Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Mechanism of Action and Related Natural Regulators of Nrf2 in Nonalcoholic Fatty Liver Disease

Author(s): Wenfei Yu, Fengxia Zhang*, Decheng Meng, Xin Zhang, Yanan Feng, Guoliang Yin, Pengpeng Liang, Suwen Chen and Hongshuai Liu

Volume 21, Issue 10, 2024

Published on: 30 October, 2023

Page: [1300 - 1319] Pages: 20

DOI: 10.2174/0115672018260113231023064614

Price: $65

conference banner
Abstract

With the acceleration of people's pace of life, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world, which greatly threatens people's health and safety. Therefore, there is still an urgent need for higher-quality research and treatment in this area. Nuclear factor Red-2-related factor 2 (Nrf2), as a key transcription factor in the regulation of oxidative stress, plays an important role in inducing the body's antioxidant response. Although there are no approved drugs targeting Nrf2 to treat NAFLD so far, it is still of great significance to target Nrf2 to alleviate NAFLD. In recent years, studies have reported that many natural products treat NAFLD by acting on Nrf2 or Nrf2 pathways. This article reviews the role of Nrf2 in the pathogenesis of NAFLD and summarizes the currently reported natural products targeting Nrf2 or Nrf2 pathway for the treatment of NAFLD, which provides new ideas for the development of new NAFLD-related drugs.

Graphical Abstract

[1]
Shi, Y.; Su, W.; Zhang, L.; Shi, C.; Zhou, J.; Wang, P.; Wang, H.; Shi, X.; Wei, S.; Wang, Q.; Auwerx, J.; Schoonjans, K.; Yu, Y.; Pan, R.; Zhou, H.; Lu, L. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation. Front. Immunol., 2021, 11, 609060.
[http://dx.doi.org/10.3389/fimmu.2020.609060] [PMID: 33692776]
[2]
Jiang, W.; Xu, S.; Guo, H.; Lu, L.; Liu, J.; Wang, G.; Hao, K. Magnesium isoglycyrrhizinate prevents the nonalcoholic hepatic steatosis via regulating energy homeostasis. J. Cell. Mol. Med., 2020, 24(13), 7201-7213.
[http://dx.doi.org/10.1111/jcmm.15230] [PMID: 32410294]
[3]
Kishida, Y.; Okubo, H.; Ohno, H.; Oki, K.; Yoneda, M. Effect of miglitol on the suppression of nonalcoholic steatohepatitis development and improvement of the gut environment in a rodent model. J. Gastroenterol., 2017, 52(11), 1180-1191.
[http://dx.doi.org/10.1007/s00535-017-1331-4] [PMID: 28349245]
[4]
Xu, P.; Jiang, L.; Yang, Y.; Wu, M.; Liu, B.; Shi, Y.; Shen, Q.; Jiang, X.; He, Y.; Cheng, D.; Xiong, Q.; Yang, Z.; Duan, L.; Lin, J.; Zhao, S.; Shi, P.; Yang, C.; Chen, Y. PAQR4 promotes chemoresistance in non-small cell lung cancer through inhibiting Nrf2 protein degradation. Theranostics, 2020, 10(8), 3767-3778.
[http://dx.doi.org/10.7150/thno.43142] [PMID: 32206121]
[5]
Lister, A.; Nedjadi, T.; Kitteringham, N.R.; Campbell, F.; Costello, E.; Lloyd, B.; Copple, I.M.; Williams, S.; Owen, A.; Neoptolemos, J.P.; Goldring, C.E.; Park, B.K. Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy. Mol. Cancer, 2011, 10(1), 37.
[http://dx.doi.org/10.1186/1476-4598-10-37] [PMID: 21489257]
[6]
Nikolaou, N.; Gathercole, L.L.; Marchand, L.; Althari, S.; Dempster, N.J.; Green, C.J.; van de Bunt, M.; McNeil, C.; Arvaniti, A.; Hughes, B.A.; Sgromo, B.; Gillies, R.S.; Marschall, H.U.; Penning, T.M.; Ryan, J.; Arlt, W.; Hodson, L.; Tomlinson, J.W. AKR1D1 is a novel regulator of metabolic phenotype in human hepatocytes and is dysregulated in non-alcoholic fatty liver disease. Metabolism, 2019, 99, 67-80.
[http://dx.doi.org/10.1016/j.metabol.2019.153947] [PMID: 31330134]
[7]
Wang, Z.; Li, S.; Wang, R.; Guo, L.; Xu, D.; Zhang, T.; Xu, Y.; Wang, W.; Wang, M.; Gan, Z.; Wang, X. The protective effects of the β3 adrenergic receptor agonist BRL37344 against liver steatosis and inflammation in a rat model of high-fat diet-induced nonalcoholic fatty liver disease (NAFLD). Mol. Med., 2020, 26(1), 54.
[http://dx.doi.org/10.1186/s10020-020-00164-4] [PMID: 32503411]
[8]
Luther, J.; Khan, S.; Gala, M.K.; Kedrin, D.; Sridharan, G.; Goodman, R.P.; Garber, J.J.; Masia, R.; Diagacomo, E.; Adams, D.; King, K.R.; Piaker, S.; Reinecker, H.C.; Yarmush, M.L.; Argemi, J.; Bataller, R.; Dienstag, J.L.; Chung, R.T.; Patel, S.J. Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation. Proc. Natl. Acad. Sci. USA, 2020, 117(21), 11667-11673.
[http://dx.doi.org/10.1073/pnas.1911870117] [PMID: 32393626]
[9]
Yamaguchi, K.; Yang, L.; McCall, S.; Huang, J.; Yu, X.X.; Pandey, S.K.; Bhanot, S.; Monia, B.P.; Li, Y.X.; Diehl, A.M. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology, 2007, 45(6), 1366-1374.
[http://dx.doi.org/10.1002/hep.21655] [PMID: 17476695]
[10]
Liu, X.L.; Ming, Y.N.; Zhang, J.Y.; Chen, X.Y.; Zeng, M.D.; Mao, Y.M. Gene-metabolite network analysis in different nonalcoholic fatty liver disease phenotypes. Exp. Mol. Med., 2017, 49(1), e283.
[http://dx.doi.org/10.1038/emm.2016.123] [PMID: 28082742]
[11]
Bar-Tana, J. Insulin Resistance, Secretion and Clearance –Taming the Three Effector Encounter of Type 2 Diabetes. Front. Endocrinol. (Lausanne), 2021, 12, 741114.
[http://dx.doi.org/10.3389/fendo.2021.741114] [PMID: 34659123]
[12]
Chen, X.; Xue, H.; Fang, W.; Chen, K.; Chen, S.; Yang, W.; Shen, T.; Chen, X.; Zhang, P.; Ling, W. Adropin protects against liver injury in nonalcoholic steatohepatitis via the Nrf2 mediated antioxidant capacity. Redox Biol., 2019, 21, 101068.
[http://dx.doi.org/10.1016/j.redox.2018.101068] [PMID: 30684890]
[13]
Guzman, C.B.; Duvvuru, S.; Akkari, A.; Bhatnagar, P.; Battioui, C.; Foster, W.; Zhang, X.M.; Shankar, S.S.; Deeg, M.A.; Chalasani, N.; Hardy, T.A.; Kazda, C.M.; Pillai, S.G. Coding variants in PNPLA3 and TM6SF2 are risk factors for hepatic steatosis and elevated serum alanine aminotransferases caused by a glucagon receptor antagonist. Hepatol. Commun., 2018, 2(5), 561-570.
[http://dx.doi.org/10.1002/hep4.1171] [PMID: 29761171]
[14]
Hao, L.; Ito, K.; Huang, K.H.; Sae-tan, S.; Lambert, J.D.; Ross, A.C. Shifts in dietary carbohydrate-lipid exposure regulate expression of the non-alcoholic fatty liver disease-associated gene PNPLA3/adiponutrin in mouse liver and HepG2 human liver cells. Metabolism, 2014, 63(10), 1352-1362.
[http://dx.doi.org/10.1016/j.metabol.2014.06.016] [PMID: 25060692]
[15]
Kumashiro, N.; Yoshimura, T.; Cantley, J.L.; Majumdar, S.K.; Guebre-Egziabher, F.; Kursawe, R.; Vatner, D.F.; Fat, I.; Kahn, M.; Erion, D.M.; Zhang, X.M.; Zhang, D.; Manchem, V.P.; Bhanot, S.; Gerhard, G.S.; Petersen, K.F.; Cline, G.W.; Samuel, V.T.; Shulman, G.I. Role of patatin‐like phospholipase domain‐containing 3 on lipid‐induced hepatic steatosis and insulin resistance in rats. Hepatology, 2013, 57(5), 1763-1772.
[http://dx.doi.org/10.1002/hep.26170] [PMID: 23175050]
[16]
Zhao, Z.; Meng, J.; Su, R.; Zhang, J.; Chen, J.; Ma, X.; Xia, Q. Epitranscriptomics in liver disease: Basic concepts and therapeutic potential. J. Hepatol., 2020, 73(3), 664-679.
[http://dx.doi.org/10.1016/j.jhep.2020.04.009] [PMID: 32330603]
[17]
Hong, T.; Ge, Z.; Zhang, B.; Meng, R.; Zhu, D.; Bi, Y. Erythropoietin suppresses hepatic steatosis and obesity by inhibiting endoplasmic reticulum stress and upregulating fibroblast growth factor 21. Int. J. Mol. Med., 2019, 44(2), 469-478.
[http://dx.doi.org/10.3892/ijmm.2019.4210] [PMID: 31173165]
[18]
Yu, Y.; Cai, J.; She, Z.; Li, H. Insights into the Epidemiology, Pathogenesis, and Therapeutics of Nonalcoholic Fatty Liver Diseases. Adv. Sci. (Weinh.), 2019, 6(4), 1801585.
[http://dx.doi.org/10.1002/advs.201801585] [PMID: 30828530]
[19]
Lin, H.Y.; Wang, F.S.; Yang, Y.L.; Huang, Y.H. MicroRNA-29a suppresses CD36 to ameliorate high fat diet-induced steatohepatitis and liver fibrosis in mice. Cells, 2019, 8(10), 1298.
[http://dx.doi.org/10.3390/cells8101298] [PMID: 31652636]
[20]
Park, E.J.; Lee, Y.S.; Kim, S.M.; Park, G.S.; Lee, Y.H.; Jeong, D.Y.; Kang, J.; Lee, H.J. Beneficial effects of lactobacillus plantarum strains on non-alcoholic fatty liver disease in high fat/high fructose diet-fed rats. Nutrients, 2020, 12(2), 542.
[http://dx.doi.org/10.3390/nu12020542] [PMID: 32093158]
[21]
Mulder, P.; Morrison, M.C.; Wielinga, P.Y.; van Duyvenvoorde, W.; Kooistra, T.; Kleemann, R. Surgical removal of inflamed epididymal white adipose tissue attenuates the development of non-alcoholic steatohepatitis in obesity. Int. J. Obes., 2016, 40(4), 675-684.
[http://dx.doi.org/10.1038/ijo.2015.226] [PMID: 26499443]
[22]
Kakehashi, A.; Stefanov, V.; Ishii, N.; Okuno, T.; Fujii, H.; Kawai, K.; Kawada, N.; Wanibuchi, H. Proteome characteristics of non-alcoholic steatohepatitis liver tissue and associated hepatocellular carcinomas. Int. J. Mol. Sci., 2017, 18(2), 434.
[http://dx.doi.org/10.3390/ijms18020434] [PMID: 28218651]
[23]
Boonloh, K.; Kukongviriyapan, V.; Kongyingyoes, B.; Kukongviriyapan, U.; Thawornchinsombut, S.; Pannangpetch, P. Rice bran protein hydrolysates improve insulin resistance and decrease pro-inflammatory cytokine gene expression in rats fed a high carbohydrate-high fat diet. Nutrients, 2015, 7(8), 6313-6329.
[http://dx.doi.org/10.3390/nu7085292] [PMID: 26247962]
[24]
Ramanjaneya, M.; Bensila, M.; Bettahi, I.; Jerobin, J.; Samra, T.A.; Aye, M.M.; Alkasem, M.; Siveen, K.S.; Sathyapalan, T.; Skarulis, M.; Atkin, S.L.; Abou-Samra, A.B. Dynamic changes in circulating endocrine FGF19 subfamily and fetuin-A in response to intralipid and insulin infusions in healthy and PCOS women. Front. Endocrinol. (Lausanne), 2020, 11, 568500.
[http://dx.doi.org/10.3389/fendo.2020.568500] [PMID: 33101202]
[25]
Berkenstam, A.; Gustafsson, J.Å. Nuclear receptors and their relevance to diseases related to lipid metabolism. Curr. Opin. Pharmacol., 2005, 5(2), 171-176.
[http://dx.doi.org/10.1016/j.coph.2005.01.003] [PMID: 15780827]
[26]
Zheng, J.; Liu, X.; Zheng, B.; Zheng, Z.; Zhang, H.; Zheng, J.; Sun, C.; Chen, H.; Yang, J.; Wang, Z.; Lin, M.; Chen, J.; Zhou, Q.; Zheng, Z.; Xu, X.; Ying, H. Maternal 25-hydroxyvitamin d deficiency promoted metabolic syndrome and downregulated Nrf2/CBR1 pathway in offspring. Front. Pharmacol., 2020, 11, 97.
[http://dx.doi.org/10.3389/fphar.2020.00097] [PMID: 32184720]
[27]
Huang, J.; Tabbi-Anneni, I.; Gunda, V.; Wang, L. Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 299(6), G1211-G1221.
[http://dx.doi.org/10.1152/ajpgi.00322.2010] [PMID: 20930048]
[28]
Popineau, L.; Morzyglod, L.; Carré, N.; Caüzac, M.; Bossard, P.; Prip-Buus, C.; Lenoir, V.; Ragazzon, B.; Fauveau, V.; Robert, L.; Guilmeau, S.; Postic, C.; Komatsu, M.; Canonne-Hergaux, F.; Guillou, H.; Burnol, A.F. Novel Grb14-mediated cross talk between insulin and p62/Nrf2 pathways regulates liver lipogenesis and selective insulin resistance. Mol. Cell. Biol., 2016, 36(16), 2168-2181.
[http://dx.doi.org/10.1128/MCB.00170-16] [PMID: 27215388]
[29]
Kay, H.Y.; Kim, W.D.; Hwang, S.J.; Choi, H.S.; Gilroy, R.K.; Wan, Y.J.Y.; Kim, S.G. Nrf2 inhibits LXRα-dependent hepatic lipogenesis by competing with FXR for acetylase binding. Antioxid. Redox Signal., 2011, 15(8), 2135-2146.
[http://dx.doi.org/10.1089/ars.2010.3834] [PMID: 21504366]
[30]
Liu, Z.; Dou, W.; Ni, Z.; Wen, Q.; Zhang, R.; Qin, M.; Wang, X.; Tang, H.; Cao, Y.; Wang, J.; Zhao, S. Deletion of Nrf2 leads to hepatic insulin resistance via the activation of NF-κB in mice fed a high-fat diet. Mol. Med. Rep., 2016, 14(2), 1323-1331.
[http://dx.doi.org/10.3892/mmr.2016.5393] [PMID: 27315552]
[31]
Rushing, A.W.; Rushing, B.; Hoang, K.; Sanders, S.V.; Péloponèse, J.M., Jr; Polakowski, N.; Lemasson, I. HTLV-1 basic leucine zipper factor protects cells from oxidative stress by upregulating expression of Heme Oxygenase I. PLoS Pathog., 2019, 15(6), e1007922.
[http://dx.doi.org/10.1371/journal.ppat.1007922] [PMID: 31251786]
[32]
Ying, L.; Chaudhry, M.T.; Xiao, F.; Mao, Y.; Wang, M.; Wang, B.; Wang, S.; Li, Y. The effects and mechanism of quercetin dietary supplementation in streptozotocin-induced hyperglycemic arbor acre broilers. Oxid. Med. Cell. Longev., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/9585047] [PMID: 32104545]
[33]
Li, C.; Cheng, L.; Wu, H.; He, P.; Zhang, Y.; Yang, Y.; Chen, J.; Chen, M. Activation of the KEAP1 NRF2 ARE signaling pathway reduces oxidative stress in Hep2 cells. Mol. Med. Rep., 2018, 18(3), 2541-2550.
[http://dx.doi.org/10.3892/mmr.2018.9288] [PMID: 30015918]
[34]
Lin, Y.; Zheng, X.; Chen, J.; Luo, D.; Xie, J.; Su, Z.; Huang, X.; Yi, X.; Wei, L.; Cai, J.; Sun, Z. Protective Effect of Bruguiera gymnorrhiza (L.) Lam. Fruit on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice: Role of Keap1/Nrf2 Pathway and Gut Microbiota. Front. Pharmacol., 2020, 10, 1602.
[http://dx.doi.org/10.3389/fphar.2019.01602] [PMID: 32116661]
[35]
Zhou, X.; Zhao, L.; Luo, J.; Tang, H.; Xu, M.; Wang, Y.; Yang, X.; Chen, H.; Li, Y.; Ye, G.; Shi, F.; Lv, C.; Jing, B. The toxic effects and mechanisms of nano-Cu on the spleen of rats. Int. J. Mol. Sci., 2019, 20(6), 1469.
[http://dx.doi.org/10.3390/ijms20061469] [PMID: 30909528]
[36]
Han, J.H.; Park, M.H.; Myung, C.S. Garcinia cambogia ameliorates non-alcoholic fatty liver disease by inhibiting oxidative stress-mediated steatosis and apoptosis through NRF2-ARE activation. Antioxidants, 2021, 10(8), 1226.
[http://dx.doi.org/10.3390/antiox10081226] [PMID: 34439474]
[37]
Bataille, A.M.; Manautou, J.E. Nrf2: a potential target for new therapeutics in liver disease. Clin. Pharmacol. Ther., 2012, 92(3), 340-348.
[http://dx.doi.org/10.1038/clpt.2012.110] [PMID: 22871994]
[38]
Kerins, M.J.; Liu, P.; Tian, W.; Mannheim, W.; Zhang, D.D.; Ooi, A. Genome-wide CRISPR screen reveals autophagy disruption as the convergence mechanism that regulates the NRF2 transcription factor. Mol. Cell. Biol., 2019, 39(13), e00037-e19.
[http://dx.doi.org/10.1128/MCB.00037-19] [PMID: 31010806]
[39]
Qiu, S.; Liang, Z.; Wu, Q.; Wang, M.; Yang, M.; Chen, C.; Zheng, H.; Zhu, Z.; Li, L.; Yang, G. Hepatic lipid accumulation induced by a high‐fat diet is regulated by Nrf2 through multiple pathways. FASEB J., 2022, 36(5), e22280.
[http://dx.doi.org/10.1096/fj.202101456R] [PMID: 35394671]
[40]
Tao, W.; Sun, W.; Liu, L.; Wang, G.; Xiao, Z.; Pei, X.; Wang, M. Chitosan oligosaccharide attenuates nonalcoholic fatty liver disease induced by high fat diet through reducing lipid accumulation, inflammation and oxidative stress in C57BL/6 Mice. Mar. Drugs, 2019, 17(11), 645.
[http://dx.doi.org/10.3390/md17110645] [PMID: 31744059]
[41]
Wang, K.; Sun, Q.; Zhong, X.; Zeng, M.; Zeng, H.; Shi, X.; Li, Z.; Wang, Y.; Zhao, Q.; Shao, F.; Ding, J. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell, 2020, 180(5), 941-955.e20.
[http://dx.doi.org/10.1016/j.cell.2020.02.002] [PMID: 32109412]
[42]
Liu, X.; Zhang, X.; Ding, Y.; Zhou, W.; Tao, L.; Lu, P.; Wang, Y.; Hu, R. Nuclear factor E2-related factor-2 negatively regulates nlrp3 inflammasome activity by inhibiting reactive oxygen species-induced NLRP3 priming. Antioxid. Redox Signal., 2017, 26(1), 28-43.
[http://dx.doi.org/10.1089/ars.2015.6615] [PMID: 27308893]
[43]
Biao, Y.; Chen, J.; Liu, C.; Wang, R.; Han, X.; Li, L.; Zhang, Y. Protective effect of Danshen Zexie decoction against non-alcoholic fatty liver disease through Inhibition of ROS/NLRP3/IL-1β pathway by Nrf2 signaling activation. Front. Pharmacol., 2022, 13, 877924.
[http://dx.doi.org/10.3389/fphar.2022.877924] [PMID: 35800450]
[44]
Wardyn, J.D.; Ponsford, A.H.; Sanderson, C.M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans., 2015, 43(4), 621-626.
[http://dx.doi.org/10.1042/BST20150014] [PMID: 26551702]
[45]
Ding, X.; Jian, T.; Li, J.; Lv, H.; Tong, B.; Li, J.; Meng, X.; Ren, B.; Chen, J. Chicoric acid ameliorates nonalcoholic fatty liver disease via the AMPK/Nrf2/NFκB signaling pathway and restores gut microbiota in high-fat-diet-fed mice. Oxid. Med. Cell. Longev., 2020, 2020, 1-20.
[http://dx.doi.org/10.1155/2020/9734560] [PMID: 33204402]
[46]
Wang, W.; Chen, Z.; Zheng, T.; Zhang, M. Xanthohumol alleviates T2DM-induced liver steatosis and fibrosis by mediating the NRF2/RAGE/NF-κB signaling pathway. Future Med. Chem., 2021, 13(23), 2069-2081.
[http://dx.doi.org/10.4155/fmc-2021-0241] [PMID: 34551612]
[47]
Li, J.; Li, X.; Liu, D.; Zhang, S.; Tan, N.; Yokota, H.; Zhang, P. Phosphorylation of eIF2α signaling pathway attenuates obesity-induced non-alcoholic fatty liver disease in an ER stress and autophagy-dependent manner. Cell Death Dis., 2020, 11(12), 1069.
[http://dx.doi.org/10.1038/s41419-020-03264-5] [PMID: 33318479]
[48]
Chen, Y.; Pandiri, I.; Joe, Y.; Kim, H.J.; Kim, S.K.; Park, J.; Ryu, J.; Cho, G.J.; Park, J.W.; Ryter, S.W.; Chung, H.T. Synergistic effects of cilostazol and probucol on ER stress-induced hepatic steatosis via heme oxygenase-1-dependent activation of mitochondrial biogenesis. Oxid. Med. Cell. Longev., 2016, 2016, 1-14.
[http://dx.doi.org/10.1155/2016/3949813] [PMID: 27057275]
[49]
Sarcinelli, C.; Dragic, H.; Piecyk, M.; Barbet, V.; Duret, C.; Barthelaix, A.; Ferraro-Peyret, C.; Fauvre, J.; Renno, T.; Chaveroux, C.; Manié, S.N. ATF4-dependent NRF2 transcriptional regulation promotes antioxidant protection during endoplasmic reticulum stress. Cancers (Basel), 2020, 12(3), 569.
[http://dx.doi.org/10.3390/cancers12030569] [PMID: 32121537]
[50]
Kim, A.; Koo, J.H.; Lee, J.M.; Joo, M.S.; Kim, T.H.; Kim, H.; Jun, D.W.; Kim, S.G. NRF2‐mediated SIRT3 induction protects hepatocytes from ER stress‐induced liver injury. FASEB J., 2022, 36(3), e22170.
[http://dx.doi.org/10.1096/fj.202101470R] [PMID: 35104011]
[51]
Nassir, F.; Arndt, J.J.; Johnson, S.A.; Ibdah, J.A. Regulation of mitochondrial trifunctional protein modulates nonalcoholic fatty liver disease in mice. J. Lipid Res., 2018, 59(6), 967-973.
[http://dx.doi.org/10.1194/jlr.M080952] [PMID: 29581157]
[52]
Jaishy, B.; Zhang, Q.; Chung, H.S.; Riehle, C.; Soto, J.; Jenkins, S.; Abel, P.; Cowart, L.A.; Van Eyk, J.E.; Abel, E.D. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. J. Lipid Res., 2015, 56(3), 546-561.
[http://dx.doi.org/10.1194/jlr.M055152] [PMID: 25529920]
[53]
Park, J.S.; Kang, D.H.; Lee, D.H.; Bae, S.H. Concerted action of p62 and Nrf2 protects cells from palmitic acid-induced lipotoxicity. Biochem. Biophys. Res. Commun., 2015, 466(1), 131-137.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.120] [PMID: 26325428]
[54]
Lee, D.H.; Park, J.S.; Lee, Y.S.; Han, J.; Lee, D.K.; Kwon, S.W.; Han, D.H.; Lee, Y.H.; Bae, S.H. SQSTM1/p62 activates NFE2L2/NRF2 via ULK1-mediated autophagic KEAP1 degradation and protects mouse liver from lipotoxicity. Autophagy, 2020, 16(11), 1949-1973.
[http://dx.doi.org/10.1080/15548627.2020.1712108] [PMID: 31913745]
[55]
Lee, D.H.; Park, J.S.; Lee, Y.S.; Bae, S.H. PERK prevents hepatic lipotoxicity by activating the p62-ULK1 axis-mediated noncanonical KEAP1-Nrf2 pathway. Redox Biol., 2022, 50, 102235.
[http://dx.doi.org/10.1016/j.redox.2022.102235] [PMID: 35091323]
[56]
Hu, Y.; Yin, F.; Liu, Z.; Xie, H.; Xu, Y.; Zhou, D.; Zhu, B. Acerola polysaccharides ameliorate high-fat diet-induced non-alcoholic fatty liver disease through reduction of lipogenesis and improvement of mitochondrial functions in mice. Food Funct., 2020, 11(1), 1037-1048.
[http://dx.doi.org/10.1039/C9FO01611B] [PMID: 31819934]
[57]
Li, X.; Cui, W.; Cui, Y.; Song, X.; Jia, L.; Zhang, J. Stropharia rugoso-annulata acetylated polysaccharides alleviate NAFLD via Nrf2/JNK1/AMPK signaling pathways. Int. J. Biol. Macromol., 2022, 215, 560-570.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.06.156] [PMID: 35772637]
[58]
Zou, C.; Fang, Y.; Lin, N.; Liu, H. Polysaccharide extract from pomelo fruitlet ameliorates diet-induced nonalcoholic fatty liver disease in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). Fish Shellfish Immunol., 2021, 119, 114-127.
[http://dx.doi.org/10.1016/j.fsi.2021.09.034] [PMID: 34607007]
[59]
Zhang, Y.; Wang, H.; Zhang, L.; Yuan, Y.; Yu, D. Codonopsis lanceolata polysaccharide CLPS alleviates high fat/high sucrose diet-induced insulin resistance via anti-oxidative stress. Int. J. Biol. Macromol., 2020, 145, 944-949.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.185] [PMID: 31669275]
[60]
Li, H.N.; Zhao, L.L.; Zhou, D.Y.; Chen, D.Q. Ganoderma lucidum polysaccharides ameliorates hepatic steatosis and oxidative stress in Db/Db mice via targeting nuclear factor E2 (Erythroid-derived 2)-related factor-2/heme oxygenase-1 (HO-1) Pathway. Med Sci Monit, 2020, 26, e921905-1-e921905-10.
[61]
Deng, X.; Ke, X.; Tang, Y.; Luo, W.; Dong, R.; Ge, D.; Han, L.; Yang, Y.; Liu, H.; Reyila, T.; Liao, Y. Sagittaria sagittifolia polysaccharide interferes with arachidonic acid metabolism in non-alcoholic fatty liver disease mice via Nrf2/HO-1 signaling pathway. Biomed. Pharmacother., 2020, 132, 110806.
[http://dx.doi.org/10.1016/j.biopha.2020.110806] [PMID: 33027743]
[62]
Shen, B.; Zhao, C.; Wang, Y.; Peng, Y.; Cheng, J.; Li, Z.; Wu, L.; Jin, M.; Feng, H. Aucubin inhibited lipid accumulation and oxidative stress via Nrf2/ HO ‐1 and AMPK signalling pathways. J. Cell. Mol. Med., 2019, 23(6), 4063-4075.
[http://dx.doi.org/10.1111/jcmm.14293] [PMID: 30950217]
[63]
Shen, B.; Feng, H.; Cheng, J.; Li, Z.; Jin, M.; Zhao, L.; Wang, Q.; Qin, H.; Liu, G. Geniposide alleviates non‐alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signalling pathways. J. Cell. Mol. Med., 2020, 24(9), 5097-5108.
[http://dx.doi.org/10.1111/jcmm.15139] [PMID: 32293113]
[64]
Yang, Y.; Li, J.; Wei, C.; He, Y.; Cao, Y.; Zhang, Y.; Sun, W.; Qiao, B.; He, J. Amelioration of nonalcoholic fatty liver disease by swertiamarin in fructose-fed mice. Phytomedicine, 2019, 59, 152782.
[http://dx.doi.org/10.1016/j.phymed.2018.12.005] [PMID: 31005808]
[65]
Yang, Y.; Chen, J.; Gao, Q.; Shan, X.; Wang, J.; Lv, Z. Study on the attenuated effect of Ginkgolide B on ferroptosis in high fat diet induced nonalcoholic fatty liver disease. Toxicology, 2020, 445, 152599.
[http://dx.doi.org/10.1016/j.tox.2020.152599] [PMID: 32976958]
[66]
Li, Y.; Yang, M.; Lin, H.; Yan, W.; Deng, G.; Ye, H.; Shi, H.; Wu, C.; Ma, G.; Xu, S.; Tan, Q.; Gao, Z.; Gao, L. Limonin alleviates non-alcoholic fatty liver disease by reducing lipid accumulation, suppressing inflammation and oxidative stress. Front. Pharmacol., 2022, 12, 801730.
[http://dx.doi.org/10.3389/fphar.2021.801730] [PMID: 35046824]
[67]
Jin, M.; Feng, H.; Wang, Y.; Yan, S.; Shen, B.; Li, Z.; Qin, H.; Wang, Q.; Li, J.; Liu, G. Gentiopicroside ameliorates oxidative stress and lipid accumulation through nuclear factor erythroid 2-related factor 2 activation. Oxid. Med. Cell. Longev., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/2940746] [PMID: 32655764]
[68]
Ye, J.; Zheng, J.; Tian, X.; Xu, B.; Yuan, F.; Wang, B.; Yang, Z.; Huang, F. Fucoxanthin attenuates free fatty acid-induced nonalcoholic fatty liver disease by regulating lipid metabolism/oxidative stress/inflammation via the AMPK/Nrf2/TLR4 signaling pathway. Mar. Drugs, 2022, 20(4), 225.
[http://dx.doi.org/10.3390/md20040225] [PMID: 35447899]
[69]
Tao, S.; Yang, Y.; Li, J.; Wang, H.; Ma, Y. Bixin attenuates high-fat diet-caused liver steatosis and inflammatory injury through Nrf2/PPARα signals. Oxid. Med. Cell. Longev., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/6610124] [PMID: 33603948]
[70]
Shatoor, A.S.; Al Humayed, S.; Almohiy, H.M. Astaxanthin attenuates hepatic steatosis in high-fat diet-fed rats by suppressing microRNA-21 via transactivation of nuclear factor erythroid 2-related factor 2. J. Physiol. Biochem., 2022, 78(1), 151-168.
[http://dx.doi.org/10.1007/s13105-021-00850-9] [PMID: 34651285]
[71]
Li, Y.; Liu, J.; Ye, B.; Cui, Y.; Geng, R.; Liu, S.; Zhang, Y.; Guo, W.; Fu, S. Astaxanthin alleviates nonalcoholic fatty liver disease by regulating the intestinal flora and targeting the AMPK/Nrf2 signal axis. J. Agric. Food Chem., 2022, 70(34), 10620-10634.
[http://dx.doi.org/10.1021/acs.jafc.2c04476] [PMID: 35973099]
[72]
Zheng, J.; Manabe, Y.; Sugawara, T. Siphonaxanthin, a carotenoid from green algae Codium cylindricum, protects Ob/Ob mice fed on a high-fat diet against lipotoxicity by ameliorating somatic stresses and restoring anti-oxidative capacity. Nutr. Res., 2020, 77, 29-42.
[http://dx.doi.org/10.1016/j.nutres.2020.02.001] [PMID: 32315893]
[73]
Madduma Hewage, S.; Prashar, S. O, K.; Siow, Y.L. Lingonberry improves non-alcoholic fatty liver disease by reducing hepatic lipid accumulation, oxidative stress and inflammatory response. Antioxidants, 2021, 10(4), 565.
[http://dx.doi.org/10.3390/antiox10040565] [PMID: 33917360]
[74]
Xia, S.F.; Le, G.W.; Wang, P.; Qiu, Y.Y.; Jiang, Y.Y.; Tang, X. Regressive effect of myricetin on hepatic steatosis in mice fed a high-fat diet. Nutrients, 2016, 8(12), 799.
[http://dx.doi.org/10.3390/nu8120799] [PMID: 27973423]
[75]
Liu, Y.; Xu, W.; Zhai, T.; You, J.; Chen, Y. Silibinin ameliorates hepatic lipid accumulation and oxidative stress in mice with non-alcoholic steatohepatitis by regulating CFLAR-JNK pathway. Acta Pharm. Sin. B, 2019, 9(4), 745-757.
[http://dx.doi.org/10.1016/j.apsb.2019.02.006] [PMID: 31384535]
[76]
Tie, F.; Ding, J.; Hu, N.; Dong, Q.; Chen, Z.; Wang, H. Kaempferol and kaempferide attenuate oleic acid-induced lipid accumulation and oxidative stress in HepG2 cells. Int. J. Mol. Sci., 2021, 22(16), 8847.
[http://dx.doi.org/10.3390/ijms22168847] [PMID: 34445549]
[77]
Deng, Y.; Ma, J.; Weng, X.; Wang, Y.; Li, M.; Yang, T.; Dou, Z.; Yin, Z.; Shang, J. Kaempferol-3-O-glucuronide ameliorates non-alcoholic steatohepatitis in high-cholesterol-diet-induced larval zebrafish and hepg2 cell models via regulating oxidation stress. Life (Basel), 2021, 11(5), 445.
[http://dx.doi.org/10.3390/life11050445] [PMID: 34069176]
[78]
Alshammari, G.M.; Al-Qahtani, W.H.; AlFaris, N.A.; Alzahrani, N.S.; Alkhateeb, M.A.; Yahya, M.A. Quercetin prevents cadmium chloride‐induced hepatic steatosis and fibrosis by downregulating the transcription of MIR ‐21. Biofactors, 2021, 47(3), 489-505.
[http://dx.doi.org/10.1002/biof.1724] [PMID: 33733575]
[79]
Li, J.; Wang, T.; Liu, P.; Yang, F.; Wang, X.; Zheng, W.; Sun, W. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct., 2021, 12(9), 3898-3918.
[http://dx.doi.org/10.1039/D0FO02736G] [PMID: 33977953]
[80]
Ke, Z.; Tan, S.; Li, H.; Jiang, S.; Li, Y.; Chen, R.; Li, M. Tangeretin improves hepatic steatosis and oxidative stress through the Nrf2 pathway in high fat diet-induced nonalcoholic fatty liver disease mice. Food Funct., 2022, 13(5), 2782-2790.
[http://dx.doi.org/10.1039/D1FO02989D] [PMID: 35171164]
[81]
Zhang, X.; Ji, R.; Sun, H.; Peng, J.; Ma, X.; Wang, C.; Fu, Y.; Bao, L.; Jin, Y. Scutellarin ameliorates nonalcoholic fatty liver disease through the PPARγ/PGC-1α-Nrf2 pathway. Free Radic. Res., 2018, 52(2), 198-211.
[http://dx.doi.org/10.1080/10715762.2017.1422602] [PMID: 29400110]
[82]
Fan, H.; Ma, X.; Lin, P.; Kang, Q.; Zhao, Z.; Wang, L.; Sun, D.; Cheng, J.; Li, Y. Scutellarin Prevents Nonalcoholic Fatty Liver Disease (NAFLD) and Hyperlipidemia via PI3K/AKT-Dependent Activation of Nuclear Factor (Erythroid-Derived 2)-Like 2 (Nrf2) in Rats. Med. Sci. Monit., 2017, 23, 5599-5612.
[http://dx.doi.org/10.12659/MSM.907530] [PMID: 29172017]
[83]
Shi, H.; Qiao, F.; Lu, W.; Huang, K.; Wen, Y.; Ye, L.; Chen, Y. Baicalin improved hepatic injury of NASH by regulating NRF2/HO-1/NRLP3 pathway. Eur. J. Pharmacol., 2022, 934, 175270.
[http://dx.doi.org/10.1016/j.ejphar.2022.175270] [PMID: 36184988]
[84]
Zhu, Z.; Hu, R.; Li, J.; Xing, X.; Chen, J.; Zhou, Q.; Sun, J. Alpinetin exerts anti-inflammatory, anti-oxidative and anti-angiogenic effects through activating the Nrf2 pathway and inhibiting NLRP3 pathway in carbon tetrachloride-induced liver fibrosis. Int. Immunopharmacol., 2021, 96, 107660.
[http://dx.doi.org/10.1016/j.intimp.2021.107660] [PMID: 33862553]
[85]
Feng, X.; Yu, W.; Li, X.; Zhou, F.; Zhang, W.; Shen, Q.; Li, J.; Zhang, C.; Shen, P. Apigenin, a modulator of PPARγ attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem. Pharmacol., 2017, 136, 136-149.
[http://dx.doi.org/10.1016/j.bcp.2017.04.014] [PMID: 28414138]
[86]
Meng, W.; Zhao, Z.; Chen, L.; Lin, S.; Zhang, Y.; He, J.; Ouyang, K.; Wang, W. Total Flavonoids from Chimonanthus nitens Oliv. Leaves Ameliorate HFD-Induced NAFLD by Regulating the Gut–Liver Axis in Mice. Foods, 2022, 11(14), 2169.
[http://dx.doi.org/10.3390/foods11142169] [PMID: 35885412]
[87]
Wang, D.; Cai, Y.; Pan, S.; Zhang, L.; Chen, Y.; Chen, F.; Jin, M.; Yan, M.; Li, X.; Chen, Z. Effect of total flavone of haw leaves on nuclear factor erythroid-2 related factor and other related factors in nonalcoholic steatohepatitis rats. Chin. J. Integr. Med., 2018, 24(4), 265-271.
[http://dx.doi.org/10.1007/s11655-016-2450-0] [PMID: 26919834]
[88]
Shi, Z.; Li, T.; Liu, Y.; Cai, T.; Yao, W.; Jiang, J.; He, Y.; Shan, L. Hepatoprotective and anti-oxidative effects of total flavonoids from qu zhi qiao (fruit of citrus paradisi cv.changshanhuyou) on nonalcoholic steatohepatitis in vivo and in vitro through Nrf2-ARE signaling pathway. Front. Pharmacol., 2020, 11, 483.
[http://dx.doi.org/10.3389/fphar.2020.00483] [PMID: 32390839]
[89]
Ma, J.; Li, M.; Kalavagunta, P.K.; Li, J.; He, Q.; Zhang, Y.; Ahmad, O.; Yin, H.; Wang, T.; Shang, J. Protective effects of cichoric acid on H2O2-induced oxidative injury in hepatocytes and larval zebrafish models. Biomed. Pharmacother., 2018, 104, 679-685.
[http://dx.doi.org/10.1016/j.biopha.2018.05.081] [PMID: 29803928]
[90]
Zheng, W.; Song, Z.; Li, S.; Hu, M.; Shaukat, H.; Qin, H. Protective effects of sesamol against liver oxidative stress and inflammation in high-fat diet-induced hepatic steatosis. Nutrients, 2021, 13(12), 4484.
[http://dx.doi.org/10.3390/nu13124484] [PMID: 34960036]
[91]
Zou, X.; Yan, C.; Shi, Y.; Cao, K.; Xu, J.; Wang, X.; Chen, C.; Luo, C.; Li, Y.; Gao, J.; Pang, W.; Zhao, J.; Zhao, F.; Li, H.; Zheng, A.; Sun, W.; Long, J.; Szeto, I.M.Y.; Zhao, Y.; Dong, Z.; Zhang, P.; Wang, J.; Lu, W.; Zhang, Y.; Liu, J.; Feng, Z. Mitochondrial dysfunction in obesity-associated nonalcoholic fatty liver disease: the protective effects of pomegranate with its active component punicalagin. Antioxid. Redox Signal., 2014, 21(11), 1557-1570.
[http://dx.doi.org/10.1089/ars.2013.5538] [PMID: 24393106]
[92]
Yan, C.; Sun, W.; Wang, X.; Long, J.; Liu, X.; Feng, Z.; Liu, J. Punicalagin attenuates palmitate-induced lipotoxicity in HepG2 cells by activating the Keap1-Nrf2 antioxidant defense system. Mol. Nutr. Food Res., 2016, 60(5), 1139-1149.
[http://dx.doi.org/10.1002/mnfr.201500490] [PMID: 26989875]
[93]
Polce, S.; Burke, C.; França, L.; Kramer, B.; de Andrade Paes, A.; Carrillo-Sepulveda, M. Ellagic acid alleviates hepatic oxidative stress and insulin resistance in diabetic female rats. Nutrients, 2018, 10(5), 531.
[http://dx.doi.org/10.3390/nu10050531] [PMID: 29693586]
[94]
ALTamimi, J.Z.; Alshammari, G.M.; AlFaris, N.A.; Alagal, R.I.; Aljabryn, D.H.; Albekairi, N.A.; Alkhateeb, M.A.; Yahya, M.A. Ellagic acid protects against non-alcoholic fatty liver disease in streptozotocin-diabetic rats by activating AMPK. Pharm. Biol., 2022, 60(1), 25-37.
[http://dx.doi.org/10.1080/13880209.2021.1990969]
[95]
Yan, C.; Zhang, Y.; Zhang, X.; Aa, J.; Wang, G.; Xie, Y. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed. Pharmacother., 2018, 105, 274-281.
[http://dx.doi.org/10.1016/j.biopha.2018.05.135] [PMID: 29860219]
[96]
Li, B.; Wang, L.; Lu, Q.; Da, W. Liver injury attenuation by curcumin in a rat NASH model: an Nrf2 activation-mediated effect? Ir. J. Med. Sci., 2016, 185(1), 93-100.
[http://dx.doi.org/10.1007/s11845-014-1226-9] [PMID: 25385666]
[97]
Lee, S.C.; Jee, S.C.; Kim, M.; Kim, S.; Shin, M.K.; Kim, Y.; Sung, J.S. Curcumin suppresses the lipid accumulation and oxidative stress induced by benzo[A]pyrene toxicity in HepG2 cells. Antioxidants, 2021, 10(8), 1314.
[http://dx.doi.org/10.3390/antiox10081314] [PMID: 34439562]
[98]
Ding, Y.; Zhang, Z.; Yue, Z.; Ding, L.; Zhou, Y.; Huang, Z.; Huang, H. Rosmarinic acid ameliorates H2O2 -induced oxidative stress in L02 cells through MAPK and Nrf2 pathways. Rejuvenation Res., 2019, 22(4), 289-298.
[http://dx.doi.org/10.1089/rej.2018.2107] [PMID: 30379115]
[99]
Xie, K.; He, X.; Chen, K.; Sakao, K.; Hou, D.X. Ameliorative effects and molecular mechanisms of vine tea on western diet-induced NAFLD. Food Funct., 2020, 11(7), 5976-5991.
[http://dx.doi.org/10.1039/D0FO00795A] [PMID: 32666969]
[100]
Liu, M.; Tan, J.; He, Z.; He, X.; Hou, D.X.; He, J.; Wu, S. Inhibitory effect of blue honeysuckle extract on high-fat-diet-induced fatty liver in mice. Anim. Nutr., 2018, 4(3), 288-293.
[http://dx.doi.org/10.1016/j.aninu.2018.06.001] [PMID: 30175257]
[101]
Wu, S.; Yano, S.; Hisanaga, A.; He, X.; He, J.; Sakao, K.; Hou, D.X. Polyphenols from Lonicera caerulea L. berry attenuate experimental nonalcoholic steatohepatitis by inhibiting proinflammatory cytokines productions and lipid peroxidation. Mol. Nutr. Food Res., 2017, 61(4), 1600858.
[http://dx.doi.org/10.1002/mnfr.201600858] [PMID: 27935258]
[102]
Hosseini, H.; Teimouri, M.; Shabani, M.; Koushki, M.; Babaei Khorzoughi, R.; Namvarjah, F.; Izadi, P.; Meshkani, R. Resveratrol alleviates non-alcoholic fatty liver disease through epigenetic modification of the Nrf2 signaling pathway. Int. J. Biochem. Cell Biol., 2020, 119, 105667.
[http://dx.doi.org/10.1016/j.biocel.2019.105667] [PMID: 31838177]
[103]
BinMowyna, M.N.; AlFaris, N.A.; Al-Sanea, E.A.; AlTamimi, J.Z.; Aldayel, T.S. Resveratrol attenuates against high-fat-diet-promoted non-alcoholic fatty liver disease in rats mainly by targeting the miR-34a/SIRT1 axis. Arch. Physiol. Biochem., 2022, 1-16.
[http://dx.doi.org/10.1080/13813455.2022.2046106]
[104]
Zhu, X.; Bian, H.; Gao, X. The potential mechanisms of berberine in the treatment of nonalcoholic fatty liver disease. Molecules, 2016, 21(10), 1336.
[http://dx.doi.org/10.3390/molecules21101336] [PMID: 27754444]
[105]
Yuan, X.; Wang, J.; Tang, X.; Li, Y.; Xia, P.; Gao, X. Berberine ameliorates nonalcoholic fatty liver disease by a global modulation of hepatic mRNA and lncRNA expression profiles. J. Transl. Med., 2015, 13(1), 24.
[http://dx.doi.org/10.1186/s12967-015-0383-6] [PMID: 25623289]
[106]
Li, H.; Liu, N.N.; Li, J.R.; Dong, B.; Wang, M.X.; Tan, J.L.; Wang, X.K.; Jiang, J.; Lei, L.; Li, H.Y.; Sun, H.; Jiang, J.D.; Peng, Z.G. Combined use of bicyclol and berberine alleviates mouse nonalcoholic fatty liver disease. Front. Pharmacol., 2022, 13, 843872.
[http://dx.doi.org/10.3389/fphar.2022.843872] [PMID: 35250593]
[107]
Sun, Y.; Yuan, X.; Zhang, F.; Han, Y.; Chang, X.; Xu, X.; Li, Y.; Gao, X. Berberine ameliorates fatty acid-induced oxidative stress in human hepatoma cells. Sci. Rep., 2017, 7(1), 11340.
[http://dx.doi.org/10.1038/s41598-017-11860-3] [PMID: 28900305]
[108]
Zhang, H.F.; Shi, L.J.; Song, G.Y.; Cai, Z.G.; Wang, C.; An, R.J. Protective effects of matrine against progression of high-fructose diet-induced steatohepatitis by enhancing antioxidant and anti-inflammatory defences involving Nrf2 translocation. Food Chem. Toxicol., 2013, 55, 70-77.
[http://dx.doi.org/10.1016/j.fct.2012.12.043] [PMID: 23295629]
[109]
Li, L.; Fang, B.; Zhang, Y.; Yan, L.; He, Y.; Hu, L.; Xu, Q.; Li, Q.; Dai, X.; Kuang, Q.; Xu, M.; Tan, J.; Ge, C. Carminic acid mitigates fructose-triggered hepatic steatosis by inhibition of oxidative stress and inflammatory reaction. Biomed. Pharmacother., 2022, 145, 112404.
[http://dx.doi.org/10.1016/j.biopha.2021.112404] [PMID: 34781143]
[110]
Xu, Q.; Fan, Y.; Loor, J.J.; Liang, Y.; Lv, H.; Sun, X.; Jia, H.; Xu, C. Aloin protects mice from diet-induced non-alcoholic steatohepatitis via activation of Nrf2/HO-1 signaling. Food Funct., 2021, 12(2), 696-705.
[http://dx.doi.org/10.1039/D0FO02684K] [PMID: 33410857]
[111]
Yamada, S.; Koyama, T.; Noguchi, H.; Ueda, Y.; Kitsuyama, R.; Shimizu, H.; Tanimoto, A.; Wang, K.Y.; Nawata, A.; Nakayama, T.; Sasaguri, Y.; Satoh, T. Marine hydroquinone zonarol prevents inflammation and apoptosis in dextran sulfate sodium-induced mice ulcerative colitis. PLoS One, 2014, 9(11), e113509.
[http://dx.doi.org/10.1371/journal.pone.0113509] [PMID: 25409433]
[112]
Shimizu, H.; Koyama, T.; Yamada, S.; Lipton, S.A.; Satoh, T. Zonarol, a sesquiterpene from the brown algae Dictyopteris undulata, provides neuroprotection by activating the Nrf2/ARE pathway. Biochem. Biophys. Res. Commun., 2015, 457(4), 718-722.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.059] [PMID: 25623531]
[113]
Han, J.; Guo, X.; Koyama, T.; Kawai, D.; Zhang, J.; Yamaguchi, R.; Zhou, X.; Motoo, Y.; Satoh, T.; Yamada, S. Zonarol protected liver from methionine- and choline-deficient diet-induced nonalcoholic fatty liver disease in a mouse model. Nutrients, 2021, 13(10), 3455.
[http://dx.doi.org/10.3390/nu13103455] [PMID: 34684455]
[114]
Ke, Z.; Zhao, Y.; Tan, S.; Chen, H.; Li, Y.; Zhou, Z.; Huang, C. Citrus reticulata Blanco peel extract ameliorates hepatic steatosis, oxidative stress and inflammation in HF and MCD diet-induced NASH C57BL/6 J mice. J. Nutr. Biochem., 2020, 83, 108426.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108426] [PMID: 32559586]
[115]
Ahn, M.; Kim, J.; Hong, S.; Kim, J.; Ko, H.; Lee, N.H.; Kim, G.O.; Shin, T. Black radish (Raphanus sativus L. var. niger) extract mediates its hepatoprotective effect on carbon tetrachloride-induced hepatic injury by attenuating oxidative stress. J. Med. Food, 2018, 21(9), 866-875.
[http://dx.doi.org/10.1089/jmf.2017.4102] [PMID: 30067118]
[116]
Li, W.; Yang, H.; Zhao, Q.; Wang, X.; Zhang, J.; Zhao, X. Polyphenol-rich loquat fruit extract prevents fructose-induced nonalcoholic fatty liver disease by modulating glycometabolism, lipometabolism, oxidative stress, inflammation, intestinal barrier, and gut microbiota in mice. J. Agric. Food Chem., 2019, 67(27), 7726-7737.
[http://dx.doi.org/10.1021/acs.jafc.9b02523] [PMID: 31203627]
[117]
Zhang, J.K.; Zhou, X.L.; Wang, X.Q.; Zhang, J.X.; Yang, M.L.; Liu, Y.P.; Cao, J.X.; Cheng, G.G. Que Zui tea ameliorates hepatic lipid accumulation and oxidative stress in high fat diet induced nonalcoholic fatty liver disease. Food Res. Int., 2022, 156, 111196.
[http://dx.doi.org/10.1016/j.foodres.2022.111196] [PMID: 35651050]
[118]
Prasomthong, J.; Limpeanchob, N.; Daodee, S.; Chonpathompikunlert, P.; Tunsophon, S. Hibiscus sabdariffa extract improves hepatic steatosis, partially through IRS-1/Akt and Nrf2 signaling pathways in rats fed a high fat diet. Sci. Rep., 2022, 12(1), 7022.
[http://dx.doi.org/10.1038/s41598-022-11027-9] [PMID: 35487948]
[119]
Qu, L.L.; Yu, B.; Li, Z.; Jiang, W.X.; Jiang, J.D.; Kong, W.J. Gastrodin ameliorates oxidative stress and proinflammatory response in nonalcoholic fatty liver disease through the AMPK/Nrf2 pathway. Phytother. Res., 2016, 30(3), 402-411.
[http://dx.doi.org/10.1002/ptr.5541] [PMID: 26634892]
[120]
Wei, K.; Wei, Y.; Xu, W.; Lu, F.; Ma, H. Corn peptides improved obesity-induced non-alcoholic fatty liver disease through relieving lipid metabolism, insulin resistance and oxidative stress. Food Funct., 2022, 13(10), 5782-5793.
[http://dx.doi.org/10.1039/D2FO00199C] [PMID: 35537139]
[121]
Zhang, J.; Zhang, S.; Wang, P.; Guo, N.; Wang, W.; Yao, L.; Yang, Q.; Efferth, T.; Jiao, J.; Fu, Y. Pinolenic acid ameliorates oleic acid-induced lipogenesis and oxidative stress via AMPK/SIRT1 signaling pathway in HepG2 cells. Eur. J. Pharmacol., 2019, 861, 172618.
[http://dx.doi.org/10.1016/j.ejphar.2019.172618] [PMID: 31430456]
[122]
Kim, D.E.; Chang, B.Y.; Jeon, B.M.; Baek, J.I.; Kim, S.C.; Kim, S.Y. SGL 121 attenuates nonalcoholic fatty liver disease through adjusting lipid metabolism through AMPK signaling pathway. Int. J. Mol. Sci., 2020, 21(12), 4534.
[http://dx.doi.org/10.3390/ijms21124534] [PMID: 32630596]
[123]
Lei, P.; Tian, S.; Teng, C.; Huang, L.; Liu, X.; Wang, J.; Zhang, Y.; Li, B.; Shan, Y. Sulforaphane improves lipid metabolism by enhancing mitochondrial function and biogenesis in vivo and in vitro. Mol. Nutr. Food Res., 2021, 65(11), 2170023.
[http://dx.doi.org/10.1002/mnfr.202170023] [PMID: 34085388]
[124]
Nagata, N.; Xu, L.; Kohno, S.; Ushida, Y.; Aoki, Y.; Umeda, R.; Fuke, N.; Zhuge, F.; Ni, Y.; Nagashimada, M.; Takahashi, C.; Suganuma, H.; Kaneko, S.; Ota, T. Glucoraphanin ameliorates obesity and insulin resistance through adipose tissue browning and reduction of metabolic endotoxemia in mice. Diabetes, 2017, 66(5), 1222-1236.
[http://dx.doi.org/10.2337/db16-0662] [PMID: 28209760]
[125]
Xia, S.F.; Shao, J.; Zhao, S.Y.; Qiu, Y.Y.; Teng, L.P.; Huang, W.; Wang, S.S.; Cheng, X.R.; Jiang, Y.Y. Niga-ichigoside F1 ameliorates high-fat diet-induced hepatic steatosis in male mice by Nrf2 activation. Food Funct., 2018, 9(2), 906-916.
[http://dx.doi.org/10.1039/C7FO01051F] [PMID: 29309075]
[126]
Nayan, S.I.; Chowdhury, F.I.; Akter, N.; Rahman, M.M.; Selim, S.; Saffoon, N.; Khan, F.; Subhan, N.; Hossain, M.; Ahmed, K.S.; Hossain, H.; Haque, M.A.; Alam, M.A. Leaf powder supplementation of Senna alexandrina ameliorates oxidative stress, inflammation, and hepatic steatosis in high-fat diet-fed obese rats. PLoS One, 2021, 16(4), e0250261.
[http://dx.doi.org/10.1371/journal.pone.0250261] [PMID: 33878116]
[127]
Jin, M.; Wei, Y.; Yu, H.; Ma, X.; Yan, S.; Zhao, L.; Ding, L.; Cheng, J.; Feng, H. Erythritol improves nonalcoholic fatty liver disease by activating Nrf2 antioxidant capacity. J. Agric. Food Chem., 2021, 69(44), 13080-13092.
[http://dx.doi.org/10.1021/acs.jafc.1c05213] [PMID: 34719928]
[128]
Choi, J.H.; Jin, S.W.; Choi, C.Y.; Kim, H.G.; Kim, S.J.; Lee, H.S.; Chung, Y.C.; Kim, E.J.; Lee, Y.C.; Jeong, H.G. Saponins from the roots of Platycodon grandiflorum ameliorate high fat diet-induced non-alcoholic steatohepatitis. Biomed. Pharmacother., 2017, 86, 205-212.
[http://dx.doi.org/10.1016/j.biopha.2016.11.107] [PMID: 27984800]
[129]
Chen, X.; Xiao, J.; Pang, J.; Chen, S.; Wang, Q.; Ling, W. Pancreatic β-cell dysfunction is associated with nonalcoholic fatty liver disease. Nutrients, 2021, 13(9), 3139.
[http://dx.doi.org/10.3390/nu13093139] [PMID: 34579016]
[130]
Wang, Y.L.; Wu, J.; Li, R.X.; Sun, Y.T.; Ma, Y.J.; Zhao, C.Y.; Zou, J.; Zhang, Y.Y.; Sun, X.D. A double-edged sword: The Kelch-like ECH-associated protein 1-nuclear factor erythroid-derived 2-related factor 2-antioxidant response element pathway targeted pharmacological modulation in nonalcoholic fatty liver disease. Curr. Opin. Pharmacol., 2021, 60, 281-290.
[http://dx.doi.org/10.1016/j.coph.2021.07.021] [PMID: 34500407]
[131]
Alshuail, N.; Alehaideb, Z.; Alghamdi, S.; Suliman, R.; Al-Eidi, H.; Ali, R.; Barhoumi, T.; Almutairi, M.; Alwhibi, M.; Alghanem, B.; Alamro, A.; Alghamdi, A.; Matou-Nasri, S. Achillea fragrantissima (Forssk.) Sch.Bip flower dichloromethane extract exerts anti-proliferative and pro-apoptotic properties in human triple-negative breast cancer (MDA-MB-231) cells: in vitro and in silico studies. Pharmaceuticals (Basel), 2022, 15(9), 1060.
[http://dx.doi.org/10.3390/ph15091060] [PMID: 36145281]
[132]
Li, L.; Fu, J.; Liu, D.; Sun, J.; Hou, Y.; Chen, C.; Shao, J.; Wang, L.; Wang, X.; Zhao, R.; Wang, H.; Andersen, M.E.; Zhang, Q.; Xu, Y.; Pi, J. Hepatocyte-specific Nrf2 deficiency mitigates high-fat diet-induced hepatic steatosis: Involvement of reduced PPARγ expression. Redox Biol., 2020, 30, 101412.
[http://dx.doi.org/10.1016/j.redox.2019.101412] [PMID: 31901728]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy