Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Pandemic Preparedness for COVID-19: Research, Healthcare, and Pharmaceutical Perspectives

Author(s): Israel Mani, Manikandan Bilal Nandakumar, Amara Balan Balakrishnan, Mohamudha Parveen Rahamathulla and Mohan Pandi*

Volume 5, Issue 1, 2024

Published on: 27 October, 2023

Article ID: e271023222887 Pages: 13

DOI: 10.2174/0126667975267350231025073121

Price: $65

Abstract

The COVID-19 pandemic has highlighted the critical importance of pandemic preparedness worldwide, following the devastating 1918 pandemic. The rapid spread of COVID-19, originating in China, led to its classification as a global pandemic by the World Health Organization. COVID-19 is a member of the Coronaviridae family, a large family of viruses that have undergone extensive mutation and evolution over time. Among the coronaviruses, SARS-CoV-2, a Betacoronavirus, has emerged as a highly virulent pathogen capable of causing severe illness and fatalities in both humans and animals. Since 1966, various types of coronaviruses have surfaced, each exhibiting distinct mutations and structural characteristics. These genetic changes have contributed to the enhanced potency of the virus, intensifying the global pandemic crisis we face today. In response, the pharmaceutical approach to combat COVID-19 encompasses a multifaceted strategy. This includes the development of novel antiviral drugs specifically targeting the virus, as well as the repurposing of existing medications to evaluate their effectiveness against the virus. Additionally, there is a growing interest in exploring the potential of herbal and traditional medicine in the treatment of COVID-19. Continued research and collaboration among scientists, healthcare professionals, and pharmaceutical companies are crucial in the quest to find effective treatments for COVID-19 and to mitigate the impact of future coronavirus outbreaks. It is imperative to recognize the power and adaptability of microorganisms, emphasizing the need for vigilance and caution in preventing and managing infectious diseases. By investing in robust pandemic preparedness, measures and fostering global cooperation, we can enhance our ability to respond effectively to emerging viral threats and safeguard public health.

Graphical Abstract

[1]
Su S, Wong G, Shi W, et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[2]
Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol 2020; 92(4): 424-32.
[http://dx.doi.org/10.1002/jmv.25685] [PMID: 31981224]
[3]
Jin Y, Yang H, Ji W, et al. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses 2020; 12(4): 372.
[http://dx.doi.org/10.3390/v12040372] [PMID: 32230900]
[4]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[5]
Hasoksuz M, Sreevatsan S, Cho KO, Hoet AE, Saif LJ. Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates. Virus Res 2002; 84(1-2): 101-9.
[http://dx.doi.org/10.1016/S0168-1702(02)00004-7] [PMID: 11900843]
[6]
Neuman BW, Kiss G, Kunding AH, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 2011; 174(1): 11-22.
[http://dx.doi.org/10.1016/j.jsb.2010.11.021] [PMID: 21130884]
[7]
Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[8]
Zheng J. SARS-CoV-2: An Emerging Coronavirus that Causes a Global Threat. Int J Biol Sci 2020; 16(10): 1678-85.
[http://dx.doi.org/10.7150/ijbs.45053] [PMID: 32226285]
[9]
Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 2006; 6(1): 130.
[http://dx.doi.org/10.1186/1471-2334-6-130] [PMID: 16914034]
[10]
Burrell CJ, Howard CR, Murphy FA. CoronavirusesFenner and White’s Medical Virology. Amsterdam: Elsevier 2017; pp. 437-46.
[http://dx.doi.org/10.1016/B978-0-12-375156-0.00031-X]
[11]
Li Z, Tomlinson ACA, Wong AHM, et al. The human coronavirus HCoV-229E S-protein structure and receptor binding. eLife 2019; 8: e51230.
[http://dx.doi.org/10.7554/eLife.51230] [PMID: 31650956]
[12]
Ding S, Liang TJ. Is SARS-CoV-2 Also an Enteric Pathogen With Potential Fecal–Oral Transmission? A COVID-19 Virological and Clinical Review. Gastroenterology 2020; 159(1): 53-61.
[http://dx.doi.org/10.1053/j.gastro.2020.04.052] [PMID: 32353371]
[13]
Macnaughton MR, Madge MH. The characterisation of the virion RNA of avian infectious bronchitis virus. FEBS Lett 1977; 77(2): 311-3.
[http://dx.doi.org/10.1016/0014-5793(77)80258-5]
[14]
Corman VM, Baldwin HJ, Tateno AF, et al. Evidence for an Ancestral Association of Human Coronavirus 229E with Bats. J Virol 2015; 89(23): 11858-70.
[http://dx.doi.org/10.1128/JVI.01755-15] [PMID: 26378164]
[15]
Sabir JS, Lam TT, Ahmed MM, et al. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science 2016; 351(6268): 81-4.
[http://dx.doi.org/10.1126/science.aac8608] [PMID: 26678874]
[16]
Jouvenne P, Richardson CD, Schreiber SS, Lai MMC, Talbot PJ. Sequence analysis of the membrane protein gene of human coronavirus 229E. Virology 1990; 174(2): 608-12.
[http://dx.doi.org/10.1016/0042-6822(90)90115-8] [PMID: 2305554]
[17]
Schreiber SS, Kamahora T, Lai MMC. Sequence analysis of the nucleocapsid protein gene of human coronavirus 229E. Virology 1989; 169(1): 142-51.
[http://dx.doi.org/10.1016/0042-6822(89)90050-0] [PMID: 2922924]
[18]
Bonny TS, Yezli S, Lednicky JA. Isolation and identification of human coronavirus 229E from frequently touched environmental surfaces of a university classroom that is cleaned daily. Am J Infect Control 2018; 46(1): 105-7.
[http://dx.doi.org/10.1016/j.ajic.2017.07.014] [PMID: 28893443]
[19]
Liu DX, Liang JQ, Fung TS. Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae)Encyclopedia of Virology. Amsterdam: Elsevier 2021; pp. 428-40.
[http://dx.doi.org/10.1016/B978-0-12-809633-8.21501-X]
[20]
Pyrc K, Berkhout B, van der Hoek L. The novel human coronaviruses NL63 and HKU1. J Virol 2007; 81(7): 3051-7.
[http://dx.doi.org/10.1128/JVI.01466-06] [PMID: 17079323]
[21]
Abdul-Rasool S, Fielding BC. Understanding Human Coronavirus HCoV-NL63~!2009-11-13~!2010-04-09~!2010-05-25~! Open Virol J 2010; 4(1): 76-84.
[http://dx.doi.org/10.2174/1874357901004010076] [PMID: 20700397]
[22]
van der Hoek L, Pyrc K, Berkhout B. Human coronavirus NL63, a new respiratory virus. FEMS Microbiol Rev 2006; 30(5): 760-73.
[http://dx.doi.org/10.1111/j.1574-6976.2006.00032.x] [PMID: 16911043]
[23]
Zheng Q, Deng Y, Liu J, van der Hoek L, Berkhout B, Lu M. Core structure of S2 from the human coronavirus NL63 spike glycoprotein. Biochemistry 2006; 45(51): 15205-15.
[http://dx.doi.org/10.1021/bi061686w] [PMID: 17176042]
[24]
Pyrc K, Berkhout B, van der Hoek L. Antiviral strategies against human coronaviruses. Infect Disord Drug Targets 2007; 7(1): 59-66.
[http://dx.doi.org/10.2174/187152607780090757] [PMID: 17346212]
[25]
Bosch BJ, Martina BEE, van der Zee R, et al. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc Natl Acad Sci USA 2004; 101(22): 8455-60.
[http://dx.doi.org/10.1073/pnas.0400576101] [PMID: 15150417]
[26]
Dijkman R, Jebbink MF, Wilbrink B, et al. Human coronavirus 229E encodes a single ORF4 protein between the spike and the envelope genes. Virol J 2006; 3(1): 106.
[http://dx.doi.org/10.1186/1743-422X-3-106] [PMID: 17194306]
[27]
Casais R, Davies M, Cavanagh D, Britton P. Gene 5 of the avian coronavirus infectious bronchitis virus is not essential for replication. J Virol 2005; 79(13): 8065-78.
[http://dx.doi.org/10.1128/JVI.79.13.8065-8078.2005] [PMID: 15956552]
[28]
de Haan CAM, Masters PS, Shen X, Weiss S, Rottier PJM. The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology 2002; 296(1): 177-89.
[http://dx.doi.org/10.1006/viro.2002.1412] [PMID: 12036329]
[29]
Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med 2005; 11(8): 875-9.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[30]
Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pöhlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci USA 2005; 102(22): 7988-93.
[http://dx.doi.org/10.1073/pnas.0409465102] [PMID: 15897467]
[31]
Mathewson AC, Bishop A, Yao Y, et al. Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2. J Gen Virol 2008; 89(11): 2741-5.
[http://dx.doi.org/10.1099/vir.0.2008/003962-0] [PMID: 18931070]
[32]
Woo P, Lau S, Yip C, Huang Y, Yuen KY. More and More Coronaviruses: Human Coronavirus HKU1. Viruses 2009; 1(1): 57-71.
[http://dx.doi.org/10.3390/v1010057] [PMID: 21994538]
[33]
Woo PCY, Lau SKP, Yip CCY, et al. Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1. J Virol 2006; 80(14): 7136-45.
[http://dx.doi.org/10.1128/JVI.00509-06] [PMID: 16809319]
[34]
Woo PCY, Lau SKP, Chu C, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 2005; 79(2): 884-95.
[http://dx.doi.org/10.1128/JVI.79.2.884-895.2005] [PMID: 15613317]
[35]
Woo PCY, Wong BHL, Huang Y, Lau SKP, Yuen KY. Cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape codon usage bias in coronaviruses. Virology 2007; 369(2): 431-42.
[http://dx.doi.org/10.1016/j.virol.2007.08.010] [PMID: 17881030]
[36]
Chan CM, Lau SKP, Woo PCY, et al. Identification of major histocompatibility complex class I C molecule as an attachment factor that facilitates coronavirus HKU1 spike-mediated infection. J Virol 2009; 83(2): 1026-35.
[http://dx.doi.org/10.1128/JVI.01387-08] [PMID: 18987136]
[37]
Chan CM, Woo PCY, Lau SKP, et al. Spike protein, S, of human coronavirus HKU1: Role in viral life cycle and application in antibody detection. Exp Biol Med (Maywood) 2008; 233(12): 1527-36.
[http://dx.doi.org/10.3181/0806-RM-197] [PMID: 18849544]
[38]
Vijgen L, Keyaerts E, Moës E, et al. Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol 2005; 79(3): 1595-604.
[http://dx.doi.org/10.1128/JVI.79.3.1595-1604.2005] [PMID: 15650185]
[39]
Beidas M, Chehadeh W. Effect of Human Coronavirus OC43 Structural and Accessory Proteins on the Transcriptional Activation of Antiviral Response Elements. Intervirology 2018; 61(1): 30-5.
[http://dx.doi.org/10.1159/000490566] [PMID: 30041172]
[40]
Lau SKP, Lee P, Tsang AKL, et al. Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J Virol 2011; 85(21): 11325-37.
[http://dx.doi.org/10.1128/JVI.05512-11] [PMID: 21849456]
[41]
Mackay IM, Arden KE. MERS coronavirus: Diagnostics, epidemiology and transmission. Virol J 2015; 12(1): 222.
[http://dx.doi.org/10.1186/s12985-015-0439-5] [PMID: 26695637]
[42]
Aboagye JO, Yew CW, Ng OW, Monteil VM, Mirazimi A, Tan YJ. Overexpression of the nucleocapsid protein of Middle East respiratory syndrome coronavirus up-regulates CXCL10. Biosci Rep 2018; 38(5): BSR20181059.
[http://dx.doi.org/10.1042/BSR20181059] [PMID: 30242057]
[43]
Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[44]
Surjit M, Lal SK. The SARS-CoV nucleocapsid protein: A protein with multifarious activities. Infect Genet Evol 2008; 8(4): 397-405.
[http://dx.doi.org/10.1016/j.meegid.2007.07.004] [PMID: 17881296]
[45]
Stadler K, Masignani V, Eickmann M, et al. SARS — beginning to understand a new virus. Nat Rev Microbiol 2003; 1(3): 209-18.
[http://dx.doi.org/10.1038/nrmicro775] [PMID: 15035025]
[46]
Beniac DR, Andonov A, Grudeski E, Booth TF. Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol 2006; 13(8): 751-2.
[http://dx.doi.org/10.1038/nsmb1123] [PMID: 16845391]
[47]
Ganesh B, Rajakumar T, Malathi M, et al. Epidemiology and pathobiology of SARS-CoV-2 (COVID-19) in comparison with SARS, MERS: An updated overview of current knowledge and future perspectives. Clin Epidemiol Glob Health 2021; 10: 100694.
[http://dx.doi.org/10.1016/j.cegh.2020.100694] [PMID: 33462564]
[48]
Shen X, Xue JH, Yu CY, et al. Small envelope protein E of SARS: Cloning, expression, purification, CD determination, and bioinformatics analysis. Acta Pharmacol Sin 2003; 24(6): 505-11.
[PMID: 12791175]
[49]
Cao Y, Yang R, Lee I, et al. Characterization of the SARS‐CoV ‐2E Protein: Sequence, Structure, Viroporin, and Inhibitors. Protein Sci 2021; 30(6): 1114-30.
[http://dx.doi.org/10.1002/pro.4075] [PMID: 33813796]
[50]
Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[51]
Chan JFW, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9(1): 221-36.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[52]
Yang Y, Xiao Z, Ye K, et al. SARS-CoV-2: Characteristics and current advances in research. Virol J 2020; 17(1): 117.
[http://dx.doi.org/10.1186/s12985-020-01369-z] [PMID: 32727485]
[53]
Batra M, Tian R, Zhang C, et al. Role of IgG against N-protein of SARS-CoV-2 in COVID19 clinical outcomes. Sci Rep 2021; 11(1): 3455.
[http://dx.doi.org/10.1038/s41598-021-83108-0] [PMID: 33568776]
[54]
Savastano A, Ibáñez de Opakua A, Rankovic M, Zweckstetter M. Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. Nat Commun 2020; 11(1): 6041.
[http://dx.doi.org/10.1038/s41467-020-19843-1] [PMID: 33247108]
[55]
Kang S, Yang M, Hong Z, et al. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B 2020; 10(7): 1228-38.
[http://dx.doi.org/10.1016/j.apsb.2020.04.009] [PMID: 32363136]
[56]
Dutta NK, Mazumdar K, Gordy JT. The Nucleocapsid Protein of SARS–CoV-2: A Target for Vaccine Development. J Virol 2020; 94(13): e00647-20.
[http://dx.doi.org/10.1128/JVI.00647-20] [PMID: 32546606]
[57]
Mahtarin R, Islam S, Islam MJ, Ullah MO, Ali MA, Halim MA. Structure and dynamics of membrane protein in SARS-CoV-2. J Biomol Struct Dyn 2022; 40(10): 4725-38.
[http://dx.doi.org/10.1080/07391102.2020.1861983] [PMID: 33353499]
[58]
Hu Y, Wen J, Tang L, et al. The M protein of SARS-CoV: Basic structural and immunological properties. Genomics Proteomics Bioinformatics 2003; 1(2): 118-30.
[http://dx.doi.org/10.1016/S1672-0229(03)01016-7] [PMID: 15626342]
[59]
Marra MA, Jones SJM, Astell CR, et al. The Genome sequence of the SARS-associated coronavirus. Science 2003; 300(5624): 1399-404.
[http://dx.doi.org/10.1126/science.1085953] [PMID: 12730501]
[60]
Hassan SS, Choudhury PP, Roy B. SARS-CoV-2 envelope protein: Non-synonymous mutations and its consequences. Genomics 2020; 112(6): 3890-2.
[http://dx.doi.org/10.1016/j.ygeno.2020.07.001] [PMID: 32640274]
[61]
Mandala VS, McKay MJ, Shcherbakov AA, Dregni AJ, Kolocouris A, Hong M. Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat Struct Mol Biol 2020; 27(12): 1202-8.
[http://dx.doi.org/10.1038/s41594-020-00536-8] [PMID: 33177698]
[62]
Rahman MS, Hoque MN, Islam MR, et al. Mutational insights into the envelope protein of SARS-CoV-2. Gene Rep 2021; 22: 100997.
[http://dx.doi.org/10.1016/j.genrep.2020.100997] [PMID: 33319124]
[63]
Zheng M, Karki R, Williams EP, et al. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat Immunol 2021; 22(7): 829-38.
[http://dx.doi.org/10.1038/s41590-021-00937-x] [PMID: 33963333]
[64]
Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020; 581(7807): 215-20.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[65]
Wang K, Gheblawi M, Oudit GY. Angiotensin Converting Enzyme 2. Circulation 2020; 142(5): 426-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.047049] [PMID: 32213097]
[66]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[67]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[68]
Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020; 26(5): 681-7.
[http://dx.doi.org/10.1038/s41591-020-0868-6] [PMID: 32327758]
[69]
Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Front Immunol 2020; 11: 1949.
[http://dx.doi.org/10.3389/fimmu.2020.01949] [PMID: 32849654]
[70]
Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol 2007; 170(4): 1136-47.
[http://dx.doi.org/10.2353/ajpath.2007.061088] [PMID: 17392154]
[71]
Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 2020; 38(1): 1-9.
[http://dx.doi.org/10.12932/AP-200220-0772] [PMID: 32105090]
[72]
Ouassou H, Kharchoufa L, Bouhrim M, et al. The Pathogenesis of Coronavirus Disease 2019 (COVID-19): Evaluation and Prevention. J Immunol Res 2020; 2020: 1-7.
[http://dx.doi.org/10.1155/2020/1357983] [PMID: 32671115]
[73]
Parasher A. COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgrad Med J 2021; 97(1147): 312-20.
[http://dx.doi.org/10.1136/postgradmedj-2020-138577] [PMID: 32978337]
[74]
Woo PCY, Lau SKP, Lam CSF, et al. Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus. J Virol 2014; 88(2): 1318-31.
[http://dx.doi.org/10.1128/JVI.02351-13] [PMID: 24227844]
[75]
Mihindukulasuriya KA, Wu G, St Leger J, Nordhausen RW, Wang D. Identification of a novel coronavirus from a beluga whale by using a panviral microarray. J Virol 2008; 82(10): 5084-8.
[http://dx.doi.org/10.1128/JVI.02722-07] [PMID: 18353961]
[76]
Cavanagh D. Coronavirus IBV: Structural characterization of the spike protein. J Gen Virol 1983; 64(12): 2577-83.
[http://dx.doi.org/10.1099/0022-1317-64-12-2577] [PMID: 6319549]
[77]
Hemida MG, Barta JR, Ojkic D, Yoo D. Complete genomic sequence of turkey coronavirus. Virus Res 2008; 135(2): 237-46.
[http://dx.doi.org/10.1016/j.virusres.2008.03.020] [PMID: 18468711]
[78]
Decaro N. Gammacoronavirus‡: CoronaviridaeThe Springer Index of Viruses. Berlin, Heidelberg: Springer 2011; pp. 403-13.
[http://dx.doi.org/10.1007/978-0-387-95919-1_58]
[79]
Wickramasinghe INA, van Beurden SJ, Weerts EAWS, Verheije MH. The avian coronavirus spike protein. Virus Res 2014; 194: 37-48.
[http://dx.doi.org/10.1016/j.virusres.2014.10.009] [PMID: 25451062]
[80]
de Souza UJB, dos Santos RN, de Melo FL, et al. Genomic Epidemiology of SARS-CoV-2 in Tocantins State and the Diffusion of P.1.7 and AY.99.2 Lineages in Brazil. Viruses 2022; 14(4): 659.
[http://dx.doi.org/10.3390/v14040659] [PMID: 35458389]
[81]
Hitchings MDT, Ranzani OT, Torres MSS, et al. Effectiveness of CoronaVac among healthcare workers in the setting of high SARSCoV- 2 Gamma variant transmission in Manaus, Brazil: A testnegative case-control study. Lancet Regional Health - Americas 2021; 1: 100025.
[http://dx.doi.org/10.1016/j.lana.2021.100025] [PMID: 34386791]
[82]
Nassar A, Ibrahim IM, Amin FG, et al. A Review of Human Coronaviruses’ Receptors: The Host-Cell Targets for the Crown Bearing Viruses. Molecules 2021; 26(21): 6455.
[http://dx.doi.org/10.3390/molecules26216455] [PMID: 34770863]
[83]
Martin Webb L, Matzinger S, Grano C, et al. Identification of and Surveillance for the SARS-CoV-2 Variants B.1.427 and B.1.429 — Colorado, January–March 2021. MMWR Morb Mortal Wkly Rep 2021; 70(19): 717-8.
[http://dx.doi.org/10.15585/mmwr.mm7019e2] [PMID: 33988184]
[84]
Zhou Z, Du P, Yu M, et al. Assessment of infectivity and the impact on neutralizing activity of immune sera of the COVID-19 variant, CAL.20C. Signal Transduct Target Ther 2021; 6(1): 285.
[http://dx.doi.org/10.1038/s41392-021-00695-0] [PMID: 34315848]
[85]
Romero PE, Dávila-Barclay A, Salvatierra G, et al. The Emergence of Sars-CoV-2 Variant Lambda (C.37) in South America. Microbiol Spectr 2021; 9(2): e00789-21.
[http://dx.doi.org/10.1128/Spectrum.00789-21] [PMID: 34704780]
[86]
Wink PL, Volpato FCZ, Monteiro FL, et al. First identification of SARS-CoV-2 lambda (C.37) variant in Southern Brazil. Infect Control Hosp Epidemiol 2022; 43(12): 1996-7.
[http://dx.doi.org/10.1017/ice.2021.390] [PMID: 34470685]
[87]
Kudriavtsev AV, Vakhrusheva AV, Novoseletsky VN, et al. Immune Escape Associated with RBD Omicron Mutations and SARS-CoV-2 Evolution Dynamics. Viruses 2022; 14(8): 1603.
[http://dx.doi.org/10.3390/v14081603] [PMID: 35893668]
[88]
Acevedo ML, Alonso-Palomares L, Bustamante A, et al. Infectivity and immune escape of the new SARS-CoV-2 variant of interest Lambda. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.06.28.21259673]
[89]
Centers for Disease Control and Prevention SARS-CoV-2 Variant Classifications and Definitions. 2023. Available From: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html
[90]
Dougherty K, Mannell M, Naqvi O, Matson D, Stone J. SARS-CoV-2 B.1.617.2 (Delta) Variant COVID-19 Outbreak Associated with a Gymnastics Facility — Oklahoma, April–May 2021. MMWR Morb Mortal Wkly Rep 2021; 70(28): 1004-7.
[http://dx.doi.org/10.15585/mmwr.mm7028e2] [PMID: 34264910]
[91]
Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of COVID-19 Vaccines against the B.1.617.2 (Delta) Variant. N Engl J Med 2021; 385(7): 585-94.
[http://dx.doi.org/10.1056/NEJMoa2108891] [PMID: 34289274]
[92]
Alexandar S, Mathesan R, Raju KS, et al. A Comprehensive Review on COVID-19 Delta variant. International Journal of Pharmacology and Clinical Research 2021; 5(2): 83-5.
[http://dx.doi.org/10.1101/2021.06.20.21259195v1]
[93]
Maxwell S, Rupam B, Soumik P. Resurgence of SARS-CoV-2 in India: Potential role of the B.1.617.2 (Delta) variant and delayed interventions. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.06.23.21259405]
[94]
He X, Hong W, Pan X. SARS-CoV-2 Omicron variant: Characteristics and prevention. MedComm 2021; 2(4): 838-45.
[http://dx.doi.org/10.1002/mco2.110]
[95]
Gupta R. SARS-CoV-2 Omicron spike mediated immune escape and tropism shift. Research Square 2022.
[http://dx.doi.org/10.21203/rs.3.rs-1191837/v1]
[96]
Kumar S, Thambiraja TS, Karuppanan K, Subramaniam G. Omicron and Delta variant of SARS‐CoV‐2: A comparative computational study of spike protein. J Med Virol 2022; 94(4): 1641-9.
[http://dx.doi.org/10.1002/jmv.27526] [PMID: 34914115]
[97]
Lan J, He X, Ren Y, et al. Structural insights into the SARS-CoV-2 Omicron RBD-ACE2 interaction. Cell Res 2022; 32(6): 593-5.
[http://dx.doi.org/10.1038/s41422-022-00644-8] [PMID: 35418218]
[98]
Cascella M. Features, evaluation, and treatment of coronavirus (COVID-19). Treasure Island, FL: Statpearls 2022.
[99]
Alam S, Sarker MMR, Afrin S, et al. Traditional herbal medicines, bioactive metabolites, and plant products against COVID-19: Update on clinical trials and mechanism of actions. Front Pharmacol 2021; 12: 671498.
[http://dx.doi.org/10.3389/fphar.2021.671498] [PMID: 34122096]
[100]
Süntar I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem Rev 2020; 19(5): 1199-209.
[http://dx.doi.org/10.1007/s11101-019-09629-9]
[101]
Zeng F, Huang Y, Guo Y, et al. Association of inflammatory markers with the severity of COVID-19: A meta-analysis. Int J Infect Dis 2020; 96: 467-74.
[http://dx.doi.org/10.1016/j.ijid.2020.05.055] [PMID: 32425643]
[102]
Luo L, Jiang J, Wang C, et al. Analysis on herbal medicines utilized for treatment of COVID-19. Acta Pharm Sin B 2020; 10(7): 1192-204.
[http://dx.doi.org/10.1016/j.apsb.2020.05.007] [PMID: 32834949]
[103]
Song Z. From SARS to MERS. Thrusting Coronaviruses into the Spotlight Viruses 2019; 11(1): 59.
[http://dx.doi.org/10.3390/v11010059]
[104]
Su W, Wang YG, Li PB, et al. The potential application of the traditional Chinese herb Exocarpium Citri grandis in the prevention and treatment of COVID-19. Traditional Medicine Research 2020; 5(3): 160-6.
[http://dx.doi.org/10.53388/TMR20200406172]
[105]
Janiaud P, Axfors C, Schmitt AM, et al. Association of convalescent plasma treatment with clinical outcomes in patients with COVID-19: A systematic review and meta-analysis. JAMA 2021; 325(12): 1185-95.
[http://dx.doi.org/10.1001/jama.2021.2747] [PMID: 33635310]
[106]
Guo YR, Cao Q-D, Hong Z-S, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res 2020; 7(1): 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0]
[107]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[108]
Chen Hansen, Du Qiaohui. Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. Preprintsorg 2020.
[http://dx.doi.org/10.20944/preprints202001.0358.v3]
[109]
Ye R, Liu Z. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Exp Mol Pathol 2020; 113: 104350.
[http://dx.doi.org/10.1016/j.yexmp.2019.104350] [PMID: 31805278]
[110]
Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses 2012; 4(4): 557-80.
[http://dx.doi.org/10.3390/v4040557] [PMID: 22590686]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy