Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Customizable Microfluidic Devices: Progress, Constraints, and Future Advances

Author(s): Alaa A. A. Aljabali, Mohammad A. Obeid, Vijay Mishra, Mohamed El-Tanani and Murtaza M. Tambuwala*

Volume 21, Issue 10, 2024

Published on: 26 October, 2023

Page: [1285 - 1299] Pages: 15

DOI: 10.2174/0115672018264064231017113813

Price: $65

conference banner
Abstract

The field of microfluidics encompasses the study of fluid behavior within micro-channels and the development of miniature systems featuring internal compartments or passageways tailored for fluid control and manipulation. Microfluidic devices capitalize on the unique chemical and physical properties exhibited by fluids at the microscopic scale. In contrast to their larger counterparts, microfluidic systems offer a multitude of advantages. Their implementation facilitates the investigation and utilization of reduced sample, solvent, and reagent volumes, thus yielding decreased operational expenses. Owing to their compact dimensions, these devices allow for the concurrent execution of multiple procedures, leading to expedited experimental timelines. Over the past two decades, microfluidics has undergone remarkable advancements, evolving into a multifaceted discipline. Subfields such as organ-on-a-chip and paper-based microfluidics have matured into distinct fields of study. Nonetheless, while scientific progress within the microfluidics realm has been notable, its translation into autonomous end-user applications remains a frontier to be fully explored. This paper sets forth the central objective of scrutinizing the present research paradigm, prevailing limitations, and potential prospects of customizable microfluidic devices. Our inquiry revolves around the latest strides achieved, prevailing constraints, and conceivable trajectories for adaptable microfluidic technologies. We meticulously delineate existing iterations of microfluidic systems, elucidate their operational principles, deliberate upon encountered limitations, and provide a visionary outlook toward the future trajectory of microfluidic advancements. In summation, this work endeavors to shed light on the current state of microfluidic systems, underscore their operative intricacies, address incumbent challenges, and unveil promising pathways that chart the course toward the next frontier of microfluidic innovation.

Next »
Graphical Abstract

[1]
Whitesides, G.M. The origins and the future of microfluidics. Nature, 2006, 442, 368-373.
[2]
Gimondi, S.; Ferreira, H.; Reis, R.L.; Neves, N.M. Microfluidic devices: A tool for nanoparticle synthesis and performance evaluation. ACS Nano, 2023, 17(15), 14205-14228.
[http://dx.doi.org/10.1021/acsnano.3c01117] [PMID: 37498731]
[3]
Gucluer, S.; Guler, O. A low-cost laser-prototyped microfluidic device for separating cells and bacteria. Appl. Sci. (Basel), 2023, 13(13), 7938.
[http://dx.doi.org/10.3390/app13137938]
[4]
Wang, J.; Ren, L.; Li, L.; Liu, W.; Zhou, J.; Yu, W.; Tong, D.; Chen, S. Microfluidics: A new cosset for neurobiology. Lab Chip, 2009, 9(5), 644-652.
[http://dx.doi.org/10.1039/B813495B] [PMID: 19224012]
[5]
Damiati, S.; Kompella, U.; Damiati, S.; Kodzius, R. Microfluidic devices for drug delivery systems and drug screening. Genes (Basel), 2018, 9(2), 103.
[http://dx.doi.org/10.3390/genes9020103] [PMID: 29462948]
[6]
Obeid, M.A.; Alsaadi, M.; Aljabali, A.A. Recent updates in curcumin delivery. J. Liposome Res., 2022, 33(1), 1-12.
[PMID: 35699160]
[7]
Sanjay, S.T.; Zhou, W.; Dou, M.; Tavakoli, H.; Ma, L.; Xu, F.; Li, X. Recent advances of controlled drug delivery using microfluidic platforms. Adv. Drug Deliv. Rev., 2018, 128, 3-28.
[http://dx.doi.org/10.1016/j.addr.2017.09.013] [PMID: 28919029]
[8]
Li, X.J.; Valadez, A.V.; Zuo, P.; Nie, Z. Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis, 2012, 4(12), 1509-1525.
[http://dx.doi.org/10.4155/bio.12.133] [PMID: 22793034]
[9]
Obeid, M.A.; Khadra, I.; Aljabali, A.A.A.; Amawi, H.; Ferro, V.A. Characterisation of niosome nanoparticles prepared by microfluidic mixing for drug delivery. Int. J. Pharm. X, 2022, 4, 100137.
[http://dx.doi.org/10.1016/j.ijpx.2022.100137] [PMID: 36386005]
[10]
Sanjay, S.T.; Dou, M.; Fu, G.; Xu, F.; Li, X. Controlled drug delivery using microdevices. Curr. Pharm. Biotechnol., 2016, 17(9), 772-787.
[http://dx.doi.org/10.2174/1389201017666160127110440] [PMID: 26813304]
[11]
Sanjay, S.T.; Fu, G.; Dou, M.; Xu, F.; Liu, R.; Qi, H.; Li, X. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst (Lond.), 2015, 140(21), 7062-7081.
[http://dx.doi.org/10.1039/C5AN00780A] [PMID: 26171467]
[12]
O’Connell, K.C.; Landers, J.P. Integrated membranes within centrifugal microfluidic devices: a review. Lab Chip, 2023, 23(14), 3130-3159.
[http://dx.doi.org/10.1039/D3LC00175J] [PMID: 37357712]
[13]
Singh, A.P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther., 2019, 4(1), 33.
[http://dx.doi.org/10.1038/s41392-019-0068-3] [PMID: 31637012]
[14]
Obeid, M.A.; Teeravatcharoenchai, T.; Connell, D.; Niwasabutra, K.; Hussain, M.; Carter, K.; Ferro, V.A. Examination of the effect of niosome preparation methods in encapsulating model antigens on the vesicle characteristics and their ability to induce immune responses. J. Liposome Res., 2020, 31(1), 1-30.
[PMID: 32396752]
[15]
Riahi, R.; Tamayol, A.; Shaegh, S.A.M.; Ghaemmaghami, A.M.; Dokmeci, M.R.; Khademhosseini, A. Microfluidics for advanced drug delivery systems. Curr. Opin. Chem. Eng., 2015, 7, 101-112.
[http://dx.doi.org/10.1016/j.coche.2014.12.001] [PMID: 31692947]
[16]
Obeid, M.A.; Khadra, I.; Albaloushi, A.; Mullin, M.; Alyamani, H.; Ferro, V.A. Microfluidic manufacturing of different niosomes nanoparticles for curcumin encapsulation: Physical characteristics, encapsulation efficacy, and drug release. Beilstein J. Nanotechnol., 2019, 10, 1826-1832.
[http://dx.doi.org/10.3762/bjnano.10.177] [PMID: 31579065]
[17]
Rey Gomez, L.M.; Hirani, R.; Care, A.; Inglis, D.W.; Wang, Y. Emerging microfluidic devices for sample preparation of undiluted whole blood to enable the detection of biomarkers. ACS Sens., 2023, 8(4), 1404-1421.
[http://dx.doi.org/10.1021/acssensors.2c02696] [PMID: 37011238]
[18]
Dos-Reis-Delgado, A.A.; Carmona-Dominguez, A.; Sosa-Avalos, G.; Jimenez-Saaib, I.H.; Villegas-Cantu, K.E.; Gallo-Villanueva, R.C.; Perez-Gonzalez, V.H. Recent advances and challenges in temperature monitoring and control in microfluidic devices. Electrophoresis, 2023, 44(1-2), 268-297.
[http://dx.doi.org/10.1002/elps.202200162] [PMID: 36205631]
[19]
Wu, J.; Fang, H.; Zhang, J.; Yan, S. Modular microfluidics for life sciences. J. Nanobiotechnology, 2023, 21(1), 85.
[http://dx.doi.org/10.1186/s12951-023-01846-x] [PMID: 36906553]
[20]
Hajam, M.I.; Khan, M.M. Microfluidics: From Evolution and Applications to Potential Prospects and Challenges; Advances in MEMS and Microfluidic Systems, 2023, pp. 32-50.
[21]
Apolinário, A.C.; Hauschke, L.; Nunes, J.R.; Lopes, L.B. Lipid nanovesicles for biomedical applications: ‘What is in a name’? Prog. Lipid Res., 2021, 82, 101096.
[http://dx.doi.org/10.1016/j.plipres.2021.101096] [PMID: 33831455]
[22]
Rebollo, R.; Oyoun, F.; Corvis, Y.; El-Hammadi, M.M.; Saubamea, B.; Andrieux, K.; Mignet, N.; Alhareth, K. Microfluidic Manufacturing of Liposomes: Development and Optimization by Design of Experiment and Machine Learning. ACS Appl. Mater. Interfaces, 2022, 14(35), 39736-39745.
[http://dx.doi.org/10.1021/acsami.2c06627] [PMID: 36001743]
[23]
Hong, J.S.; Stavis, S.M.; DePaoli Lacerda, S.H.; Locascio, L.E.; Raghavan, S.R.; Gaitan, M. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles. Langmuir, 2010, 26(13), 11581-11588.
[http://dx.doi.org/10.1021/la100879p] [PMID: 20429539]
[24]
Lo, C.T.; Jahn, A.; Locascio, L.E.; Vreeland, W.N. Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing. Langmuir, 2010, 26(11), 8559-8566.
[http://dx.doi.org/10.1021/la904616s] [PMID: 20146467]
[25]
Obeid, M.A.; Khadra, I.; Mullen, A.B.; Tate, R.J.; Ferro, V.A. The effects of hydration media on the characteristics of non-ionic surfactant vesicles (NISV) prepared by microfluidics. Int. J. Pharm., 2017, 516(1-2), 52-60.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.015] [PMID: 27836752]
[26]
Karnik, R.; Gu, F.; Basto, P.; Cannizzaro, C.; Dean, L.; Kyei-Manu, W.; Langer, R.; Farokhzad, O.C. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett., 2008, 8(9), 2906-2912.
[http://dx.doi.org/10.1021/nl801736q] [PMID: 18656990]
[27]
Webb, C.; Khadke, S.; Tandrup Schmidt, S.; Roces, C.B.; Forbes, N.; Berrie, G.; Perrie, Y. The impact of solvent selection: strategies to guide the manufacturing of liposomes using microfluidics. Pharmaceutics, 2019, 11(12), 653.
[http://dx.doi.org/10.3390/pharmaceutics11120653] [PMID: 31817217]
[28]
Obeid, M.A.; Gany, S.A.S.; Gray, A.I.; Young, L.; Igoli, J.O.; Ferro, V.A. Niosome-encapsulated balanocarpol: compound isolation, characterisation, and cytotoxicity evaluation against human breast and ovarian cancer cell lines. Nanotechnology, 2020, 31(19), 195101.
[http://dx.doi.org/10.1088/1361-6528/ab6d9c] [PMID: 31958777]
[29]
Gimondi, S.; Guimarães, C.F.; Vieira, S.F.; Gonçalves, V.M.F.; Tiritan, M.E.; Reis, R.L.; Ferreira, H.; Neves, N.M. Microfluidic mixing system for precise PLGA-PEG nanoparticles size control. Nanomedicine, 2022, 40, 102482.
[http://dx.doi.org/10.1016/j.nano.2021.102482] [PMID: 34748958]
[30]
Amirifar, L.; Besanjideh, M.; Nasiri, R.; Shamloo, A.; Nasrollahi, F.; de Barros, N.R.; Davoodi, E.; Erdem, A.; Mahmoodi, M.; Hosseini, V.; Montazerian, H.; Jahangiry, J.; Darabi, M.A.; Haghniaz, R.; Dokmeci, M.R.; Annabi, N.; Ahadian, S.; Khademhosseini, A. Droplet-based microfluidics in biomedical applications. Biofabrication, 2022, 14(2), 022001.
[http://dx.doi.org/10.1088/1758-5090/ac39a9] [PMID: 34781274]
[31]
Sangboonruang, S.; Semakul, N.; Obeid, M.A.; Ruano, M.; Kitidee, K.; Anukool, U.; Pringproa, K.; Chantawannakul, P.; Ferro, V.; Tragoolpua, Y.; Tragoolpua, K. Potentiality of melittin-loaded niosomal vesicles against vancomycin-intermediate Staphylococcus aureus and Staphylococcal skin infection. Int. J. Nanomedicine, 2021, 16, 7639-7661.
[http://dx.doi.org/10.2147/IJN.S325901] [PMID: 34819727]
[32]
Wang, W.; Li, B.Y.; Zhang, M.J.; Su, Y.Y.; Pan, D.W.; Liu, Z.; Ju, X.J.; Xie, R.; Faraj, Y.; Chu, L.Y. Microfluidic emulsification techniques for controllable emulsion production and functional microparticle synthesis. Chem. Eng. J., 2023, 452, 139277.
[http://dx.doi.org/10.1016/j.cej.2022.139277]
[33]
Tokeshi, M. Microfluidic devices for drug delivery systems. Adv. Drug Deliv. Rev., 2018, 128, 1-2.
[http://dx.doi.org/10.1016/j.addr.2018.05.009]
[34]
Obeid, M.A.; Gebril, A.M.; Tate, R.J.; Mullen, A.B.; Ferro, V.A. Comparison of the physical characteristics of monodisperse non-ionic surfactant vesicles (NISV) prepared using different manufacturing methods. Int. J. Pharm., 2017, 521(1-2), 54-60.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.007] [PMID: 28163227]
[35]
Forbes, N.; Hussain, M.T.; Briuglia, M.L.; Edwards, D.P.; Horst, J.H.; Szita, N.; Perrie, Y. Rapid and scale-independent microfluidic manufacture of liposomes entrapping protein incorporating in-line purification and at-line size monitoring. Int. J. Pharm., 2019, 556, 68-81.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.060] [PMID: 30503269]
[36]
Tomeh, M.A.; Zhao, X. Recent advances in microfluidics for the preparation of drug and gene delivery systems. Mol. Pharm., 2020, 17(12), 4421-4434.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00913] [PMID: 33213144]
[37]
Nguyen, T.K.; Phan, H.P.; Kamble, H.; Vadivelu, R.; Dinh, T.; Iacopi, A.; Walker, G.; Hold, L.; Nguyen, N.T.; Dao, D.V. Superior robust ultrathin single-crystalline silicon carbide membrane as a versatile platform for biological applications. ACS Appl. Mater. Interfaces, 2017, 9(48), 41641-41647.
[http://dx.doi.org/10.1021/acsami.7b15381] [PMID: 29140077]
[38]
Nielsen, J.B.; Hanson, R.L.; Almughamsi, H.M.; Pang, C.; Fish, T.R.; Woolley, A.T. Microfluidics: Innovations in materials and their fabrication and functionalization. Anal. Chem., 2020, 92(1), 150-168.
[http://dx.doi.org/10.1021/acs.analchem.9b04986] [PMID: 31721565]
[39]
Tsui, J.H.; Lee, W.; Pun, S.H.; Kim, J.; Kim, D.H. Microfluidics-assisted in vitro drug screening and carrier production. Adv. Drug Deliv. Rev., 2013, 65(11-12), 1575-1588.
[http://dx.doi.org/10.1016/j.addr.2013.07.004] [PMID: 23856409]
[40]
Jin, S.H.; Jeong, H.H.; Lee, B.; Lee, S.S.; Lee, C.S. A programmable microfluidic static droplet array for droplet generation, transportation, fusion, storage, and retrieval. Lab Chip, 2015, 15(18), 3677-3686.
[http://dx.doi.org/10.1039/C5LC00651A] [PMID: 26247820]
[41]
Chen, J-S.; Jiang, J.H. Droplet microfluidic technology: Mirodroplets formation and manipulation. Chin. J. Anal. Chem., 2012, 40(8), 1293-1300.
[http://dx.doi.org/10.1016/S1872-2040(11)60567-7]
[42]
Rahimi, M.; Shams Khorrami, A.; Rezai, P. Effect of device geometry on droplet size in co-axial flow-focusing microfluidic droplet generation devices. Colloids Surf. A Physicochem. Eng. Asp., 2019, 570, 510-517.
[http://dx.doi.org/10.1016/j.colsurfa.2019.03.067]
[43]
Obeid, M.A.; Tate, R.J.; Mullen, A.B.; Ferro, V.A. Lipid-based nanoparticles for cancer treatment.Lipid nanocarriers for drug targeting; Elsevier, 2018, pp. 313-359.
[http://dx.doi.org/10.1016/B978-0-12-813687-4.00008-6]
[44]
Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C, 2019, 98, 1252-1276.
[http://dx.doi.org/10.1016/j.msec.2019.01.066] [PMID: 30813007]
[45]
Andra, V.V.S.N.L.; Pammi, S.V.N.; Bhatraju, L.V.K.P.; Ruddaraju, L.K. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. Bionanoscience, 2022, 12(1), 274-291.
[http://dx.doi.org/10.1007/s12668-022-00941-x] [PMID: 35096502]
[46]
Lombardo, D.; Kiselev, M.A. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics, 2022, 14(3), 543.
[http://dx.doi.org/10.3390/pharmaceutics14030543] [PMID: 35335920]
[47]
Halder, J.; Gupta, S.; Kumari, R.; Gupta, G.D.; Rai, V.K. Microneedle array: Applications, recent advances, and clinical pertinence in transdermal drug delivery. J. Pharm. Innov., 2021, 16(3), 558-565.
[http://dx.doi.org/10.1007/s12247-020-09460-2] [PMID: 32837607]
[48]
Hassan, S.; Zhang, Y.S. Microfluidic technologies for local drug delivery; Microfluidics for Pharmaceutical Applications, 2019, pp. 281-305.
[49]
Gupta, A.; Pal, P. Micro-electro-mechanical system–based drug delivery devices.Bioelectronics and medical devices; Elsevier, 2019, pp. 183-210.
[http://dx.doi.org/10.1016/B978-0-08-102420-1.00010-8]
[50]
Nguyen, N.T.; Shaegh, S.A.M.; Kashaninejad, N.; Phan, D.T. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv. Drug Deliv. Rev., 2013, 65(11-12), 1403-1419.
[http://dx.doi.org/10.1016/j.addr.2013.05.008] [PMID: 23726943]
[51]
Aljabali, A.A.; Obeid, M.A.; Amawi, H.A.; Rezigue, M.M.; Hamzat, Y.; Satija, S.; Tambuwala, M.M. Application of Nanomaterials in the Diagnosis and Treatment of Genetic Disorders.Applications of Nanomaterials in Human Health; Springer, 2020, pp. 125-146.
[http://dx.doi.org/10.1007/978-981-15-4802-4_7]
[52]
Johnston, P.A.; Johnston, P.A. Cellular platforms for HTS: three case studies. Drug Discov. Today, 2002, 7(6), 353-363.
[http://dx.doi.org/10.1016/S1359-6446(01)02140-7] [PMID: 11893544]
[53]
Low, L.A.; Mummery, C.; Berridge, B.R.; Austin, C.P.; Tagle, D.A. Organs-on-chips: into the next decade. Nat. Rev. Drug Discov., 2021, 20(5), 345-361.
[http://dx.doi.org/10.1038/s41573-020-0079-3] [PMID: 32913334]
[54]
Cann, O. These are the top 10 emerging technologies of 2016; , 2016.
[55]
Kim, S.; Takayama, S. Organ-on-a-chip and the kidney. Kidney Res. Clin. Pract., 2015, 34(3), 165-169.
[http://dx.doi.org/10.1016/j.krcp.2015.08.001] [PMID: 26484042]
[56]
Valverde, M.G.; Faria, J.; Garví, E.S.; Janssen, M.J.; Masereeuw, R. Mihăilă S.M. Organs-on-chip technology: a tool to tackle] genetic kidney diseases. Pediatr. Nephrol., 2022, 37(12), 1-12.
[57]
Kanabekova, P.; Kadyrova, A.; Kulsharova, G. Microfluidic organ-on-a-chip devices for liver disease modeling in vitro. Micromachines (Basel), 2022, 13(3), 428.
[http://dx.doi.org/10.3390/mi13030428] [PMID: 35334720]
[58]
Bai, H.; Ingber, D.E. What can an organ-on-a-chip teach us about human lung physiology? Physiology (Bethesda), 2022, 37(5), 242-252.
[http://dx.doi.org/10.1152/physiol.00012.2022] [PMID: 35658627]
[59]
Francis, I.; Shrestha, J.; Paudel, K.R.; Hansbro, P.M.; Warkiani, M.E.; Saha, S.C. Recent advances in lung-on-a-chip models. Drug Discov. Today, 2022, 27(9), 2593-2602.
[http://dx.doi.org/10.1016/j.drudis.2022.06.004] [PMID: 35724916]
[60]
Paloschi, V.; Sabater-Lleal, M.; Middelkamp, H.; Vivas, A. Johansson, S.; van der Meer, A.; Tenje, M.; Maegdefessel, L. Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc. Res., 2021, 117(14), 2742-2754.
[http://dx.doi.org/10.1093/cvr/cvab088] [PMID: 33729461]
[61]
Zhang, P. Organ-on-a-chip.Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-chip; Elsevier, 2022, pp. 181-198.
[http://dx.doi.org/10.1016/B978-0-444-59432-7.00007-8]
[62]
Ko, J.; Park, D.; Lee, S.; Gumuscu, B.; Jeon, N. Engineering organ-on-a-chip to accelerate translational research. Micromachines (Basel), 2022, 13(8), 1200.
[http://dx.doi.org/10.3390/mi13081200] [PMID: 36014122]
[63]
Xiao, Y.; McGuinness, C.S.; Doherty-Boyd, W.S.; Salmeron-Sanchez, M.; Donnelly, H.; Dalby, M.J. Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials, 2022, 286, 121568.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121568] [PMID: 35580474]
[64]
Habibey, R.; Rojo Arias, J.E.; Striebel, J.; Busskamp, V. Microfluidics for neuronal cell and circuit engineering. Chem. Rev., 2022, 122(18), 14842-14880.
[http://dx.doi.org/10.1021/acs.chemrev.2c00212] [PMID: 36070858]
[65]
Leung, C.M.; de Haan, P.; Ronaldson-Bouchard, K.; Kim, G.A.; Ko, J.; Rho, H.S.; Chen, Z.; Habibovic, P.; Jeon, N.L.; Takayama, S.; Shuler, M.L.; Vunjak-Novakovic, G.; Frey, O.; Verpoorte, E.; Toh, Y-C. A guide to the organ-on-a-chip. Nature Reviews Methods Primers, 2022, 2(1), 33.
[http://dx.doi.org/10.1038/s43586-022-00118-6]
[66]
Van Meenen, J.; Ní Dhubhghaill, S.; Van den Bogerd, B.; Koppen, C. An overview of advanced in vitro corneal models: Implications for pharmacological testing. Tissue Eng. Part B Rev., 2022, 28(3), 506-516.
[http://dx.doi.org/10.1089/ten.teb.2021.0031] [PMID: 33878935]
[67]
Mughal, S.; López-Muñoz, G.A.; Fernández-Costa, J.M.; Cortés-Reséndiz, A.; De Chiara, F.; Ramón-Azcón, J. Organs‐on‐chips: Trends and challenges in advanced systems integration. Adv. Mater. Interfaces, 2022, 9(33), 2201618.
[http://dx.doi.org/10.1002/admi.202201618]
[68]
Saorin, G.; Caligiuri, I.; Rizzolio, F. Microfluidic organoids-on-a-chip: The future of human models. Semin. Cell Dev. Biol., 2023, 144, 41-54.
[http://dx.doi.org/10.1016/j.semcdb.2022.10.001]
[69]
Katsaounou, K.; Nicolaou, E.; Vogazianos, P.; Brown, C.; Stavrou, M.; Teloni, S.; Hatzis, P.; Agapiou, A.; Fragkou, E.; Tsiaoussis, G.; Potamitis, G.; Zaravinos, A.; Andreou, C.; Antoniades, A.; Shiammas, C.; Apidianakis, Y. Colon cancer: From epidemiology to prevention. Metabolites, 2022, 12(6), 499.
[http://dx.doi.org/10.3390/metabo12060499] [PMID: 35736432]
[70]
Li, Z.; Hui, J.; Yang, P.; Mao, H. Microfluidic organ-on-a-chip system for disease modeling and drug development. Biosensors (Basel), 2022, 12(6), 370.
[http://dx.doi.org/10.3390/bios12060370] [PMID: 35735518]
[71]
Nahak, B.K.; Mishra, A.; Preetam, S.; Tiwari, A. Advances in organ-on-a-chip materials and devices. ACS Appl. Bio Mater., 2022, 5(8), 3576-3607.
[http://dx.doi.org/10.1021/acsabm.2c00041] [PMID: 35839513]
[72]
Koyilot, M.C.; Natarajan, P.; Hunt, C.R.; Sivarajkumar, S.; Roy, R.; Joglekar, S.; Pandita, S.; Tong, C.W.; Marakkar, S.; Subramanian, L.; Yadav, S.S.; Cherian, A.V.; Pandita, T.K.; Shameer, K.; Yadav, K.K. Breakthroughs and applications of organ-on-a-chip technology. Cells, 2022, 11(11), 1828.
[http://dx.doi.org/10.3390/cells11111828] [PMID: 35681523]
[73]
Sun, W.; Liu, Z.; Xu, J.; Cheng, Y.; Yin, R.; Ma, L.; Li, H.; Qian, X.; Zhang, H. 3D skin models along with skin-on-a-chip systems: A critical review. Chin. Chem. Lett., 2022, 34, 107819.
[74]
Vahav, I.; Thon, M.; van den Broek, L.J.; Spiekstra, S.W.; Atac, B.; Lindner, G.; Schimek, K.; Marx, U.; Gibbs, S. Proof-of-concept organ-on-chip study: Topical cinnamaldehyde exposure of reconstructed human skin with integrated neopapillae cultured under dynamic flow. Pharmaceutics, 2022, 14(8), 1529.
[http://dx.doi.org/10.3390/pharmaceutics14081529] [PMID: 35893784]
[75]
Yoon, J-Y. Organ-on-a-Chip.Tissue Engineering; Springer, 2022, pp. 193-217.
[http://dx.doi.org/10.1007/978-3-030-83696-2_11]
[76]
Ma, X.; Li, H.; Zhu, S.; Hong, Z.; Kong, W.; Yuan, Q.; Wu, R.; Pan, Z.; Zhang, J.; Chen, Y.; Wang, X.; Wang, K. Angiorganoid: vitalizing the organoid with blood vessels. Vascular Biology, 2022, 4(1), R44-R57.
[http://dx.doi.org/10.1530/VB-22-0001] [PMID: 35994010]
[77]
Yan, J.; Li, Z.; Guo, J.; Liu, S.; Guo, J. Organ-on-a-chip: A new tool for in vitro research. Biosens. Bioelectron., 2022, 216, 114626.
[http://dx.doi.org/10.1016/j.bios.2022.114626] [PMID: 35969963]
[78]
Kawakita, S.; Mandal, K.; Mou, L.; Mecwan, M.M.; Zhu, Y.; Li, S.; Sharma, S.; Hernandez, A.L.; Nguyen, H.T.; Maity, S.; de Barros, N.R.; Nakayama, A.; Bandaru, P.; Ahadian, S.; Kim, H.J.; Herculano, R.D.; Holler, E.; Jucaud, V.; Dokmeci, M.R.; Khademhosseini, A. Organ‐on‐a‐chip models of the blood–brain barrier: Recent advances and future prospects. Small, 2022, 18(39), 2201401.
[http://dx.doi.org/10.1002/smll.202201401] [PMID: 35978444]
[79]
Peng, B.; Hao, S.; Tong, Z.; Bai, H.; Pan, S.; Lim, K.L.; Li, L.; Voelcker, N.H.; Huang, W. Blood–brain barrier (BBB)-on-a-chip: a promising breakthrough in brain disease research. Lab Chip, 2022, 22(19), 3579-3602.
[http://dx.doi.org/10.1039/D2LC00305H] [PMID: 36004771]
[80]
Cui, B.; Cho, S.W. Blood-brain barrier-on-a-chip for brain disease modeling and drug testing. BMB Rep., 2022, 55(5), 213-219.
[http://dx.doi.org/10.5483/BMBRep.2022.55.5.043] [PMID: 35410642]
[81]
Allen, J.W.; Bhatia, S.N. Formation of steady-state oxygen gradients in vitro: Application to liver zonation. Biotechnol. Bioeng., 2003, 82(3), 253-262.
[http://dx.doi.org/10.1002/bit.10569] [PMID: 12599251]
[82]
Booth, R.; Kim, H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip, 2012, 12(10), 1784-1792.
[http://dx.doi.org/10.1039/c2lc40094d] [PMID: 22422217]
[83]
Shi, M.; Majumdar, D.; Gao, Y.; Brewer, B.M.; Goodwin, C.R.; McLean, J.A.; Li, D.; Webb, D.J. Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts. Lab Chip, 2013, 13(15), 3008-3021.
[http://dx.doi.org/10.1039/c3lc50249j] [PMID: 23736663]
[84]
Gupta, P.; Shinde, A.; Illath, K.; Kar, S.; Nagai, M.; Tseng, F.G.; Santra, T.S. Microfluidic platforms for single neuron analysis. Mater. Today Bio, 2022, 13, 100222.
[http://dx.doi.org/10.1016/j.mtbio.2022.100222] [PMID: 35243297]
[85]
Luchena Moreno, C.; Zuazo Ibarra, J.; Valero Gómez-Lobo, J.; Matute Almau, C.J.; Alberdi Alfonso, E.M.; Capetillo González de Zarate, E.A. Neuron; Microglia, and Astrocyte Triple Co-culture Model to Study Alzheimer’s Disease, 2022.
[86]
Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H.Y.; Ingber, D.E. Reconstituting organ-level lung functions on a chip. Science, 2010, 328(5986), 1662-1668.
[http://dx.doi.org/10.1126/science.1188302] [PMID: 20576885]
[87]
Malik, M.H.; Alali, A.S.; Masoumi, S.; Zhou, X.; Liu, X. Lung-on-a-Chip and Lung Organoid Models.Organ Specific Drug Delivery and Targeting to the Lungs; CRC Press, 2022, pp. 83-108.
[http://dx.doi.org/10.1201/9781003182566-4]
[88]
Lang, J.D.; Berry, S.M.; Powers, G.L.; Beebe, D.J.; Alarid, E.T. Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity. Integr. Biol., 2013, 5(5), 807-816.
[http://dx.doi.org/10.1039/c3ib20265h] [PMID: 23559098]
[89]
Lin, C.Y.; Song, X.; Seaman, K.; You, L. Microfluidic co-culture platforms for studying osteocyte regulation of other cell types under dynamic mechanical stimulation. Curr. Osteoporos. Rep., 2022, 20(6), 478-492.
[http://dx.doi.org/10.1007/s11914-022-00748-5] [PMID: 36149593]
[90]
Dabbagh Moghaddam, F.; Romana Bertani, F. Application of microfluidic platforms in cancer therapy. Materials Chemistry Horizons, 2022, 1, 69-88.
[91]
Aljabali, A.A.A.; Obeid, M.A. Inorganic-organic nanomaterials for therapeutics and molecular imaging applications. Nanosci. Nanotechnol. Asia, 2020, 10(6), 748-765.
[http://dx.doi.org/10.2174/2210681209666190807145229]
[92]
Viravaidya, K.; Shuler, M.L. Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol. Prog., 2004, 20(2), 590-597.
[http://dx.doi.org/10.1021/bp034238d] [PMID: 15059006]
[93]
Jacob, E.M.; Borah, A.; Sakthi Kumar, D. Development of Human-on-a-Chip.Microfluidics and Multi Organs on Chip; Springer, 2022, pp. 261-288.
[http://dx.doi.org/10.1007/978-981-19-1379-2_12]
[94]
Shintu, L.; Baudoin, R.; Navratil, V.; Prot, J.M.; Pontoizeau, C.; Defernez, M.; Blaise, B.J.; Domange, C.; Péry, A.R.; Toulhoat, P.; Legallais, C.; Brochot, C.; Leclerc, E.; Dumas, M.E. Metabolomics-on-a-chip and predictive systems toxicology in microfluidic bioartificial organs. Anal. Chem., 2012, 84(4), 1840-1848.
[http://dx.doi.org/10.1021/ac2011075] [PMID: 22242722]
[95]
Gholizadeh, H.; Cheng, S.; Kourmatzis, A.; Xing, H.; Traini, D.; Young, P.M.; Ong, H.X. Application of micro-engineered kidney, liver, and respiratory system models to accelerate preclinical drug testing and development. Bioengineering (Basel), 2022, 9(4), 150.
[http://dx.doi.org/10.3390/bioengineering9040150] [PMID: 35447710]
[96]
Bruñas Gómez, I.; Casale, M.; Barreno, E.; Catalá, M. Near-infrared metabolomic fingerprinting study of lichen thalli and phycobionts in culture: aquaphotomics of Trebouxia lynnae dehydration. Microorganisms, 2022, 10(12), 2444.
[http://dx.doi.org/10.3390/microorganisms10122444] [PMID: 36557696]
[97]
Tabasum, H.; Gill, N.; Mishra, R.; Lone, S. Wearable microfluidic-based e-skin sweat sensors. RSC Advances, 2022, 12(14), 8691-8707.
[http://dx.doi.org/10.1039/D1RA07888G] [PMID: 35424805]
[98]
Gong, M.M.; Sinton, D. Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem. Rev., 2017, 117(12), 8447-8480.
[http://dx.doi.org/10.1021/acs.chemrev.7b00024] [PMID: 28627178]
[99]
Francis, J.; Stamper, I.; Heikenfeld, J.; Gomez, E.F. Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement. Lab Chip, 2019, 19(1), 178-185.
[http://dx.doi.org/10.1039/C8LC00968F] [PMID: 30525141]
[100]
Fallahi, H.; Zhang, J.; Phan, H.P.; Nguyen, N.T. Flexible microfluidics: Fundamentals, recent developments, and applications. Micromachines (Basel), 2019, 10(12), 830.
[http://dx.doi.org/10.3390/mi10120830] [PMID: 31795397]
[101]
Yeo, J.C.; Kenry, K.; Lim, C.T. Emergence of microfluidic wearable technologies. Lab Chip, 2016, 16(21), 4082-4090.
[http://dx.doi.org/10.1039/C6LC00926C] [PMID: 27713996]
[102]
Bohr, A.; Colombo, S.; Jensen, H. Future of Microfluidics in Research and in the Market.Microfluidics for pharmaceutical applications; Elsevier, 2019, pp. 425-465.
[http://dx.doi.org/10.1016/B978-0-12-812659-2.00016-8]
[103]
Liu, C.; Xu, T.; Wang, D.; Zhang, X. The role of sampling in wearable sweat sensors. Talanta, 2020, 212, 120801.
[http://dx.doi.org/10.1016/j.talanta.2020.120801] [PMID: 32113563]
[104]
Shajari, S.; Salahandish, R.; Zare, A.; Hassani, M.; Moossavi, S.; Munro, E.; Rashid, R.; Rosenegger, D.; Bains, J.S.; Sanati Nezhad, A. MicroSweat: A wearable microfluidic patch for noninvasive and reliable sweat collection enables human stress monitoring. Adv. Sci., 2023, 10, 2204171.
[PMID: 36461733]
[105]
Obeid, M.A.; Alyamani, H.; Amawi, H.; Aljabali, A.A.; Rezigue, M.; Abdeljaber, S.N.; Ferro, V.A. Sirna delivery to melanoma cells with cationic niosomes.Melanoma; Springer, 2021, pp. 621-634.
[http://dx.doi.org/10.1007/978-1-0716-1205-7_42]
[106]
Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; Lien, D.H.; Brooks, G.A.; Davis, R.W.; Javey, A. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016, 529(7587), 509-514.
[http://dx.doi.org/10.1038/nature16521] [PMID: 26819044]
[107]
Nie, B.; Li, R.; Brandt, J.D.; Pan, T. Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab Chip, 2014, 14(6), 1107-1116.
[http://dx.doi.org/10.1039/c3lc50994j] [PMID: 24480933]
[108]
Dagdeviren, C.; Shi, Y.; Joe, P.; Ghaffari, R.; Balooch, G.; Usgaonkar, K.; Gur, O.; Tran, P.L.; Crosby, J.R.; Meyer, M.; Su, Y.; Chad Webb, R.; Tedesco, A.S.; Slepian, M.J.; Huang, Y.; Rogers, J.A. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater., 2015, 14(7), 728-736.
[http://dx.doi.org/10.1038/nmat4289] [PMID: 25985458]
[109]
Yeo, J.C. Kenry; Yu, J.; Loh, K.P.; Wang, Z.; Lim, C.T. Triple-state liquid-based microfluidic tactile sensor with high flexibility, durability, and sensitivity. ACS Sens., 2016, 1(5), 543-551.
[http://dx.doi.org/10.1021/acssensors.6b00115]
[110]
Meng, L.; Jeerapan, I.; Mak, W.C. Flexible and mountable microfluidics for wearable biosensors.Microfluidic Biosensors; Elsevier, 2023, pp. 107-157.
[http://dx.doi.org/10.1016/B978-0-12-823846-2.00005-5]
[111]
Wang, H.; Xiang, Z.; Giorgia, P.; Mu, X.; Yang, Y.; Wang, Z.L.; Lee, C. Triboelectric liquid volume sensor for self-powered lab-on-chip applications. Nano Energy, 2016, 23, 80-88.
[http://dx.doi.org/10.1016/j.nanoen.2016.02.054]
[112]
Lee, H.; Choi, T.K.; Lee, Y.B.; Cho, H.R.; Ghaffari, R.; Wang, L.; Choi, H.J.; Chung, T.D.; Lu, N.; Hyeon, T.; Choi, S.H.; Kim, D.H. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol., 2016, 11(6), 566-572.
[http://dx.doi.org/10.1038/nnano.2016.38] [PMID: 26999482]
[113]
Linker, R. Microfluidics Market By Materials (Polymers, Silicon, Glass), Pharmaceuticals (Microreactors, Toxicity Screening, Lab on Chip, Proteomic & Genomic Analysis) Drug Delivery Devices (Microneedles, Micropumps), IVD (POC) - Global Trends & Forecast to 2018. 2018. Available from: https://www.prnewswire.com/newsreleases/microfluidics-market-by-materials-polymers-silicon-glasspharmaceuticals-microreactors-toxicity-screening-lab-on-chipproteomic--genomic-analysis-drug-delivery-devices-microneedlesmicropumps-ivd-poc---global-tre-238230881.html (Accessed on: 17/12/2022).
[114]
Roussel, B. Microfluidic applications in the pharmaceutical, life sciences, in vitro diagnostic and medical device markets. Yole Dévelop., Lyon, France, Tech. Rep, 2013, 2633004.
[115]
MARKETSANDMARKETS. Microfluidics Market Size, Share & Trends Analysis Report By Technology (Medical/Healthcare, Nonmedical), By Material (Silicon, Glass, Polymer, PDMS, Others), By Application, By Region And Segment Forecasts, 2022 - 2030 Available from: https://www.marketsandmarkets.com/Market-Reports/microfluidic-components-market-223516809.html?gclid=CjwKCAiA7vWcBhBUEiwAXieItpQg6czjG18jNYwiq0zgNAzq5SgjtWQpOSp2A7i2gXotF9MUKjtNRoCWHwQAvD_BwE (Accessed on: 17/12/2022).
[116]
Volpatti, L.R.; Yetisen, A.K. Commercialization of microfluidic devices. Trends Biotechnol., 2014, 32(7), 347-350.
[http://dx.doi.org/10.1016/j.tibtech.2014.04.010] [PMID: 24954000]
[117]
Ranjan, P.; Sadique, M.A.; Parihar, A.; Dhand, C.; Mishra, A.; Khan, R. Commercialization of Microfluidic Point-of-Care Diagnostic Devices.Advanced Microfluidics-Based Point-of-Care Diagnostics; CRC Press, 2022, pp. 383-398.
[http://dx.doi.org/10.1201/9781003033479-16]
[118]
Wang, S.; Zhao, X.; Khimji, I.; Akbas, R.; Qiu, W.; Edwards, D.; Cramer, D.W.; Ye, B.; Demirci, U. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. Lab Chip, 2011, 11(20), 3411-3418.
[http://dx.doi.org/10.1039/c1lc20479c] [PMID: 21881677]
[119]
Mancuso, M.; Cesarman, E.; Erickson, D. Detection of Kaposi’s sarcoma associated herpesvirus nucleic acids using a smartphone accessory. Lab Chip, 2014, 14(19), 3809-3816.
[http://dx.doi.org/10.1039/C4LC00517A] [PMID: 25117534]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy