Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Metal Organic Frameworks: Synthesis, Characterization and Drug Delivery Applications

Author(s): Prachi Mhettar, Rasika Patil, Dipti Patil, Jidnyasa Pantwalawalkar and Namdeo Jadhav*

Volume 14, Issue 2, 2024

Published on: 02 November, 2023

Article ID: e021123223057 Pages: 14

DOI: 10.2174/0122106812264809231023072013

Price: $65

Abstract

Since the last few years, metal organic frameworks (MOFs) have been attracting attention from scientific sororities. MOFs are novel porous materials with robust architectures that demonstrate a multitude of applications in theranostics. Interestingly, it shows adaptable porosity, versatile chemical configuration, tunable size and shape, tailorable surface functionalization, etc. MOFs have a very porous network space that makes it possible to efficiently pack drug payloads and different imaging markers. Nano-MOFs (NMOFs) are additionally biodegradable in nature due to the metalligand linkages and their greater labile-ness. The present review article provides insights into the fabrication of MOFs, especially different synthesis methodologies, along with merits and limitations. A thorough description of several characterization techniques of MOFs and underlying principles have also been depicted. Moreover, the role of MOFs as a promising nanocarrier for small molecules/ active pharmaceutical ingredients (APIs) and biomolecule delivery has been deliberated along with their theranostic potential. In a nutshell, this review offers the most recent advancements in NMOFs for use in drug delivery applications. In line with this, MOF stands out as a versatile carriers compared to other nanomaterials due to the multitude of uses it has in drug delivery and theragnostic, emanating high hopes for its future clinical application.

Graphical Abstract

[1]
Maranescu, B.; Visa, A. Applications of metal-organic frameworks as drug delivery systems. Int. J. Mol. Sci., 2022, 23(8), 4458.
[http://dx.doi.org/10.3390/ijms23084458] [PMID: 35457275]
[2]
Adepu, S.; Ramakrishna, S. Controlled drug delivery systems: Current status and future directions. Molecules, 2021, 26(19), 5905.
[http://dx.doi.org/10.3390/molecules26195905] [PMID: 34641447]
[3]
Wang, Y.; Yan, J.; Wen, N.; Xiong, H.; Cai, S.; He, Q.; Hu, Y.; Peng, D.; Liu, Z.; Liu, Y. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials, 2020, 230, 119619.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119619] [PMID: 31757529]
[4]
Iannazzo, D.; Pistone, A.; Celesti, C.; Triolo, C.; Patané, S.; Giofré, S.; Romeo, R.; Ziccarelli, I.; Mancuso, R.; Gabriele, B.; Visalli, G.; Facciolà, A.; Di Pietro, A. A smart nanovector for cancer targeted drug delivery based on graphene quantum dots. Nanomaterials , 2019, 9(2), 282.
[http://dx.doi.org/10.3390/nano9020282] [PMID: 30781623]
[5]
El-Boubbou, K. Magnetic iron oxide nanoparticles as drug carriers: Preparation, conjugation and delivery. Nanomedicine , 2018, 13(8), 929-952.
[http://dx.doi.org/10.2217/nnm-2017-0320] [PMID: 29546817]
[6]
Li, Y.; Lu, A.; Long, M.; Cui, L.; Chen, Z.; Zhu, L. Nitroimidazole derivative incorporated liposomes for hypoxia-triggered drug delivery and enhanced therapeutic efficacy in patient-derived tumor xenografts. Acta Biomater., 2019, 83, 334-348.
[http://dx.doi.org/10.1016/j.actbio.2018.10.029] [PMID: 30366135]
[7]
Mousavikhamene, Z.; Abdekhodaie, M.J.; Ahmadieh, H. Facilitation of transscleral drug delivery by drug loaded magnetic polymeric particles. Mater. Sci. Eng. C, 2017, 79, 812-820.
[http://dx.doi.org/10.1016/j.msec.2017.05.015] [PMID: 28629084]
[8]
Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm., 2018, 548(1), 707-720.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.030] [PMID: 30012508]
[9]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[10]
Carrillo-Carrión, C. Nanoscale metal–organic frameworks as key players in the context of drug delivery: Evolution toward theranostic platforms. Anal. Bioanal. Chem., 2020, 412(1), 37-54.
[http://dx.doi.org/10.1007/s00216-019-02217-y] [PMID: 31734711]
[11]
Sun, Y.; Zheng, L.; Yang, Y.; Qian, X.; Fu, T.; Li, X.; Yang, Z.; Yan, H.; Cui, C.; Tan, W. Metal-organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett., 2020, 12(1), 103.
[http://dx.doi.org/10.1007/s40820-020-00423-3] [PMID: 34138099]
[12]
Yang, J.; Wang, H.; Liu, J.; Ding, M.; Xie, X.; Yang, X.; Peng, Y.; Zhou, S.; Ouyang, R.; Miao, Y. Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy. RSC Advances, 2021, 11(6), 3241-3263.
[http://dx.doi.org/10.1039/D0RA09878G] [PMID: 35424280]
[13]
Saeb, M.R.; Rabiee, N.; Mozafari, M.; Mostafavi, E. Metal-organic frameworks (MOFs)-based nanomaterials for drug delivery. Materials , 2021, 14(13), 3652.
[14]
Al Sharabati, M.; Sabouni, R.; Husseini, G.A. Biomedical applications of metal−organic frameworks for disease diagnosis and drug delivery: A review. Nanomaterials , 2022, 12(2), 277.
[http://dx.doi.org/10.3390/nano12020277] [PMID: 35055294]
[15]
Newton Augustus, E.; Nimibofa, A.; Azibaola Kesiye, I.; Donbebe, W. Metal-organic frameworks as novel adsorbents: A preview. Am. J. Environ. Protect., 2017, 5(2), 61-67.
[http://dx.doi.org/10.12691/env-5-2-5]
[16]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149), 1230444.
[http://dx.doi.org/10.1126/science.1230444] [PMID: 23990564]
[17]
Bernard, F. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc., 1989, 111(15), 5962-5964.
[18]
Yaghi, O.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal-organic framework. Nature, 1995, 378, 703-706.
[19]
Mitsuru Kondo, T.Y.K.S.H.M. Three-dimensional framework with channeling cavities for small molecules: (M = Co, Ni, Zn). Angew. Chem., 1997, 36(16), 1725-1727.
[20]
Hailian, L. Design and synthesis of an exceptionally stable and highly metal-organic framework. Nature, 1999, 402, 276-279.
[21]
Zhou, H.C.; Long, J.R.; Yaghi, O.M. Introduction to metal-organic frameworks. Chem. Rev., 2012, 112(2), 673-674.
[http://dx.doi.org/10.1021/cr300014x] [PMID: 22280456]
[22]
Jiao, L.; Seow, J.Y.R.; Skinner, W.S.; Wang, Z.U.; Jiang, H.L. Metal-organic frameworks: Structures and functional applications. Mater. Today, 2019, 27, 43-68.
[http://dx.doi.org/10.1016/j.mattod.2018.10.038]
[23]
Lawson, H.D.; Walton, S.P.; Chan, C. Metal-organic frameworks for drug delivery: A design perspective. ACS Appl. Mater. Interfaces, 2021, 13(6), 7004-7020.
[http://dx.doi.org/10.1021/acsami.1c01089] [PMID: 33554591]
[24]
Soni, S.; Bajpai, P.K.; Arora, C. A review on metal-organic framework: Synthesis, properties and application. Characteriz. Appl. Nanomater., 2018, 2(2), 87-106.
[25]
Wang, J.X.; Yin, J.; Shekhah, O.; Bakr, O.M.; Eddaoudi, M.; Mohammed, O.F. Energy transfer in metal–organic frameworks for fluorescence sensing. ACS Appl. Mater. Interfaces, 2022, 14(8), 9970-9986.
[http://dx.doi.org/10.1021/acsami.1c24759] [PMID: 35175725]
[26]
Pamei, M.; Puzari, A. Luminescent transition metal-organic frameworks: An emerging sensor for detecting biologically essential metal ions. Nano-Struc. Nano-Objects, 2019, 19, 100364.
[27]
Zhao, L.; Zhang, W.; Wu, Q.; Fu, C.; Ren, X.; Lv, K.; Ma, T.; Chen, X.; Tan, L.; Meng, X. Lanthanide europium MOF nanocomposite as the theranostic nanoplatform for microwave thermo-chemotherapy and fluorescence imaging. J. Nanobiotechnology, 2022, 20(1), 133.
[http://dx.doi.org/10.1186/s12951-022-01335-7] [PMID: 35292037]
[28]
Xu, X.; Ma, M.; Sun, T.; Zhao, X.; Zhang, L. Luminescent guests encapsulated in metal-organic frameworks for portable fluorescence sensor and visual detection applications: A review. Biosensors , 2023, 13(4), 435.
[http://dx.doi.org/10.3390/bios13040435] [PMID: 37185510]
[29]
Tian, X.; Murfin, L.C.; Wu, L.; Lewis, S.E.; James, T.D. Fluorescent small organic probes for biosensing. Chem. Sci. , 2021, 12(10), 3406-3426.
[http://dx.doi.org/10.1039/D0SC06928K] [PMID: 34163615]
[30]
Matea, C.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[31]
Hwang, H.S.; Jeong, J.W.; Kim, Y.A.; Chang, M. Carbon nanomaterials as versatile platforms for biosensing applications. Micromachines , 2020, 11(9), 814.
[http://dx.doi.org/10.3390/mi11090814] [PMID: 32872236]
[32]
Sharanyakanth, P.S.; Radhakrishnan, M. Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review. Trends Food Sci. Technol., 2020, 104, 102-116.
[http://dx.doi.org/10.1016/j.tifs.2020.08.004]
[33]
Raptopoulou, C.P. Metal-organic frameworks: Synthetic methods and potential applications. Materials , 2021, 14(2), 310.
[http://dx.doi.org/10.3390/ma14020310] [PMID: 33435267]
[34]
Simon-Yarza, T.; Rojas, S.; Horcajada, P.; Serre, C. The situation of metal-organic frameworks in biomedicine. In: Comprehensive Biomaterials II; Elsevier, 2017, pp. 719-749.
[http://dx.doi.org/10.1016/B978-0-12-803581-8.09793-9]
[35]
Anumah, A.; Louis, H.; Hamzat, A.T.; Amusan, O.O.; Pigweh, A.I.; Akakuru, O.U.; Adeleye, A.T.; Magu, T.O. Metal-organic frameworks (MOFs): Recent advances in synthetic methodologies and some applications. Chem. Methodol., 2019, 3(3), 283-305.
[36]
Pantwalawalkar, J.; Mhettar, P.; Nangare, S.; Mali, R.; Ghule, A.; Patil, P.; Mohite, S.; More, H.; Jadhav, N. Stimuli-responsive design of metal–organic frameworks for cancer theranostics: Current challenges and future perspective. ACS Biomater. Sci. Eng., 2023, 9(8), 4497-4526.
[http://dx.doi.org/10.1021/acsbiomaterials.3c00507] [PMID: 37526605]
[37]
Yusuf, V.F.; Malek, N.I.; Kailasa, S.K. Review on metal–organic framework classification, synthetic approaches, and influencing factors: Applications in energy, drug delivery, and wastewater treatment. ACS Omega, 2022, 7(49), 44507-44531.
[http://dx.doi.org/10.1021/acsomega.2c05310] [PMID: 36530292]
[38]
Sud, D.; Kaur, G. A comprehensive review on synthetic approaches for metal-organic frameworks: From traditional solvothermal to greener protocols. Polyhedron, 2021, 193, 114897.
[http://dx.doi.org/10.1016/j.poly.2020.114897]
[39]
Safaei, M.; Foroughi, M.M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A review on metal-organic frameworks: Synthesis and applications. Trends Analyt. Chem., 2019, 118, 401-425.
[http://dx.doi.org/10.1016/j.trac.2019.06.007]
[40]
Bag, P.P.; Singh, G.P.; Singha, S.; Roymahapatra, G. Synthesis of Metal-Organic Frameworks (MOFs) and Their Biological, Catalytic and Energetic Applications. Eng. Sci., 2021, 13, 1-10.
[41]
Szczesniak, B.; Borysiuk, S.; Choma, J.; Jaroniec, M. Mechanochemical synthesis of highly porous materials. Mater. Horiz., 2020, 7.
[42]
Beamish-Cook, J.; Shankland, K.; Murray, C.A.; Vaqueiro, P. Insights into the mechanochemical synthesis of MOF-74. Cryst. Growth Des., 2021, 21(5), 3047-3055.
[http://dx.doi.org/10.1021/acs.cgd.1c00213] [PMID: 34267598]
[43]
Chen, D.; Zhao, J.; Zhang, P.; Dai, S. Mechanochemical synthesis of metal-organic frameworks. Polyhedron, 2019, 162, 59-64.
[http://dx.doi.org/10.1016/j.poly.2019.01.024]
[44]
Tao, C.A.; Wang, J.F. Synthesis of metal organic frameworks by ball-milling. Crystals , 2021, 11, 1-20.
[45]
Akeremale, O.K.; Ore, O.T.; Bayode, A.A.; Badamasi, H.; Adedeji Olusola, J.; Durodola, S.S. Synthesis, characterization, and activation of metal organic frameworks (mofs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review. Results Chem., 2023, 5, 100866.
[46]
Martínez, R.F.; Cravotto, G.; Cintas, P. Organic sonochemistry: A chemist’s timely perspective on mechanisms and reactivity. J. Org. Chem., 2021, 86(20), 13833-13856.
[http://dx.doi.org/10.1021/acs.joc.1c00805] [PMID: 34156841]
[47]
Vaitsis, C.; Sourkouni, G.; Argirusis, C. Sonochemical synthesis of MOFs. In: Metal-Organic Frameworks for Biomedical Applications; Elsevier, 2020, pp. 223-244.
[http://dx.doi.org/10.1016/B978-0-12-816984-1.00013-5]
[48]
Rooze, J.; Rebrov, E.V.; Schouten, J.C.; Keurentjes, J.T.F. Dissolved gas and ultrasonic cavitation - A review. Ultrason. Sonochem., 2013, 20(1), 1-11.
[http://dx.doi.org/10.1016/j.ultsonch.2012.04.013] [PMID: 22705074]
[49]
Jung, D.W.; Yang, D.A.; Kim, J.; Kim, J.; Ahn, W.S. Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Trans., 2010, 39(11), 2883-2887.
[http://dx.doi.org/10.1039/b925088c] [PMID: 20200716]
[50]
Howarth, A.J.; Peters, A.W.; Vermeulen, N.A.; Wang, T.C.; Hupp, J.T.; Farha, O.K. Best practices for the synthesis, activation, and characterization of metal-organic frameworks. Chem. Mater., 2017, 29(1), 26-39.
[http://dx.doi.org/10.1021/acs.chemmater.6b02626]
[51]
Vaitsis, C.; Sourkouni, G.; Argirusis, C. Metal Organic Frameworks (MOFs) and ultrasound: A review. Ultrason. Sonochem., 2019, 52, 106-119.
[http://dx.doi.org/10.1016/j.ultsonch.2018.11.004] [PMID: 30477790]
[52]
Khan, N.A.; Jhung, S.H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coord. Chem. Rev., 2015, 285, 11-23.
[http://dx.doi.org/10.1016/j.ccr.2014.10.008]
[53]
Ge, J.; Wu, Z.; Huang, X.; Ding, M. An effective microwave-assisted synthesis of MOF235 with excellent adsorption of acid chrome blue K. J. Nanomater., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/4035075]
[54]
Nguyen, H.T.T.; Tran, K.N.T.; Van Tan, L.; Tran, V.A.; Doan, V.D.; Lee, T.; Nguyen, T.D. Microwave-assisted solvothermal synthesis of bimetallic metal-organic framework for efficient photodegradation of organic dyes. Mater. Chem. Phys., 2021, 272, 125040.
[http://dx.doi.org/10.1016/j.matchemphys.2021.125040]
[55]
Pandey, A.; Dhas, N.; Deshmukh, P.; Caro, C.; Patil, P.; Luisa García-Martín, M.; Padya, B.; Nikam, A.; Mehta, T.; Mutalik, S. Heterogeneous surface architectured metal-organic frameworks for cancer therapy, imaging, and biosensing: A state-of-the-art review. Coord. Chem. Rev., 2020, 409, 213212.
[http://dx.doi.org/10.1016/j.ccr.2020.213212]
[56]
Abdelkareem, M.A.; Abbas, Q.; Mouselly, M.; Alawadhi, H.; Olabi, A.G. High-performance effective metal–organic frameworks for electrochemical applications. J. Sci. Adv. Mater. Devices, 2022, 7(3), 100465.
[http://dx.doi.org/10.1016/j.jsamd.2022.100465]
[57]
Campagnol, N.; Van Assche, T.; Boudewijns, T.; Denayer, J.; Binnemans, K.; De Vos, D.; Fransaer, J. High pressure, high temperature electrochemical synthesis of metal–organic frameworks: Films of MIL-100 (Fe) and HKUST-1 in different morphologies. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(19), 5827-5830.
[http://dx.doi.org/10.1039/c3ta10419b]
[58]
Li, W.J.; Tu, M.; Cao, R.; Fischer, R.A. Metal–organic framework thin films: Electrochemical fabrication techniques and corresponding applications & perspectives. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(32), 12356-12369.
[http://dx.doi.org/10.1039/C6TA02118B]
[59]
Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev., 2012, 112(2), 933-969.
[http://dx.doi.org/10.1021/cr200304e] [PMID: 22098087]
[60]
Vepsäläinen, M.; Macedo, D.S.; Gong, H.; Rubio-Martinez, M.; Bayatsarmadi, B.; He, B. Electrosynthesis of HKUST-1 with flow-reactor post-processing. Appl. Sci. , 2021, 11(8), 3340.
[61]
Martinez Joaristi, A.; Juan-Alcañiz, J.; Serra-Crespo, P.; Kapteijn, F.; Gascon, J. Electrochemical synthesis of some archetypical Zn 2+, Cu 2+, and Al 3+ Metal organic frameworks. Cryst. Growth Des., 2012, 12(7), 3489-3498.
[http://dx.doi.org/10.1021/cg300552w]
[62]
Lee, Y.R.; Kim, J.; Ahn, W.S. Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng., 2013, 30(9), 1667-1680.
[http://dx.doi.org/10.1007/s11814-013-0140-6]
[63]
Ploetz, E.; Engelke, H.; Lächelt, U.; Wuttke, S. The chemistry of reticular framework nanoparticles: MOF, ZIF, and COF materials. Adv. Funct. Mater., 2020, 30(41), 1909062.
[http://dx.doi.org/10.1002/adfm.201909062]
[64]
Ullah, S.; Bustam, M.A.; Assiri, M.A.; Al-Sehemi, A.G.; Sagir, M.; Abdul Kareem, F.A.; Elkhalifah, A.E.I.; Mukhtar, A.; Gonfa, G. Synthesis, and characterization of metal-organic frameworks -177 for static and dynamic adsorption behavior of CO2 and CH4. Microporous Mesoporous Mater., 2019, 288, 109569.
[http://dx.doi.org/10.1016/j.micromeso.2019.109569]
[65]
Xiang, W.; Zhang, Y.; Chen, Y.; Liu, C.; Tu, X. Synthesis, characterization and application of defective metal–organic frameworks: Current status and perspectives. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(41), 21526-21546.
[http://dx.doi.org/10.1039/D0TA08009H]
[66]
Martins, V.; Xu, J.; Wang, X.; Chen, K.; Hung, I.; Gan, Z.; Gervais, C.; Bonhomme, C.; Jiang, S.; Zheng, A.; Lucier, B.E.G.; Huang, Y. Higher magnetic fields, finer mof structural information: 17O solid-state NMR at 35.2 T. J. Am. Chem. Soc., 2020, 142(35), 14877-14889.
[http://dx.doi.org/10.1021/jacs.0c02810] [PMID: 32786791]
[67]
Bon, V.; Brunner, E.; Pöppl, A.; Kaskel, S. Unraveling structure and dynamics in porous frameworks via advanced in situ characterization techniques. Adv. Funct. Mater., 2020, 30(41), 1907847.
[http://dx.doi.org/10.1002/adfm.201907847]
[68]
Rehman, S. The role of NMR in metal organic frameworks: Deep insights into dynamics, structure and mapping of functional groups. Mater. Today Adv., 2022, 16, 100287.
[69]
Hadjiivanov, K.I.; Panayotov, D.A.; Mihaylov, M.Y.; Ivanova, E.Z.; Chakarova, K.K.; Andonova, S.M.; Drenchev, N.L. Power of infrared and raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules. Chem. Rev., 2021, 121(3), 1286-1424.
[http://dx.doi.org/10.1021/acs.chemrev.0c00487] [PMID: 33315388]
[70]
Abednatanzi, S.; Gohari Derakhshandeh, P.; Depauw, H.; Coudert, F.X.; Vrielinck, H.; Van Der Voort, P.; Leus, K.; Gohari Derakhshandeh, P. Mixed-metal metal-organic frameworks. Chem. Soc. Rev., 2019, 48(9), 2535-2565.
[http://dx.doi.org/10.1039/C8CS00337H] [PMID: 30989162]
[71]
Kumari, G.; Patil, N.R.; Bhadram, V.S.; Haldar, R.; Bonakala, S.; Maji, T.K.; Narayana, C. Understanding guest and pressure-induced porosity through structural transition in flexible interpenetrated MOF by Raman spectroscopy. J. Raman Spectrosc., 2016, 47(2), 149-155.
[http://dx.doi.org/10.1002/jrs.4766]
[72]
Chong, M.W.S.; Parrott, A.J.; Ashworth, D.J.; Fletcher, A.J.; Nordon, A. Non-invasive monitoring of the growth of metal-organic frameworks (MOFs) via Raman spectroscopy. Phys. Chem. Chem. Phys., 2023, 25(21), 14869-14878.
[http://dx.doi.org/10.1039/D3CP01004J] [PMID: 37199074]
[73]
El-Yazeed, W.S.A.; Ahmed, A.I. Monometallic and bimetallic Cu–Ag MOF/MCM-41 composites: Structural characterization and catalytic activity. RSC Advances, 2019, 9(33), 18803-18813.
[http://dx.doi.org/10.1039/C9RA03310F] [PMID: 35516892]
[74]
Mohammed, A.; Abdullah, A. Scanning Electron Microscopy (SEM): A Review; Băile Govora: Romania, 2018.
[75]
Brahmi, C.; Benltifa, M.; Vaulot, C.; Michelin, L.; Dumur, F.; Millange, F.; Frigoli, M.; Airoudj, A.; Morlet-Savary, F.; Bousselmi, L.; Lalevée, J. New hybrid MOF/polymer composites for the photodegradation of organic dyes. Eur. Poly. J., 2021, 154, 110560.
[76]
Scimeca, M.; Bischetti, S.; Lamsira, H.K.; Bonfiglio, R.; Bonanno, E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur. J. Histochem., 2018, 62(1), 2841.
[http://dx.doi.org/10.4081/ejh.2018.2841] [PMID: 29569878]
[77]
Mahmoodi, N.M.; Abdi, J. Nanoporous metal-organic framework (MOF-199): Synthesis, characterization and photocatalytic degradation of Basic Blue 41. Microchem. J., 2019, 144, 436-442.
[http://dx.doi.org/10.1016/j.microc.2018.09.033]
[78]
Gul Zaman, H.; Baloo, L.; Kutty, S.R.; Aziz, K.; Altaf, M.; Ashraf, A.; Aziz, F. Insight into microwave-assisted synthesis of the chitosan-MOF composite: Pb(II) adsorption. Environ. Sci. Pollut. Res. Int., 2023, 30(3), 6216-6233.
[http://dx.doi.org/10.1007/s11356-022-22438-6] [PMID: 35989404]
[79]
Sinha, P.; Datar, A.; Jeong, C.; Deng, X.; Chung, Y.G.; Lin, L.C. Surface area determination of porous materials using the brunauer–emmett–teller (BET) method: Limitations and improvements. J. Phys. Chem. C, 2019, 123(33), 20195-20209.
[http://dx.doi.org/10.1021/acs.jpcc.9b02116]
[80]
Datar, A.; Chung, Y.G.; Lin, L.C. Beyond the BET Analysis: The Surface area prediction of nanoporous materials using a machine learning method. J. Phys. Chem. Lett., 2020, 11(14), 5412-5417.
[http://dx.doi.org/10.1021/acs.jpclett.0c01518] [PMID: 32510221]
[81]
Ambroz, F.; Macdonald, T.J.; Martis, V.; Parkin, I.P. Evaluation of the BET theory for the characterization of meso and microporous MOFs. Small Methods, 2018, 2(11), 1800173.
[http://dx.doi.org/10.1002/smtd.201800173]
[82]
Dodson, R.A.; Wong-Foy, A.G.; Matzger, A.J. The metal-organic framework collapse continuum: insights from two-dimensional powder X-ray diffraction. Chem. Mater., 2018, 30(18), 6559-6565.
[http://dx.doi.org/10.1021/acs.chemmater.8b03378]
[83]
Mazaj, M.; Kaučič, V.; Zabukovec Logar, N. Chemistry of metal-organic frameworks monitored by advanced X-ray diffraction and scattering techniques. Acta Chim. Slov., 2016, 63(3), 440-458.
[http://dx.doi.org/10.17344/acsi.2016.2610] [PMID: 27640372]
[84]
Cedrún-Morales, M.; Ceballos, M.; Polo, E.; del Pino, P.; Pelaz, B. Nanosized metal-organic frameworks as unique platforms for bioapplications. Chem. Commun. , 2023, 59(20), 2869-2887.
[http://dx.doi.org/10.1039/D2CC05851K] [PMID: 36757184]
[85]
Mendes, R.F.; Figueira, F.; Leite, J.P.; Gales, L.; Almeida Paz, F.A. Metal-organic frameworks: A future toolbox for biomedicine? Chem. Soc. Rev., 2020, 49(24), 9121-9153.
[http://dx.doi.org/10.1039/D0CS00883D] [PMID: 33136108]
[86]
Luo, Z.; Fan, S.; Gu, C.; Liu, W.; Chen, J.; Li, B.; Liu, J. Metal–Organic Framework (MOF)-based nanomaterials for biomedical applications. Curr. Med. Chem., 2019, 26(18), 3341-3369.
[http://dx.doi.org/10.2174/0929867325666180214123500] [PMID: 29446726]
[87]
Gao, P.; Chen, Y.; Pan, W.; Li, N.; Liu, Z.; Tang, B. Antitumor agents based on metal-organic frameworks. Angew. Chem. Int. Ed., 2021, 60(31), 16763-16776.
[http://dx.doi.org/10.1002/anie.202102574] [PMID: 33686725]
[88]
Barbosa, J.S.; Figueira, F.; Braga, S.S.; Almeida Paz, F.A. Metal-organic frameworks for biomedical applications: The case of functional ligands. In: Metal-Organic Frameworks for Biomedical Applications; Elsevier, 2020, pp. 69-92.
[http://dx.doi.org/10.1016/B978-0-12-816984-1.00005-6]
[89]
Teplensky, M.H.; Fantham, M.; Li, P.; Wang, T.C.; Mehta, J.P.; Young, L.J.; Moghadam, P.Z.; Hupp, J.T.; Farha, O.K.; Kaminski, C.F.; Fairen-Jimenez, D. Temperature treatment of highly porous zirconium-containing metal–organic frameworks extends drug delivery release. J. Am. Chem. Soc., 2017, 139(22), 7522-7532.
[http://dx.doi.org/10.1021/jacs.7b01451] [PMID: 28508624]
[90]
Wang, H.L.; Yeh, H.; Li, B.H.; Lin, C.H.; Hsiao, T.C.; Tsai, D.H. Zirconium-based metal-organic framework nanocarrier for the controlled release of ibuprofen. ACS Appl. Nano Mater., 2019, 2(6), 3329-3334.
[http://dx.doi.org/10.1021/acsanm.9b00834]
[91]
Taherzade, S.D.; Rojas, S.; Soleimannejad, J.; Horcajada, P. Combined cutaneous therapy using biocompatible metal-organic frameworks. Nanomaterials , 2020, 10(12), 2296.
[http://dx.doi.org/10.3390/nano10122296] [PMID: 33255580]
[92]
Braga, S.S.; Almeida Paz, F.A. The emerging role of cyclodextrin metal–organic frameworks in ostheotherapeutics. Appl. Sci. , 2022, 12(3), 1574.
[93]
Han, Y.; Liu, W.; Huang, J.; Qiu, S.; Zhong, H.; Liu, D.; Liu, J. Cyclodextrin-based metal-organic frameworks (CD-MOFs) in pharmaceutics and biomedicine. Pharmaceutics, 2018, 10(4), 271.
[http://dx.doi.org/10.3390/pharmaceutics10040271] [PMID: 30545114]
[94]
Lei, Z.; Gao, C.; Chen, L.; He, Y.; Ma, W.; Lin, Z. Recent advances in biomolecule immobilization based on self-assembly: Organic–inorganic hybrid nanoflowers and metal–organic frameworks as novel substrates. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(11), 1581-1594.
[http://dx.doi.org/10.1039/C7TB03310A] [PMID: 32254274]
[95]
Xing, Q.; Pan, Y.; Hu, Y.; Wang, L. Review of the biomolecular modification of the metal-organ-framework. Front Chem., 2020, 8, 642.
[http://dx.doi.org/10.3389/fchem.2020.00642] [PMID: 32850658]
[96]
Tong, P.H.; Zhu, L.; Zang, Y.; Li, J.; He, X.P.; James, T.D. Metal–organic frameworks (MOFs) as host materials for the enhanced delivery of biomacromolecular therapeutics. Chem. Commun. , 2021, 57(91), 12098-12110.
[http://dx.doi.org/10.1039/D1CC05157A] [PMID: 34714306]
[97]
Beg, S.; Rahman, M.; Jain, A.; Saini, S.; Midoux, P.; Pichon, C.; Ahmad, F.J.; Akhter, S. Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications. Drug Discov. Today, 2017, 22(4), 625-637.
[http://dx.doi.org/10.1016/j.drudis.2016.10.001] [PMID: 27742533]
[98]
Cases Díaz, J.; Lozano-Torres, B.; Giménez-Marqués, M. Boosting protein encapsulation through lewis-acid-mediated metal–organic framework mineralization: Toward effective intracellular delivery. Chem. Mater., 2022, 34(17), 7817-7827.
[http://dx.doi.org/10.1021/acs.chemmater.2c01338] [PMID: 36117882]
[99]
Wijesundara, Y.H.; Herbert, F.C.; Trashi, O.; Trashi, I.; Brohlin, O.R.; Kumari, S.; Howlett, T.; Benjamin, C.E.; Shahrivarkevishahi, A.; Diwakara, S.D.; Perera, S.D.; Cornelius, S.A.; Vizuet, J.P.; Balkus, K.J., Jr; Smaldone, R.A.; De Nisco, N.J.; Gassensmith, J.J. Carrier gas triggered controlled biolistic delivery of DNA and protein therapeutics from metal-organic frameworks. Chem. Sci. , 2022, 13(46), 13803-13814.
[http://dx.doi.org/10.1039/D2SC04982A] [PMID: 36544734]
[100]
Duan, Y.; Ye, F.; Huang, Y.; Qin, Y.; He, C.; Zhao, S. One-pot synthesis of a metal-organic framework-based drug carrier for intelligent glucose-responsive insulin delivery. Chem. Commun. , 2018, 54(42), 5377-5380.
[http://dx.doi.org/10.1039/C8CC02708K] [PMID: 29745409]
[101]
Peng, S.; Bie, B.; Sun, Y.; Liu, M.; Cong, H.; Zhou, W.; Xia, Y.; Tang, H.; Deng, H.; Zhou, X. Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat. Commun., 2018, 9(1), 1293.
[http://dx.doi.org/10.1038/s41467-018-03650-w] [PMID: 29615605]
[102]
Luo, T.; Nash, G.T.; Jiang, X.; Feng, X.; Mao, J.; Liu, J.; Juloori, A.; Pearson, A.T.; Lin, W. A 2D nanoradiosensitizer enhances radiotherapy and delivers sting agonists to potentiate cancer immunotherapy. Adv. Mater., 2022, 34(39), 2110588.
[http://dx.doi.org/10.1002/adma.202110588] [PMID: 35952624]
[103]
Luo, L.; Fan, Y.; Mao, J.; Jiang, X.; Albano, L.; Yuan, E.; Germanas, T.; Lin, W. Metal-Organic Layer Delivers 5-Aminolevulinic Acid and Porphyrin for Dual-Organelle-Targeted Photodynamic Therapy. Angew. Chem., 2023, 62.
[104]
Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv. Mater., 2018, 30(37), 1707365.
[http://dx.doi.org/10.1002/adma.201707365] [PMID: 29876985]
[105]
Sun, W.; Li, S.; Tang, G.; Luo, Y.; Ma, S.; Sun, S.; Ren, J.; Gong, Y.; Xie, C. Recent progress of nanoscale metal-organic frameworks in cancer theranostics and the challenges of their clinical application. Int. J. Nanomedicine, 2020, 14, 10195-10207.
[http://dx.doi.org/10.2147/IJN.S230524] [PMID: 32099352]
[106]
Zhang, H.; Shang, Y.; Li, Y.H.; Sun, S.K.; Yin, X.B. Smart metal–organic framework-based nanoplatforms for imaging-guided precise chemotherapy. ACS Appl. Mater. Interfaces, 2019, 11(2), 1886-1895.
[http://dx.doi.org/10.1021/acsami.8b19048] [PMID: 30584757]
[107]
Guo, H.; Yi, S.; Feng, K.; Xia, Y.; Qu, X.; Wan, F.; Chen, L.; Zhang, C. In situ formation of metal organic framework onto gold nanorods/mesoporous silica with functional integration for targeted theranostics. Chem. Eng. J., 2021, 403, 126432.
[http://dx.doi.org/10.1016/j.cej.2020.126432]
[108]
Zhang, H.; Tian, X.T.; Shang, Y.; Li, Y.H.; Yin, X.B. Theranostic mn-porphyrin metal-organic frameworks for magnetic resonance imaging-guided nitric oxide and photothermal synergistic therapy. ACS Appl. Mater. Interfaces, 2018, 10(34), 28390-28398.
[http://dx.doi.org/10.1021/acsami.8b09680] [PMID: 30066560]
[109]
Yang, S.; Li, D.; Chen, L.; Zhou, X.; Fu, L.; You, Y.; You, Z.; Kang, L.; Li, M.; He, C. Coupling metal organic frameworks with molybdenum disulfide nanoflakes for targeted cancer theranostics. Biomater. Sci., 2021, 9(9), 3306-3318.
[http://dx.doi.org/10.1039/D0BM02012E] [PMID: 33459315]
[110]
Pourmadadi, M.; Ostovar, S.; Eshaghi, M.M.; Rajabzadeh-Khosroshahi, M.; Safakhah, S.; Ghotekar, S.; Rahdar, A.; Díez-Pascual, A.M. Nanoscale metallic‐organic frameworks as an advanced tool for medical applications: Challenges and recent progress. Appl. Organomet. Chem., 2023, 37(3), e6982.
[http://dx.doi.org/10.1002/aoc.6982]
[111]
He, S.; Wu, L.; Li, X.; Sun, H.; Xiong, T.; Liu, J.; Huang, C.; Xu, H.; Sun, H.; Chen, W.; Gref, R.; Zhang, J. Metal-organic frameworks for advanced drug delivery. Acta Pharm. Sin. B, 2021, 11(8), 2362-2395.
[http://dx.doi.org/10.1016/j.apsb.2021.03.019] [PMID: 34522591]
[112]
Xia, W.; Tao, Z.; Zhu, B.; Zhang, W.; Liu, C.; Chen, S.; Song, M. Targeted delivery of drugs and genes using polymer nanocarriers for cancer therapy. Int. J. Mol. Sci., 2021, 22(17), 9118.
[http://dx.doi.org/10.3390/ijms22179118] [PMID: 34502028]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy