dx.doi.org/10.1007/s000110050355] [PMID: 9865500]
[40]
Hertog MGL, Hollman PCH, van de Putte B. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices. J Agric Food Chem 1993; 41(8): 1242-6.
[http://dx.doi.org/10.1021/jf00032a015]
[41]
Tzeng TF, Liou SS, Liu IM. Myricetin ameliorates defective post-receptor insulin signaling via β-endorphin signaling in the skeletal muscles of fructose-fed rats. Evid Based Complement Alternat Med 2011; 2011: 1-9.
[http://dx.doi.org/10.1093/ecam/neq017] [PMID: 21785619]
[42]
Liu IM, Tzeng TF, Liou SS, Lan TW. Myricetin, a naturally occurring flavonol, ameliorates insulin resistance induced by a high-fructose diet in rats. Life Sci 2007; 81(21-22): 1479-88.
[http://dx.doi.org/10.1016/j.lfs.2007.08.045] [PMID: 17976658]
[43]
Kandasamy N, Ashokkumar N. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats. Toxicol Appl Pharmacol 2014; 279(2): 173-85.
[http://dx.doi.org/10.1016/j.taap.2014.05.014] [PMID: 24923654]
[44]
Hasanein P, Fazeli F. Role of naringenin in protection against diabetic hyperalgesia and tactile allodynia in male Wistar rats. J Physiol Biochem 2014; 70(4): 997-1006.
[http://dx.doi.org/10.1007/s13105-014-0369-5] [PMID: 25407136]
[45]
Jung UJ, Choi M-S, Lee M-K, Jeong K-S. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J Nutr 2004; 134(10): 2499-503.
[http://dx.doi.org/10.1093/jn/134.10.2499] [PMID: 15465737]
[46]
Kim HJ, Oh GT, Park YB, Lee MK, Seo HJ, Choi MS. Naringin alters the cholesterol biosynthesis and antioxidant enzyme activities in LDL receptor-knockout mice under cholesterol fed condition. Life Sci 2004; 74(13): 1621-34.
[http://dx.doi.org/10.1016/j.lfs.2003.08.026] [PMID: 14738906]
[47]
Zygmunt K, Faubert B, MacNeil J, Tsiani E. Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochem Biophys Res Commun 2010; 398(2): 178-83.
[http://dx.doi.org/10.1016/j.bbrc.2010.06.048] [PMID: 20558145]
[48]
Harmon AW, Patel YM. Naringenin inhibits phosphoinositide 3-kinase activity and glucose uptake in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2003; 305(2): 229-34.
[http://dx.doi.org/10.1016/S0006-291X(03)00720-4] [PMID: 12745063]
[49]
Koch CE, Ganjam GK, Steger J, et al. The dietary flavonoids naringenin and quercetin acutely impair glucose metabolism in rodents possibly via inhibition of hypothalamic insulin signalling. Br J Nutr 2013; 109(6): 1040-51.
[http://dx.doi.org/10.1017/S0007114512003005] [PMID: 22850125]
[50]
Choe SC, Kim HS, Jeong TS, Bok SH, Park YB. Naringin has an antiatherogenic effect with the inhibition of intercellular adhesion molecule-1 in hypercholesterolemic rabbits. J Cardiovasc Pharmacol 2001; 38(6): 947-55.
[http://dx.doi.org/10.1097/00005344-200112000-00017] [PMID: 11707699]
[51]
Jung UJ, Lee MK, Park YB, Kang MA, Choi MS. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int J Biochem Cell Biol 2006; 38(7): 1134-45.
[http://dx.doi.org/10.1016/j.biocel.2005.12.002] [PMID: 16427799]
[52]
Agrawal YO, Sharma PK, Shrivastava B, et al. Hesperidin produces cardioprotective activity via PPAR-γ pathway in ischemic heart disease model in diabetic rats. PLoS One 2014; 9(11): e111212.
[http://dx.doi.org/10.1371/journal.pone.0111212] [PMID: 25369053]
[53]
Akiyama S, Katsumata S, Suzuki K, Ishimi Y, Wu J, Uehara M. Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats. J Clin Biochem Nutr 2009; 46(1): 87-92.
[http://dx.doi.org/10.3164/jcbn.09-82] [PMID: 20104270]
[54]
Park HY, Kim M, Han J. Stereospecific microbial production of isoflavanones from isoflavones and isoflavone glucosides. Appl Microbiol Biotechnol 2011; 91(4): 1173-81.
[http://dx.doi.org/10.1007/s00253-011-3310-7] [PMID: 21562980]
[55]
Szkudelska K, Nogowski L, Szkudelski T. Genistein affects lipogenesis and lipolysis in isolated rat adipocytes. J Steroid Biochem Mol Biol 2000; 75(4-5): 265-71.
[http://dx.doi.org/10.1016/S0960-0760(00)00172-2] [PMID: 11282281]
[56]
Szkudelska K, Szkudelski T, Nogowski L. Daidzein, coumestrol and zearalenone affect lipogenesis and lipolysis in rat adipocytes. Phytomedicine 2002; 9(4): 338-45.
[http://dx.doi.org/10.1078/0944-7113-00148] [PMID: 12120815]
[57]
Panda S, Kar A. Apigenin (4‘,5,7-trihydroxyflavone) regulates hyperglycaemia, thyroid dysfunction and lipid peroxidation in alloxan-induced diabetic mice. J Pharm Pharmacol 2010; 59(11): 1543-8.
[http://dx.doi.org/10.1211/jpp.59.11.0012] [PMID: 17976266]
[58]
Zang M, Xu S, Maitland-Toolan KA, et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 2006; 55(8): 2180-91.
[http://dx.doi.org/10.2337/db05-1188] [PMID: 16873680]
[59]
Neuhouser ML. Dietary flavonoids and cancer risk: evidence from human population studies. Nutr Cancer 2004; 50(1): 1-7.
[http://dx.doi.org/10.1207/s15327914nc5001_1] [PMID: 15572291]
[60]
Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 2001; 49(6): 3106-12.
[http://dx.doi.org/10.1021/jf000892m] [PMID: 11410016]
[61]
Gates MA, Tworoger SS, Hecht JL, De Vivo I, Rosner B, Hankinson SE. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int J Cancer 2007; 121(10): 2225-32.
[http://dx.doi.org/10.1002/ijc.22790] [PMID: 17471564]
[62]
Ding L, Jin D, Chen X. Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes. J Nutr Biochem 2010; 21(10): 941-7.
[http://dx.doi.org/10.1016/j.jnutbio.2009.07.009] [PMID: 19954946]
[63]
Liu Y, Fu X, Lan N, et al. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav Brain Res 2014; 267: 178-88.
[http://dx.doi.org/10.1016/j.bbr.2014.02.040] [PMID: 24667364]
[64]
Yang CS, Chen L, Lee MJ, Balentine D, Kuo MC, Schantz SP. Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev 1998; 7(4): 351-4.
[PMID: 9568793]
[65]
Sartippour MR, Shao ZM, Beatty P, et al. Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. J Nutr 2002; 132(8): 2307-11.
[http://dx.doi.org/10.1093/jn/132.8.2307] [PMID: 12163680]
[66]
Kavanagh KT, Hafer LJ, Kim DW, et al. Green tea extracts decrease carcinogen-induced mammary tumor burden in rats and rate of breast cancer cell proliferation in culture. J Cell Biochem 2001; 82(3): 387-98.
[http://dx.doi.org/10.1002/jcb.1164] [PMID: 11500915]
[67]
Osada K, Takahashi M, Hoshina S, Nakamura M, Nakamura S, Sugano M. Tea catechins inhibit cholesterol oxidation accompanying oxidation of low density lipoprotein in vitro. Comp Biochem Physiol C Toxicol Pharmacol 2001; 128(2): 153-64.
[http://dx.doi.org/10.1016/S1532-0456(00)00192-7] [PMID: 11239828]
[68]
Kao YH, Hiipakka RA, Liao S. Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 2000; 141(3): 980-7.
[http://dx.doi.org/10.1210/endo.141.3.7368] [PMID: 10698173]
[69]
Wolfram S. Effects of green tea and EGCG on cardiovascular and metabolic health. J Am Coll Nutr 2007; 26(4): 373S-88S.
[http://dx.doi.org/10.1080/07315724.2007.10719626] [PMID: 17906191]
[70]
Takikawa M, Inoue S, Horio F, Tsuda T. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J Nutr 2010; 140(3): 527-33.
[http://dx.doi.org/10.3945/jn.109.118216] [PMID: 20089785]
[71]
Galvano F, La Fauci L, Vitaglione P, Fogliano V, Vanella L, Felgines C. Bioavailability, antioxidant and biological properties of the natural free-radical scavengers cyanidin and related glycosides. Ann Ist Super Sanita 2007; 43(4): 382-93.
[PMID: 18209272]
[72]
Ghosh D, Konishi T. Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr 2007; 16(2): 200-8.
[PMID: 17468073]
[73]
Tsuda T, Ueno Y, Aoki H, et al. Anthocyanin enhances adipocytokine secretion and adipocyte-specific gene expression in isolated rat adipocytes. Biochem Biophys Res Commun 2004; 316(1): 149-57.
[http://dx.doi.org/10.1016/j.bbrc.2004.02.031] [PMID: 15003523]
[74]
Bak EJ, Kim J, Choi YH, et al. Wogonin ameliorates hyperglycemia and dyslipidemia via PPARα activation in db/db mice. Clin Nutr 2014; 33(1): 156-63.
[http://dx.doi.org/10.1016/j.clnu.2013.03.013] [PMID: 23623334]
[75]
Ku SK, Bae JS. Baicalin, baicalein and wogonin inhibits high glucose-induced vascular inflammation in vitro and in vivo. BMB Rep 2015; 48(9): 519-24.
[http://dx.doi.org/10.5483/BMBRep.2015.48.9.017] [PMID: 25739393]
[76]
Gupta VK, Tuohy MG, O’Donovan A, Lohani M, Eds. Biotechnology of bioactive compounds: Sources and applications. John Wiley & Sons 2015.
[http://dx.doi.org/10.1002/9781118733103]
[77]
Rideout TC, Harding SV, Jones PJH. Consumption of plant sterols reduces plasma and hepatic triglycerides and modulates the expression of lipid regulatory genes and de novo lipogenesis in C57BL/6J mice. Mol Nutr Food Res 2010; 54(S1) (Suppl. 1): S7-S13.
[http://dx.doi.org/10.1002/mnfr.201000027] [PMID: 20333723]
[78]
Trigueros L, Peña S, Ugidos AV, Sayas-Barberá E, Pérez-Álvarez JA, Sendra E. Food ingredients as anti-obesity agents: A review. Crit Rev Food Sci Nutr 2013; 53(9): 929-42.
[http://dx.doi.org/10.1080/10408398.2011.574215] [PMID: 23768185]
[79]
Janovská P, Flachs P, Kazdová L, Kopecký J. Anti-obesity effect of n-3 polyunsaturated fatty acids in mice fed high-fat diet is independent of cold-induced thermogenesis. Physiol Res 2013; 62(2): 153-61.
[http://dx.doi.org/10.33549/physiolres.932464] [PMID: 23234412]
[80]
Poudyal H, Panchal SK, Waanders J, Ward L, Brown L. Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. J Nutr Biochem 2012; 23(2): 153-62.
[http://dx.doi.org/10.1016/j.jnutbio.2010.11.011] [PMID: 21429727]
[81]
Slavin JL. Dietary fiber and body weight. Nutrition 2005; 21(3): 411-8.
[http://dx.doi.org/10.1016/j.nut.2004.08.018] [PMID: 15797686]
[82]
Papathanasopoulos A, Camilleri M. Dietary fiber supplements: effects in obesity and metabolic syndrome and relationship to gastrointestinal functions Gastroenterology 2010; 138(1): 65-72.e2, 2.
[http://dx.doi.org/10.1053/j.gastro.2009.11.045] [PMID: 19931537]
[83]
van der Klaauw AA, Keogh JM, Henning E, et al. High protein intake stimulates postprandial GLP1 and PYY release. Obesity (Silver Spring) 2013; 21(8): 1602-7.
[http://dx.doi.org/10.1002/oby.20154] [PMID: 23666746]
[84]
Zemel MB. The role of dairy foods in weight management. J Am Coll Nutr 2005; 24(6 Suppl.): 537S-46S.
[http://dx.doi.org/10.1080/07315724.2005.10719502]
[85]
Delzenne NM, Neyrinck AM, Bäckhed F, Cani PD. Targeting gut microbiota in obesity: Effects of prebiotics and probiotics. Nat Rev Endocrinol 2011; 7(11): 639-46.
[http://dx.doi.org/10.1038/nrendo.2011.126] [PMID: 21826100]
[86]
Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J 2013; 7(4): 880-4.
[http://dx.doi.org/10.1038/ismej.2012.153] [PMID: 23235292]
[87]
Kadooka Y, Sato M, Imaizumi K, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 2010; 64(6): 636-43.
[http://dx.doi.org/10.1038/ejcn.2010.19] [PMID: 20216555]
[88]
Minami J, Kondo S, Yanagisawa N, et al. Oral administration of Bifidobacterium breve B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial. J Nutr Sci 2015; 4: e17.
[http://dx.doi.org/10.1017/jns.2015.5] [PMID: 26090097]
[89]
Delzenne NM, Neyrinck AM, Cani PD. Gut microbiota and metabolic disorders: How prebiotic can work? Br J Nutr 2013; 109(S2) (Suppl. 2): S81-5.
[http://dx.doi.org/10.1017/S0007114512004047] [PMID: 23360884]
[90]
Jensen EX, Fusch C, Jaeger P, Peheim E, Horber FF. Impact of chronic cigarette smoking on body composition and fuel metabolism. J Clin Endocrinol Metab 1995; 80(7): 2181-5.
[PMID: 7608276]
[91]
Di Lorenzo C, Williams CM, Hajnal F, Valenzuela JE. Pectin delays gastric emptying and increases satiety in obese subjects. Gastroenterology 1988; 95(5): 1211-5.
[http://dx.doi.org/10.1016/0016-5085(88)90352-6] [PMID: 3169489]
[92]
Frati-Munari AC, Fernández-Harp JA, Becerril M, Chávez-Negrete A, Bañales-Ham M. Decrease in serum lipids, glycemia and body weight by Plantago psyllium in obese and diabetic patients. Arch Invest Med (Mex) 1983; 14(3): 259-68.
[PMID: 6322713]
[93]
Mohamed GA, Ibrahim SRM, Elkhayat ES, El Dine RS. Natural anti-obesity agents. Bull Fac Pharm Cairo Univ 2014; 52(2): 269-84.
[http://dx.doi.org/10.1016/j.bfopcu.2014.05.001]
[94]
Leite-Silva C, Gusmão CLS, Takahashi CS. Genotoxic and antigenotoxic effects of Fucus vesiculosus extract on cultured human lymphocytes using the chromosome aberration and Comet assays. Genet Mol Biol 2007; 30(1): 105-11.
[http://dx.doi.org/10.1590/S1415-47572007000100019]
[95]
Chojnacka K, Saeid A, Witkowska Z, Tuhy L. Biologically active compounds in seaweed extracts-the prospects for the application. Open Conf Proc J 2012; 3(1): 20-8.
[http://dx.doi.org/10.2174/1876326X01203020020]
[96]
Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 2005; 332(2): 392-7.
[http://dx.doi.org/10.1016/j.bbrc.2005.05.002] [PMID: 15896707]
[97]
Astrup A, Breum L, Toubro S. Pharmacological and clinical studies of ephedrine and other thermogenic agonists. Obes Res 1995; 3(S4) (Suppl. 4): 537S-40S.
[http://dx.doi.org/10.1002/j.1550-8528.1995.tb00224.x] [PMID: 8697055]
[98]
Astrup A, Toubro S, Christensen NJ, Quaade F. Pharmacology of thermogenic drugs. Am J Clin Nutr 1992; 55(1) (Suppl.): 246S-8S.
[http://dx.doi.org/10.1093/ajcn/55.1.246s] [PMID: 1345887]
[99]
Reyes-Escogido M, Gonzalez-Mondragon EG, Vazquez-Tzompantzi E. Chemical and pharmacological aspects of capsaicin. Molecules 2011; 16(2): 1253-70.
[http://dx.doi.org/10.3390/molecules16021253] [PMID: 21278678]
[100]
Kang JH, Tsuyoshi G, Han IS, Kawada T, Kim YM, Yu R. Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet. Obesity (Silver Spring) 2010; 18(4): 780-7.
[http://dx.doi.org/10.1038/oby.2009.301] [PMID: 19798065]
[101]
Kaufman PB, Cseke LJ, Warber S, Duke JA, Brielmann HL. Natural products from plants. CRC Press Inc. 1998.
[http://dx.doi.org/10.1201/9780849331343]
[102]
Tucci SA. Phytochemicals in the control of human appetite and body weight. Pharmaceuticals (Basel) 2010; 3(3): 748-63.
[http://dx.doi.org/10.3390/ph3030748] [PMID: 27713277]
[103]
Lee YM, Yoon Y, Yoon H, Park HM, Song S, Yeum KJ. Dietary anthocyanins against obesity and inflammation. Nutrients 2017; 9(10): 1089.
[http://dx.doi.org/10.3390/nu9101089] [PMID: 28974032]
[104]
Azzini E, Giacometti J, Russo GL. Antiobesity effects of anthocyanins in preclinical and clinical studies. Oxid Med Cell Longev 2017; 2017: 2740364.
[http://dx.doi.org/10.1155/2017/2740364]
[105]
Zheng G, Sayama K, Okubo T, Juneja LR, Oguni I. Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo 2004; 18(1): 55-62.
[PMID: 15011752]
[106]
Daveri E, Cremonini E, Mastaloudis A, et al. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biol 2018; 18: 16-24.
[http://dx.doi.org/10.1016/j.redox.2018.05.012] [PMID: 29890336]
[107]
Malekshahi H, Bahrami G, Miraghaee S, et al. Momordica charantia reverses type II diabetes in rat. J Food Biochem 2019; 43(11): e13021.
[http://dx.doi.org/10.1111/jfbc.13021] [PMID: 31441956]
[108]
Go G, Sung JS, Jee SC, et al. In vitro anti-obesity effects of sesamol mediated by adenosine monophosphate-activated protein kinase and mitogen-activated protein kinase signaling in 3T3-L1 cells. Food Sci Biotechnol 2017; 26(1): 195-200.
[http://dx.doi.org/10.1007/s10068-017-0026-1] [PMID: 30263528]
[109]
Hsu CL, Wu CH, Huang SL, Yen GC. Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat diet in rats. J Agric Food Chem 2009; 57(2): 425-31.
[http://dx.doi.org/10.1021/jf802715t] [PMID: 19119847]
[110]
Bureau G, Longpré F, Martinoli MG. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res 2008; 86(2): 403-10.
[http://dx.doi.org/10.1002/jnr.21503] [PMID: 17929310]
[111]
Baile CA, Yang JY, Rayalam S, et al. Effect of resveratrol on fat mobilization. Ann N Y Acad Sci 2011; 1215(1): 40-7.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05845.x] [PMID: 21261640]
[112]
Fischer-Posovszky P, Kukulus V, Tews D, et al. Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. Am J Clin Nutr 2010; 92(1): 5-15.
[http://dx.doi.org/10.3945/ajcn.2009.28435] [PMID: 20463039]
[113]
Nelson-Dooley C, Della-Fera MA, Hamrick M, Baile CA. Novel treatments for obesity and osteoporosis: Targeting apoptotic pathways in adipocytes. Curr Med Chem 2005; 12(19): 2215-25.
[http://dx.doi.org/10.2174/0929867054864886] [PMID: 16178781]
[114]
Wang T, Choi R, Li J, et al. Antihyperlipidemic effect of protodioscin, an active ingredient isolated from the rhizomes of Dioscorea nipponica. Planta Med 2010; 76(15): 1642-6.
[http://dx.doi.org/10.1055/s-0030-1249960] [PMID: 20509104]
[115]
Jin Son M, W Rico C, Hyun Nam S, Young Kang M. Influence of oryzanol and ferulic Acid on the lipid metabolism and antioxidative status in high fat-fed mice. J Clin Biochem Nutr 2010; 46(2): 150-6.
[http://dx.doi.org/10.3164/jcbn.09-98] [PMID: 20216948]
[116]
Cho AS, Jeon SM, Kim MJ, et al. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 2010; 48(3): 937-43.
[http://dx.doi.org/10.1016/j.fct.2010.01.003] [PMID: 20064576]
[117]
Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 2010; 30(1): 173-99.
[http://dx.doi.org/10.1146/annurev.nutr.012809.104755] [PMID: 20420526]
[118]
Ejaz A, Wu D, Kwan P, Meydani M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr 2009; 139(5): 919-25.
[http://dx.doi.org/10.3945/jn.108.100966] [PMID: 19297423]
[119]
Alappat L, Awad AB. Curcumin and obesity: Evidence and mechanisms. Nutr Rev 2010; 68(12): 729-38.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00341.x] [PMID: 21091916]
[120]
Pongchaidecha A, Lailerd N, Boonprasert W, Chattipakorn N. Effects of curcuminoid supplement on cardiac autonomic status in high-fat–induced obese rats. Nutrition 2009; 25(7-8): 870-8.
[http://dx.doi.org/10.1016/j.nut.2009.02.001] [PMID: 19398300]
[121]
Agarwal S, Rao AV. Tomato lycopene and its role in human health and chronic diseases. CMAJ 2000; 163(6): 739-44.
[PMID: 11022591]
[122]
Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 2003; 361(9374): 2017-23.
[http://dx.doi.org/10.1016/S0140-6736(03)13637-9] [PMID: 12814711]
[123]
Guri AJ, Hontecillas R, Si H, Liu D, Bassaganya-Riera J. Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets. Clin Nutr 2007; 26(1): 107-16.
[http://dx.doi.org/10.1016/j.clnu.2006.07.008] [PMID: 17000034]
[124]
Ahn J, Lee H, Kim S, Park J, Ha T. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun 2008; 373(4): 545-9.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.077] [PMID: 18586010]
[125]
Adlercreutz H. Lignans and human health. Crit Rev Clin Lab Sci 2007; 44(5-6): 483-525.
[http://dx.doi.org/10.1080/10408360701612942] [PMID: 17943494]
[126]
Cartea ME, Velasco P. Glucosinolates in Brassica foods: Bioavailability in food and significance for human health. Phytochem Rev 2008; 7(2): 213-29.
[http://dx.doi.org/10.1007/s11101-007-9072-2]
[127]
Yang JY, Della-Fera MA, Nelson-Dooley C, Baile CA. Molecular mechanisms of apoptosis induced by ajoene in 3T3-L1 adipocytes. Obesity (Silver Spring) 2006; 14(3): 388-97.
[http://dx.doi.org/10.1038/oby.2006.52] [PMID: 16648609]
[128]
Behloul N, Wu G. Genistein: A promising therapeutic agent for obesity and diabetes treatment. Eur J Pharmacol 2013; 698(1-3): 31-8.
[http://dx.doi.org/10.1016/j.ejphar.2012.11.013] [PMID: 23178528]
[129]
Gentile D, Fornai M, Pellegrini C, et al. Luteolin prevents cardiometabolic alterations and vascular dysfunction in mice with HFD-induced obesity. Front Pharmacol 2018; 9: 1094.
[http://dx.doi.org/10.3389/fphar.2018.01094] [PMID: 30319424]
[130]
Uemura T, Goto T, Kang MS, et al. Diosgenin, the main aglycon of fenugreek, inhibits LXRα activity in HepG2 cells and decreases plasma and hepatic triglycerides in obese diabetic mice. J Nutr 2011; 141(1): 17-23.
[http://dx.doi.org/10.3945/jn.110.125591] [PMID: 21106928]
[131]
Schonfeld G. Plant sterols in atherosclerosis prevention. Am J Clin Nutr 2010; 92(1): 3-4.
[http://dx.doi.org/10.3945/ajcn.2010.29828] [PMID: 20519556]
[132]
Izar MC, Tegani DM, Kasmas SH, Fonseca FA. Phytosterols and phytosterolemia: Gene–diet interactions. Genes Nutr 2011; 6(1): 17-26.
[http://dx.doi.org/10.1007/s12263-010-0182-x] [PMID: 21437027]
[133]
Park HJ, Cho JY, Kim MK, et al. Anti-obesity effect of Schisandra chinensis in 3T3-L1 cells and high fat diet-induced obese rats. Food Chem 2012; 134(1): 227-34.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.101] [PMID: 23265481]
[134]
Suneetha D, Divya TB, Ali F. Antiobesity values of methanolic extract of Sapindus emariganatus on monosodium glutamate induced model in rats. Int J of Pharmacy and Phytochem Res 2013; 14(5): 267-70.
[135]
Mali P, Bigoniya P, Panchal S, Muchhandi I. Anti-obesity activity of chloroform-methanol extract of Premna integrifolia in mice fed with cafeteria diet. J Pharm Bioallied Sci 2013; 5(3): 229-36.
[http://dx.doi.org/10.4103/0975-7406.116825] [PMID: 24082700]
[136]
Lim S, Yoon JW, Choi SH, et al. Effect of ginsam, a vinegar extract from Panax ginseng, on body weight and glucose homeostasis in an obese insulin-resistant rat model. Metabolism 2009; 58(1): 8-15.
[http://dx.doi.org/10.1016/j.metabol.2008.07.027] [PMID: 19059525]
[137]
Choi YJ, Park SY, Kim JY, et al. Combined treatment of betulinic acid, a PTP1B inhibitor, with Orthosiphon stamineus extract decreases body weight in high-fat-fed mice. J Med Food 2013; 16(1): 2-8.
[http://dx.doi.org/10.1089/jmf.2012.2384] [PMID: 23256448]
[138]
Ahn JH, Kim ES, Lee C, et al. Chemical constituents from Nelumbo nucifera leaves and their anti-obesity effects. Bioorg Med Chem Lett 2013; 23(12): 3604-8.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.013] [PMID: 23642481]
[139]
Birari R, Javia V, Bhutani KK. Antiobesity and lipid lowering effects of Murraya koenigii (L.) Spreng leaves extracts and mahanimbine on high fat diet induced obese rats. Fitoterapia 2010; 81(8): 1129-33.
[http://dx.doi.org/10.1016/j.fitote.2010.07.013] [PMID: 20655993]
[140]
Saminathan M, Rai RB, Dhama K, et al. Systematic review on anticancer potential and other health beneficial pharmacological activities of novel medicinal plant Morinda citrifolia (Noni). Int J Pharmacol 2013; 9(8): 462-92.
[http://dx.doi.org/10.3923/ijp.2013.462.492]
[141]
Jang WS, Choung SY. Antiobesity effects of the ethanol extract of Laminaria japonica Areshoung in high-fat-diet-induced obese rat. Evid Based Complement Alternat Med 2013; 2013: 1-17.
[http://dx.doi.org/10.1155/2013/492807] [PMID: 23365609]
[142]
Patra S, Nithya S, Srinithya B, Meenakshi SM. Review of medicinal plants for anti-obesity activity. Transl Biomed 2015; 6(3)
[http://dx.doi.org/10.21767/2172-0479.100021]
[143]
Bhandari U, Tripathi CD, Khanna G, Kumar V. Evaluation of antiobesity and cardioprotective effect of Gymnema sylvestre extract in murine model. Indian J Pharmacol 2012; 44(5): 607-13.
[http://dx.doi.org/10.4103/0253-7613.100387] [PMID: 23112423]
[144]
Altiner A, Ates A, Gursel FE, Bilal T. Effect of the antiobesity agent Garcinia cambogia extract on serum lipoprotein (a), apolipoproteins a1 and b, and total cholesterol levels in female rats fed atherogenic diet. J Anim Plant Sci 2012; 22: 872-7.
[145]
Song MY, Lv N, Kim EK, et al. Antiobesity activity of aqueous extracts of Rhizoma Dioscoreae Tokoronis on high-fat diet-induced obesity in mice. J Med Food 2009; 12(2): 304-9.
[http://dx.doi.org/10.1089/jmf.2008.1010] [PMID: 19459730]
[146]
Hamao M, Matsuda H, Nakamura S, et al. Anti-obesity effects of the methanolic extract and chakasaponins from the flower buds of Camellia sinensis in mice. Bioorg Med Chem 2011; 19(20): 6033-41.
[http://dx.doi.org/10.1016/j.bmc.2011.08.042] [PMID: 21925888]
[147]
An S, Han JI, Kim MJ, et al. Ethanolic extracts of Brassica campestris spp. rapa roots prevent high-fat diet-induced obesity via β(3)-adrenergic regulation of white adipocyte lipolytic activity. J Med Food 2010; 13(2): 406-14.
[http://dx.doi.org/10.1089/jmf.2009.1295] [PMID: 20132043]
[148]
Balamurugan G, Muralidharan P. Antiobesity effect of Bauhinia variegata bark extract on female rats fed on hypercaloric diet. Bangladesh J Pharmacol 2010; 5(1): 8-12.
[http://dx.doi.org/10.3329/bjp.v5i1.4310]
[149]
Karmase A, Birari R, Bhutani KK. Evaluation of anti-obesity effect of Aegle marmelos leaves. Phytomedicine 2013; 20(10): 805-12.
[http://dx.doi.org/10.1016/j.phymed.2013.03.014] [PMID: 23632084]
[150]
Choi HJ, Chung MJ, Ham SS. Antiobese and hypocholesterolaemic effects of an Adenophora triphylla extract in HepG2 cells and high fat diet-induced obese mice. Food Chem 2010; 119(2): 437-44.
[http://dx.doi.org/10.1016/j.foodchem.2009.06.039]
[151]
Oh SD, Kim M, Min BI, et al. Effect of Achyranthes bidentata Blume on 3T3-L1 adipogenesis and rats fed with a high-fat diet. Evid Based Complement Alternat Med 2014; 2014: 1-7.
[http://dx.doi.org/10.1155/2014/158018] [PMID: 24963319]
[152]
Irudayaraj SS, Stalin A, Sunil C, Duraipandiyan V, Al-Dhabi NA, Ignacimuthu S. Antioxidant, antilipidemic and antidiabetic effects of ficusin with their effects on GLUT4 translocation and PPARγ expression in type 2 diabetic rats. Chem Biol Interact 2016; 256: 85-93.
[http://dx.doi.org/10.1016/j.cbi.2016.06.023] [PMID: 27350165]
[153]
Schuster R, Holzer W, Doerfler H, et al. Cajanus cajan – a source of PPARγ activators leading to anti-inflammatory and cytotoxic effects. Food Funct 2016; 7(9): 3798-806.
[http://dx.doi.org/10.1039/C6FO00689B] [PMID: 27603115]
[154]
Thirumalai T, Therasa SV, Elumalai EK, David E. Hypoglycemic effect of Brassica juncea (seeds) on streptozotocin induced diabetic male albino rat. Asian Pac J Trop Biomed 2011; 1(4): 323-5.
[http://dx.doi.org/10.1016/S2221-1691(11)60052-X] [PMID: 23569784]
[155]
Sanni O, Erukainure OL, Chukwuma CI, Koorbanally NA, Ibeji CU, Islam MS. Azadirachta indica inhibits key enzyme linked to type 2 diabetes in vitro, abates oxidative hepatic injury and enhances muscle glucose uptake ex vivo. Biomed Pharmacother 2019; 109: 734-43.
[http://dx.doi.org/10.1016/j.biopha.2018.10.171] [PMID: 30551526]
[156]
Ranjana , Tripathi YB. Insulin secreting and α-glucosidase inhibitory activity of hexane extract of Annona squamosa Linn. in streptozotocin (STZ) induced diabetic rats. Indian J Exp Biol 2014; 52(6): 623-9.
[PMID: 24956893]
[157]
Dandu AM, Inamdar NM. Evaluation of beneficial effects of antioxidant properties of aqueous leaf extract of Andrographis paniculata in STZ-induced diabetes. Pak J Pharm Sci 2009; 22(1): 49-52.
[PMID: 19168420]
[158]
Prasannaraja C, Kamalanathan AS, Vijayalakshmi MA, Venkataraman K. A dipyrrole derivative from Aloe vera inhibits an anti-diabetic drug target Dipeptidyl Peptidase (DPP)-IV in vitro. Prep Biochem Biotechnol 2020; 50(5): 511-20.
[http://dx.doi.org/10.1080/10826068.2019.1710712] [PMID: 31910723]
[159]
Goli D. Anti-diabetic activity of stem bark of Berberis aristata DC in alloxan induced diabetic rats
[160]
Semwal B, Gupta J, Singh S, Kumar Y, Giri M. Antihyperglycemic activity of root of Berberis aristata D.C. in alloxan-induced diabetic rats. Int J Green Pharmacy 2009; 3(3): 259.
[http://dx.doi.org/10.4103/0973-8258.56288]
[161]
Vilhena RO, Figueiredo ID, Baviera AM, et al. Antidiabetic activity of Musa x paradisiaca extracts in streptozotocin-induced diabetic rats and chemical characterization by HPLC-DAD-MS. J Ethnopharmacol 2020; 254: 112666.
[http://dx.doi.org/10.1016/j.jep.2020.112666] [PMID: 32084552]
[162]
Suanarunsawat T, Anantasomboon G, Piewbang C. Anti-diabetic and anti-oxidative activity of fixed oil extracted from Ocimum sanctum L. leaves in diabetic rats. Exp Ther Med 2016; 11(3): 832-40.
[http://dx.doi.org/10.3892/etm.2016.2991] [PMID: 26998000]
[163]
Kang OH, Shon MY, Kong R, et al. Anti-diabetic effect of black ginseng extract by augmentation of AMPK protein activity and upregulation of GLUT2 and GLUT4 expression in db/db mice. BMC Complement Altern Med 2017; 17(1): 341.
[http://dx.doi.org/10.1186/s12906-017-1839-4] [PMID: 28662663]
[164]
Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N. Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. Eur J Nutr 2017; 56(2): 591-601.
[http://dx.doi.org/10.1007/s00394-015-1103-y] [PMID: 26593435]
[165]
Tang D, Liu L, Ajiakber D, et al. Anti-diabetic effect of Punica granatum flower polyphenols extract in type 2 diabetic rats: Activation of Akt/GSK-3β and inhibition of IRE1α-XBP1 pathways. Front Endocrinol (Lausanne) 2018; 9: 586.
[http://dx.doi.org/10.3389/fendo.2018.00586] [PMID: 30374328]
[166]
Kalhotra P, Chittepu VCSR, Osorio-Revilla G, Gallardo-Velazquez T. Phytochemicals in garlic extract inhibit therapeutic enzyme DPP-4 and induce skeletal muscle cell proliferation: A possible mechanism of action to benefit the treatment of diabetes mellitus. Biomolecules 2020; 10(2): 305.
[http://dx.doi.org/10.3390/biom10020305] [PMID: 32075130]
[167]
Ragavan B, Krishnakumari S. Antidiabetic effect of T. arjuna bark extract in alloxan induced diabetic rats. Indian J Clin Biochem 2006; 21(2): 123-8.
[http://dx.doi.org/10.1007/BF02912926] [PMID: 23105628]
[168]
Nagappa AN, Thakurdesai PA, Venkat Rao N, Singh J. Antidiabetic activity of Terminalia catappa Linn. fruits. J Ethnopharmacol 2003; 88(1): 45-50.
[http://dx.doi.org/10.1016/S0378-8741(03)00208-3] [PMID: 12902049]
[169]
Puranik N, Kammar KF, Devi S. Anti-diabetic activity of Tinospora cordifolia (Willd.) in streptozotocin diabetic rats; does it act like sulfonylureas? Turk J Med Sci 2010; 40(2): 265-70.
[http://dx.doi.org/10.3906/sag-0802-40]
[170]
Akhani SP, Vishwakarma SL, Goyal RK. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. J Pharm Pharmacol 2010; 56(1): 101-5.
[http://dx.doi.org/10.1211/0022357022403] [PMID: 14980006]
[171]
Mansour A, Mohajeri-Tehrani MR, Samadi M, et al. Effects of supplementation with main coffee components including caffeine and/or chlorogenic acid on hepatic, metabolic, and inflammatory indices in patients with non-alcoholic fatty liver disease and type 2 diabetes: A randomized, double-blind, placebo-controlled, clinical trial. Nutr J 2021; 20(1): 35.
[http://dx.doi.org/10.1186/s12937-021-00694-5] [PMID: 33838673]
[172]
Curtis PJ, van der Velpen V, Berends L, et al. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome—results from a 6-month, double-blind, randomized controlled trial. Am J Clin Nutr 2019; 109(6): 1535-45.
[http://dx.doi.org/10.1093/ajcn/nqy380] [PMID: 31136659]
[173]
Costa ES, França CN, Fonseca FAH, et al. Beneficial effects of green banana biomass consumption in patients with pre-diabetes and type 2 diabetes: A randomised controlled trial. Br J Nutr 2019; 121(12): 1365-75.
[http://dx.doi.org/10.1017/S0007114519000576] [PMID: 30887937]
[174]
Schell J, Betts NM, Lyons TJ, Basu A. Raspberries improve postprandial glucose and acute and chronic inflammation in adults with type 2 diabetes. Ann Nutr Metab 2019; 74(2): 165-74.
[http://dx.doi.org/10.1159/000497226] [PMID: 30763939]
[175]
Chandra K, Jain V, Jabin A, et al. Effect of Cichorium intybus seeds supplementation on the markers of glycemic control, oxidative stress, inflammation, and lipid profile in type 2 diabetes mellitus: A randomized, double-blind placebo study. Phytother Res 2020; 34(7): 1609-18.
[http://dx.doi.org/10.1002/ptr.6624] [PMID: 32026537]
[176]
Asadi A, shidfar F, Safari M, et al. Safety and efficacy of Melissa officinalis (lemon balm) on ApoA-I, Apo B, lipid ratio and ICAM-1 in type 2 diabetes patients: A randomized, double-blinded clinical trial. Complement Ther Med 2018; 40: 83-8.
[http://dx.doi.org/10.1016/j.ctim.2018.07.015] [PMID: 30219475]
[177]
Thaipitakwong T, Supasyndh O, Rasmi Y, Aramwit P. A randomized controlled study of dose-finding, efficacy, and safety of mulberry leaves on glycemic profiles in obese persons with borderline diabetes. Complement Ther Med 2020; 49: 102292.
[http://dx.doi.org/10.1016/j.ctim.2019.102292] [PMID: 32147046]
[178]
Simpson EJ, Mendis B, Dunlop M, Schroeter H, Kwik-Uribe C, Macdonald IA. Cocoa flavanol supplementation and the effect on insulin resistance in females who are overweight or obese: A randomized, placebo-controlled trial. Nutrients 2023; 15(3): 565.
[http://dx.doi.org/10.3390/nu15030565] [PMID: 36771271]
[179]
Murray M, Dordevic AL, Cox K, Scholey A, Ryan L, Bonham MP. Twelve weeks’ treatment with a polyphenol-rich seaweed extract increased HDL cholesterol with no change in other biomarkers of chronic disease risk in overweight adults: A placebo-controlled randomized trial. J Nutr Biochem 2021; 96: 108777.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108777] [PMID: 34015499]
[180]
Murray M, Dordevic AL, Cox KHM, Scholey A, Ryan L, Bonham MP. Study protocol for a double-blind randomised controlled trial investigating the impact of 12 weeks supplementation with a Fucus vesiculosus extract on cholesterol levels in adults with elevated fasting LDL cholesterol who are overweight or have obesity. BMJ Open 2018; 8(12): e022195.
[http://dx.doi.org/10.1136/bmjopen-2018-022195] [PMID: 30552248]
[181]
Harwansh RK, Deshmukh R, Rahman MA. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J Drug Deliv Sci Technol 2019; 51: 224-33.
[http://dx.doi.org/10.1016/j.jddst.2019.03.006]
[182]
Bajpai M, Shafi H, Kumari S. Nanoparticles: importance and need for regulations.In: Nanoformulations in Human Health. 2020; pp. 93-107.
[http://dx.doi.org/10.1007/978-3-030-41858-8_5]
[183]
Singh S, Bajpai M, Mishra P. Self-emulsifying drug delivery system (SEDDS): An emerging dosage form to improve the bioavailability of poorly absorbed drugs. Critical Reviews™ in Therapeutic Drug Carrier Systems 2020; 37(4)
[184]
Verma T, Sinha M, Bansal N, et al. Plants Used as Antihypertensive. Nat Prod Bioprospect 2021; 11(2): 155-84.
[http://dx.doi.org/10.1007/s13659-020-00281-x] [PMID: 33174095]
[185]
Gupta J. Recent advances in nanomaterials for therapy and diagnosis of cardiovascular disease. J Pharm Res Int 2021; 33(59A): 229-44.
[http://dx.doi.org/10.9734/jpri/2021/v33i59A34268]
[186]
Rondanelli M, Gasparri C, Petrangolini G, et al. Berberine phospholipid exerts a positive effect on the glycemic profile of overweight subjects with impaired fasting blood glucose (IFG): A randomized double-blind placebo-controlled clinical trial. Eur Rev Med Pharmacol Sci 2023; 27(14): 6718-27.
[PMID: 37522683]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy