Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Mini-Review Article

Astatine-211 Radiopharmaceuticals; Status, Trends, and the Future

Author(s): Mobina Rabiei, Mahboobeh Asadi and Hassan Yousefnia*

Volume 17, Issue 1, 2024

Published on: 03 November, 2023

Page: [7 - 13] Pages: 7

DOI: 10.2174/0118744710262325231025075638

Price: $65

Abstract

The low range of alpha particles provides an opportunity to better target cancer cells theoretically leading to the introduction of interesting alpha emitter radiopharmaceuticals including 225Ac, 212Pb, etc. The combination of high energy and short range of alpha emitters differentiates targeted radiotherapy from other methods and reduces unwanted cytotoxicity of the cells around the tumoral tissue. Among interesting alpha emitters candidates for targeted therapy, 211At, one of the radioisotopes with the best optimal decay properties, shows great promise for targeted radiotherapy in some animal prostate cancer xenograft studies and bone micro tumors with significant effects compared to other beta and alpha emitters and also demonstrates interesting properties for clinical applications. However, production and application of this alpha emitter in the development of actinium-based radiopharmaceuticals is hampered by many obstacles. This mini-review demonstrates 211At production methods, chemical separation, radiolabeling procedures, 211At-radiopharmaceuticals and their clinical trials, transport, logistics, and costs and future trends in the field for ultimate clinical applications. This review showed that there are limited clinical trials on 211Ac-based radiopharmaceuticals, which is due to the low accessibility of this radioisotope and other limitations. However, the development programs of major industries indicate the development of 211Ac-based radiopharmaceuticals in the future.

Graphical Abstract

[1]
Zalutsky, M.R.; Pruszynski, M. Astatine-211: Production and availability. Curr. Radiopharm., 2011, 4(3), 177-185.
[http://dx.doi.org/10.2174/1874471011104030177] [PMID: 22201707]
[2]
Leidermark, E.; Hallqvist, A.; Jacobsson, L.; Karlsson, P.; Holmberg, E.; Bäck, T.; Johansson, M.; Lindegren, S.; Palm, S.; Albertsson, P. Estimating the risk for secondary cancer after targeted a-therapy with 211at intraperitoneal radioimmunotherapy. J. Nucl. Med., 2023, 64(1), 165-172.
[http://dx.doi.org/10.2967/jnumed.121.263349] [PMID: 35798559]
[3]
Radchenko, V.; Morgenstern, A.; Jalilian, A.R.; Ramogida, C.F.; Cutler, C.; Duchemin, C.; Hoehr, C.; Haddad, F.; Bruchertseifer, F.; Gausemel, H.; Yang, H.; Osso, J.A.; Washiyama, K.; Czerwinski, K.; Leufgen, K.; Pruszyński, M.; Valzdorf, O.; Causey, P.; Schaffer, P.; Perron, R.; Maxim, S.; Wilbur, D.S.; Stora, T.; Li, Y. Production and supply of a-particle-emitting radionuclides for targeted A-Therapy. J. Nucl. Med., 2021, 62(11), 1495-1503.
[http://dx.doi.org/10.2967/jnumed.120.261016] [PMID: 34301779]
[4]
Burns, J.D.; Tereshatov, E.E.; Avila, G.; Glennon, K.J.; Hannaman, A.; Lofton, K.N.; Mccann, L.A.; Mccarthy, M.A.; Mcintosh, L.A. Rapid recovery of At-211 by extraction chromatography. Sep. Purif. Technol., 2021, 256, 117794.
[5]
Burns, J.D.; Tereshatov, E.E.; McCarthy, M.A.; McIntosh, L.A.; Tabacaru, G.C.; Yang, X.; Hall, M.B.; Yennello, S.J. Astatine partitioning between nitric acid and conventional solvents: Indication of covalency in ketone complexation of AtO +. Chem. Commun., 2020, 56(63), 9004-9007.
[http://dx.doi.org/10.1039/D0CC03804K] [PMID: 32638758]
[6]
Chakravarty, R.; Lan, X.; Chakraborty, S.; Cai, W. Astatine-211 for PSMA-targeted α-radiation therapy of micrometastatic prostate cancer: A sustainable approach towards precision oncology. Eur. J. Nucl. Med. Mol. Imaging, 2023, 50(7), 1844-1847.
[http://dx.doi.org/10.1007/s00259-023-06178-4] [PMID: 36862207]
[7]
Sporer, E.; Poulie, C.B.; Lindegren, S.; Aneheim, E.; Jensen, H.; Bäck, T.; Kempen, P.J.; Kjaer, A.; Herth, M.M. Surface adsorption of the alpha-emitter astatine-211 to gold nanoparticles is stable in vivo and potentially useful in radionuclide. J. Nanotheranostics., 2021, 2(4), 196-207.
[8]
Gouard, S.; Maurel, C.; Marionneau-Lambot, S.; Dansette, D.; Bailly, C.; Guérard, F.; Chouin, N.; Haddad, F.; Alliot, C.; Gaschet, J.; Eychenne, R.; Kraeber-Bodéré, F.; Chérel, M. Targeted-alpha-therapy combining astatine-211 and ANTI-CD138 antibody in a preclinical syngeneic mouse model of multiple myeloma minimal residual disease. Cancers, 2020, 12(9), 2721.
[http://dx.doi.org/10.3390/cancers12092721] [PMID: 32971984]
[9]
Nakamae, H.; Wilbur, D.S.; Hamlin, D.K.; Thakar, M.S.; Santos, E.B.; Fisher, D.R.; Kenoyer, A.L.; Pagel, J.M.; Press, O.W.; Storb, R.; Sandmaier, B.M. Biodistributions, myelosuppression, and toxicities in mice treated with an anti-CD45 antibody labeled with the alpha-emitting radionuclides bismuth-213 or astatine-211. Cancer Res., 2009, 69(6), 2408-2415.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4363] [PMID: 19244101]
[10]
Lindegren, S.; Albertsson, P.; Bäck, T.; Jensen, H.; Palm, S.; Stig, P.; Aneheim, E. Realizing clinical trials with astitine-211: The chemistry infrastructure. Cancer Biother. Radiopharm., 2020, 35(6), 425-436.
[http://dx.doi.org/10.1089/cbr.2019.3055] [PMID: 32077749]
[11]
Guérard, F.; Gestin, J.F.; Brechbiel, M.W. Production of [(211)At]-astatinated radiopharmaceuticals and applications in targeted α-particle therapy. Cancer Biother. Radiopharm., 2013, 28(1), 1-20.
[http://dx.doi.org/10.1089/cbr.2012.1292] [PMID: 23075373]
[12]
Mirzadeh, S. Generator-produced alpha-emitters. Appl. Radiat. Isot., 1998, 49(4), 345-349.
[http://dx.doi.org/10.1016/S0969-8043(97)00175-9]
[13]
Lambrecht, R.M.; Mirzadeh, S. Cyclotron isotopes and radiopharmaceuticals—XXXV astatine-211. Int. J. Appl. Radiat. Isot., 1985, 36(6), 443-450.
[http://dx.doi.org/10.1016/0020-708X(85)90207-8]
[14]
Mirzadeh, S.; Lambrecht, R.M. Method for the simultaneous preparation of radon-211, xenon-125, xenon-123, astatine-211, iodine-125 and iodine-123. U.S. Patent 4664869A, 1987.
[15]
Visser, J.; Brinkman, G.A.; Bakker, C.N.M. Production of astatine and radon isotopes by photospallation of 232Th and 238U. Int. J. Appl. Radiat. Isot., 1979, 30(12), 745-748.
[http://dx.doi.org/10.1016/0020-708X(79)90153-4]
[16]
Lindegren, S.; Frost, S.; Bäck, T.; Haglund, E.; Elgqvist, J.; Jensen, H. Direct procedure for the production of 211At-labeled antibodies with an epsilon-lysyl-3-(trimethylstannyl)benzamide immunoconjugate. J. Nucl. Med., 2008, 49(9), 1537-1545.
[http://dx.doi.org/10.2967/jnumed.107.049833] [PMID: 18703591]
[17]
International Atomic Energy Agency. Available from: https://www.iaea.org/
[18]
Liu, W.; Tang, Y.; Ma, H.; Li, F.; Hu, Y.; Yang, Y.; Yang, J.; Liao, J.; Liu, N. Astatine-211 labelled a small molecule peptide: Specific cell killing in vitro and targeted therapy in a nude-mouse model. Radiochim. Acta, 2021, 109(2), 119-126.
[http://dx.doi.org/10.1515/ract-2020-0016]
[19]
Takashima, H.; Koga, Y.; Manabe, S.; Ohnuki, K.; Tsumura, R.; Anzai, T.; Iwata, N.; Wang, Y.; Yokokita, T.; Komori, Y.; Mori, D.; Usuda, S.; Haba, H.; Fujii, H.; Matsumura, Y.; Yasunaga, M. Radioimmunotherapy with an 211 At‐labeled anti–tissue factor antibody protected by sodium ascorbate. Cancer Sci., 2021, 112(5), 1975-1986.
[http://dx.doi.org/10.1111/cas.14857] [PMID: 33606344]
[20]
Milius, R.A.; McLaughlin, W.H.; Lambrecht, R.M.; Wolf, A.P.; Carroll, J.J.; Adelstein, S.J.; Bloomer, W.D. Organoastatine chemistry. Astatination via electrophilic destannylation. Int. J. Rad. Appl. Instrum., 1986, 37(8), 799-802.
[http://dx.doi.org/10.1016/0883-2889(86)90274-1]
[21]
Watabe, T.; Liu, Y.; Kaneda-Nakashima, K.; Sato, T.; Shirakami, Y.; Ooe, K.; Toyoshima, A.; Shimosegawa, E.; Wang, Y.; Haba, H.; Nakano, T.; Shinohara, A.; Hatazawa, J. Comparison of the therapeutic effects of [211at] naat and [131i] nai in an nis-expressing thyroid cancer mouse model. Int. J. Mol. Sci., 2022, 23(16), 9434.
[http://dx.doi.org/10.3390/ijms23169434] [PMID: 36012698]
[22]
Watabe, T. Investigator-initiated clinical trial of 211at-naat against refractory thyroid cancer. Gan to kagaku ryoho. Gan To Kagaku Ryoho, 2022, 49(8), 829-834.
[PMID: 36046965]
[23]
Ohshima, Y.; Sudo, H.; Watanabe, S.; Nagatsu, K.; Tsuji, A.B.; Sakashita, T.; Ito, Y.M.; Yoshinaga, K.; Higashi, T.; Ishioka, N.S. Antitumor effects of radionuclide treatment using α-emitting meta-211At-astato-benzylguanidine in a PC12 pheochromocytoma model. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(6), 999-1010.
[http://dx.doi.org/10.1007/s00259-017-3919-6] [PMID: 29350258]
[24]
Zalutsky, M.R.; Reardon, D.A.; Akabani, G.; Coleman, R.E.; Friedman, A.H.; Friedman, H.S.; McLendon, R.E.; Wong, T.Z.; Bigner, D.D. Clinical experience with alpha-particle emitting 211At: Treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J. Nucl. Med., 2008, 49(1), 30-38.
[http://dx.doi.org/10.2967/jnumed.107.046938] [PMID: 18077533]
[25]
Tadashi Watabe, O.U. Targeted alpha therapy using astatine (At-211) against differentiated thyroid cancer. N.C. Patent T05275946, 2023.
[26]
211At-BC8-B10 followed by donor stem cell transplant in treating patients with relapsed or refractory high-risk acute leukemia or myelodysplastic syndrome. N.C. Patent T03670966, 2023.
[27]
NCI. Radioimmunotherapy (211At-OKT10-B10) and chemotherapy (melphalan) before stem cell transplantation for the treatment of multiple myeloma. N.C. Patent T04466475, 2024.
[28]
NATIONAL HEART. Total body irradiation and astatine-211-labeled bc8-b10 monoclonal antibody for the treatment of nonmalignant diseases. N.C. Patent T04083183, 2019.
[29]
N.C.I.. ²¹¹At-OKT10-B10 and fludarabine alone or in combination with cyclophosphamide and low-dose tbi before donor stem cell transplant for the treatment of newly diagnosed, recurrent, or refractory high-risk multiple myeloma. N.C. Patent T04579523, 2020.
[30]
Andersson, H.; Cederkrantz, E.; Bäck, T.; Divgi, C.; Elgqvist, J.; Himmelman, J.; Horvath, G.; Jacobsson, L.; Jensen, H.; Lindegren, S.; Palm, S.; Hultborn, R. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: Pharmacokinetics and dosimetry of (211)At-MX35 F(ab’)2--a phase I study. J. Nucl. Med., 2009, 50(7), 1153-1160.
[http://dx.doi.org/10.2967/jnumed.109.062604] [PMID: 19525452]
[31]
O’Steen, S.; Comstock, M.L.; Orozco, J.J.; Hamlin, D.K.; Wilbur, D.S.; Jones, J.C.; Kenoyer, A.; Nartea, M.E.; Lin, Y.; Miller, B.W.; Gooley, T.A.; Tuazon, S.A.; Till, B.G.; Gopal, A.K.; Sandmaier, B.M.; Press, O.W.; Green, D.J. The α-emitter astatine-211 targeted to CD38 can eradicate multiple myeloma in a disseminated disease model. Blood, 2019, 134(15), 1247-1256.
[http://dx.doi.org/10.1182/blood.2019001250] [PMID: 31395601]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy