Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Review of the Role of Metabolic Factors in Determining the Post-surgical Adhesion and its Therapeutic Implications, with a Focus on Extracellular Matrix and Oxidative Stress

Author(s): Mahmoud Tavakkoli, Rozita Khodashahi, Mohsen Aliakbarian, Hoda Rahimi, Kiarash Ashrafzadeh, Gordon Ferns, Ebrahim Khaleghi and Mohammad-Hassan Arjmand*

Volume 17, 2024

Published on: 25 October, 2023

Article ID: e18761429246636 Pages: 9

DOI: 10.2174/0118761429246636230919122745

Price: $65

Abstract

The potential role of metabolic reprogramming in fibrogenesis has recently attracted interest. Extracellular matrix stiffness, inflammation, and subsequent oxidative stress are essential mediators in the causation of fibrosis. The prevention of post-surgical adhesion is a challenge in medicine. It is defined as a fibrotic disorder in which adhesive bands develop after abdominal or pelvic surgery. Despite many studies related to the pathogenesis of post-surgical adhesion (PSA), many unknowns exist. Therefore, evaluating different pathways may help characterize and identify the cause of fibrotic scar formation post-operation. Glucose and lipid metabolism are crucial metabolic pathways in the cell’s energy production that may be targeted by hypoxia-induced factor alpha and profibrotic cytokines such as TGF-β to mediate fibrogenesis. Inhibition of upregulated metabolic pathways may be a viable strategy for ameliorating post-surgical adhesion. In this review, we have discussed the potential role of altered glucose and lipid metabolism in extracellular matrix (ECM) stiffness and oxidative stress as crucial mediators in fibrosis.

[1]
Sandoval, P.; Jiménez-Heffernan, J.A.; Guerra-Azcona, G.; Pérez-Lozano, M.L.; Rynne-Vidal, Á.; Albar-Vizcaíno, P.; Gil-Vera, F.; Martín, P.; Coronado, M.J.; Barcena, C.; Dotor, J.; Majano, P.L.; Peralta, A.A.; López-Cabrera, M. Mesothelial-to-mesenchymal transition in the pathogenesis of post-surgical peritoneal adhesions. J. Pathol., 2016, 239(1), 48-59.
[http://dx.doi.org/10.1002/path.4695] [PMID: 27071481]
[2]
Coleman, M.G.; McLain, A.D.; Moran, B.J. Impact of previous surgery on time taken for incision and division of adhesions during laparotomy. Dis. Colon Rectum, 2000, 43(9), 1297-1299.
[http://dx.doi.org/10.1007/BF02237441] [PMID: 11005501]
[3]
Holmdahl, L; Risberg, B. Adhesions: Prevention and complications in general surgery. Europ. J. Surg., 1997, 163(3), 169-174.
[4]
Faubert, B.; Solmonson, A.; DeBerardinis, R.J. Metabolic reprogramming and cancer progression. Science, 2020, 368(6487), eaaw5473.
[http://dx.doi.org/10.1126/science.aaw5473] [PMID: 32273439]
[5]
Beloribi-Djefaflia, S.; Vasseur, S.; Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis, 2016, 5(1), e189.
[http://dx.doi.org/10.1038/oncsis.2015.49] [PMID: 26807644]
[6]
Srivastava, S.P.; Li, J.; Kitada, M.; Fujita, H.; Yamada, Y.; Goodwin, J.E.; Kanasaki, K.; Koya, D. SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis. Cell Death Dis., 2018, 9(10), 997.
[http://dx.doi.org/10.1038/s41419-018-1057-0] [PMID: 30250024]
[7]
Ding, H.; Jiang, L.; Xu, J.; Bai, F.; Zhou, Y.; Yuan, Q.; Luo, J.; Zen, K.; Yang, J. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am. J. Physiol. Renal Physiol., 2017, 313(3), F561-F575.
[http://dx.doi.org/10.1152/ajprenal.00036.2017] [PMID: 28228400]
[8]
Zhao, X.; Kwan, J.Y.Y.; Yip, K.; Liu, P.P.; Liu, F.F. Targeting metabolic dysregulation for fibrosis therapy. Nat. Rev. Drug Discov., 2020, 19(1), 57-75.
[http://dx.doi.org/10.1038/s41573-019-0040-5] [PMID: 31548636]
[9]
Ge, H.; Tian, M.; Pei, Q.; Tan, F.; Pei, H. Extracellular matrix stiffness: New areas affecting cell metabolism. Front. Oncol., 2021, 11, 631991.
[http://dx.doi.org/10.3389/fonc.2021.631991] [PMID: 33718214]
[10]
Bertero, T.; Oldham, W.M.; Cottrill, K.A.; Pisano, S.; Vanderpool, R.R.; Yu, Q.; Zhao, J.; Tai, Y.; Tang, Y.; Zhang, Y.Y.; Rehman, S.; Sugahara, M.; Qi, Z.; Gorcsan, J., III; Vargas, S.O.; Saggar, R.; Saggar, R.; Wallace, W.D.; Ross, D.J.; Haley, K.J.; Waxman, A.B.; Parikh, V.N.; De Marco, T.; Hsue, P.Y.; Morris, A.; Simon, M.A.; Norris, K.A.; Gaggioli, C.; Loscalzo, J.; Fessel, J.; Chan, S.Y. Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension. J. Clin. Invest., 2016, 126(9), 3313-3335.
[http://dx.doi.org/10.1172/JCI86387] [PMID: 27548520]
[11]
Sun, L.; Yang, X.; Yuan, Z.; Wang, H. Metabolic reprogramming in immune response and tissue inflammation. Arterioscler. Thromb. Vasc. Biol., 2020, 40(9), 1990-2001.
[http://dx.doi.org/10.1161/ATVBAHA.120.314037] [PMID: 32698683]
[12]
Hu, X.; Xu, Q.; Wan, H.; Hu, Y.; Xing, S.; Yang, H.; Gao, Y.; He, Z. PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis. Lab. Invest., 2020, 100(6), 801-811.
[http://dx.doi.org/10.1038/s41374-020-0404-9] [PMID: 32051533]
[13]
Li, J.; Zhai, X.; Sun, X.; Cao, S.; Yuan, Q.; Wang, J. Metabolic reprogramming of pulmonary fibrosis. Front. Pharmacol., 2022, 13, 1031890.
[http://dx.doi.org/10.3389/fphar.2022.1031890] [PMID: 36452229]
[14]
Xie, N.; Tan, Z.; Banerjee, S.; Cui, H.; Ge, J.; Liu, R.M.; Bernard, K.; Thannickal, V.J.; Liu, G. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care Med., 2015, 192(12), 1462-1474.
[http://dx.doi.org/10.1164/rccm.201504-0780OC] [PMID: 26284610]
[15]
Goodwin, J.; Choi, H.; Hsieh, M.; Neugent, M.L.; Ahn, J.M.; Hayenga, H.N.; Singh, P.K.; Shackelford, D.B.; Lee, I.K.; Shulaev, V.; Dhar, S.; Takeda, N.; Kim, J. Targeting hypoxia-inducible factor-1α/pyruvate dehydrogenase kinase 1 axis by dichloroacetate suppresses bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol., 2018, 58(2), 216-231.
[http://dx.doi.org/10.1165/rcmb.2016-0186OC] [PMID: 28915065]
[16]
Khomich, O.; Ivanov, A.V.; Bartosch, B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis. Cells, 2019, 9(1), 24.
[http://dx.doi.org/10.3390/cells9010024] [PMID: 31861818]
[17]
Wynn, T.A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Invest., 2007, 117(3), 524-529.
[http://dx.doi.org/10.1172/JCI31487] [PMID: 17332879]
[18]
Xue, M.; Jackson, C.J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care, 2015, 4(3), 119-136.
[http://dx.doi.org/10.1089/wound.2013.0485] [PMID: 25785236]
[19]
Foster, D.S.; Marshall, C.D.; Gulati, G.S.; Chinta, M.S.; Nguyen, A.; Salhotra, A.; Jones, R.E.; Burcham, A.; Lerbs, T.; Cui, L.; King, M.E.; Titan, A.L.; Ransom, R.C.; Manjunath, A.; Hu, M.S.; Blackshear, C.P.; Mascharak, S.; Moore, A.L.; Norton, J.A.; Kin, C.J.; Shelton, A.A.; Januszyk, M.; Gurtner, G.C.; Wernig, G.; Longaker, M.T. Elucidating the fundamental fibrotic processes driving abdominal adhesion formation. Nat. Commun., 2020, 11(1), 4061.
[http://dx.doi.org/10.1038/s41467-020-17883-1] [PMID: 32792541]
[20]
Guyot, C.; Lepreux, S.; Combe, C.; Doudnikoff, E.; Bioulac-Sage, P.; Balabaud, C.; Desmoulière, A. Hepatic fibrosis and cirrhosis: The (myo)fibroblastic cell subpopulations involved. Int. J. Biochem. Cell Biol., 2006, 38(2), 135-151.
[PMID: 16257564]
[21]
Liu, Y. Renal fibrosis: New insights into the pathogenesis and therapeutics. Kidney Int., 2006, 69(2), 213-217.
[http://dx.doi.org/10.1038/sj.ki.5000054] [PMID: 16408108]
[22]
Varga, J.; Abraham, D. Systemic sclerosis: A prototypic multisystem fibrotic disorder. J. Clin. Invest., 2007, 117(3), 557-567.
[http://dx.doi.org/10.1172/JCI31139] [PMID: 17332883]
[23]
Thannickal, V.J.; Toews, G.B.; White, E.S.; Lynch, J.P., III; Martinez, F.J. Mechanisms of pulmonary fibrosis. Annu. Rev. Med., 2004, 55(1), 395-417.
[http://dx.doi.org/10.1146/annurev.med.55.091902.103810] [PMID: 14746528]
[24]
Leask, A. TGFβ, cardiac fibroblasts, and the fibrotic response. Cardiovasc. Res., 2007, 74(2), 207-212.
[http://dx.doi.org/10.1016/j.cardiores.2006.07.012] [PMID: 16919613]
[25]
Kim, K.K.; Sheppard, D.; Chapman, H.A. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb. Perspect. Biol., 2018, 10(4), a022293.
[http://dx.doi.org/10.1101/cshperspect.a022293] [PMID: 28432134]
[26]
Hinz, B.; Phan, S.H.; Thannickal, V.J.; Galli, A.; Bochaton-Piallat, M.L.; Gabbiani, G. The myofibroblast. Am. J. Pathol., 2007, 170(6), 1807-1816.
[http://dx.doi.org/10.2353/ajpath.2007.070112] [PMID: 17525249]
[27]
ten Dijke, P.; Arthur, H.M. Extracellular control of TGFβ signalling in vascular development and disease. Nat. Rev. Mol. Cell Biol., 2007, 8(11), 857-869.
[http://dx.doi.org/10.1038/nrm2262] [PMID: 17895899]
[28]
Halliwell, B.; Gutteridge, J.M. Free radicals in biology and medicine; Oxford university press: USA, 2015.
[http://dx.doi.org/10.1093/acprof:oso/9780198717478.001.0001]
[29]
Agarwal, A.; Allamaneni, S.S.R. Role of free radicals in female reproductive diseases and assisted reproduction. Reprod. Biomed. Online, 2004, 9(3), 338-347.
[http://dx.doi.org/10.1016/S1472-6483(10)62151-7] [PMID: 15353087]
[30]
Awonuga, A.O.; Belotte, J.; Abuanzeh, S.; Fletcher, N.M.; Diamond, M.P.; Saed, G.M. Advances in the pathogenesis of adhesion development: The role of oxidative stress. Reprod. Sci., 2014, 21(7), 823-836.
[http://dx.doi.org/10.1177/1933719114522550] [PMID: 24520085]
[31]
Yung, L.; Leung, F.; Yao, X.; Chen, Z.Y.; Huang, Y. Reactive oxygen species in vascular wall. Cardiovasc. Hematol. Disord. Drug Targets, 2006, 6(1), 1-19.
[http://dx.doi.org/10.2174/187152906776092659] [PMID: 16724932]
[32]
Crimi, E.; Ignarro, L.J.; Napoli, C. Microcirculation and oxidative stress. Free Radic. Res., 2007, 41(12), 1364-1375.
[http://dx.doi.org/10.1080/10715760701732830] [PMID: 18075839]
[33]
Saed, G.M.; Diamond, M.P. Molecular characterization of postoperative adhesions: The adhesion phenotype. J. Am. Assoc. Gynecol. Laparosc., 2004, 11(3), 307-314.
[http://dx.doi.org/10.1016/S1074-3804(05)60041-2] [PMID: 15559339]
[34]
Li, Y.Q.; Ballinger, J.R.; Nordal, R.A.; Su, Z.F.; Wong, C.S. Hypoxia in radiation-induced blood-spinal cord barrier breakdown. Cancer Res., 2001, 61(8), 3348-3354.
[PMID: 11309291]
[35]
Reed, K.L.; Heydrick, S.J.; Aarons, C.B.; Prushik, S.; Gower, A.C.; Stucchi, A.F.; Becker, J.M. A neurokinin-1 receptor antagonist that reduces intra-abdominal adhesion formation decreases oxidative stress in the peritoneum. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 293(3), G544-G551.
[http://dx.doi.org/10.1152/ajpgi.00226.2007] [PMID: 17627972]
[36]
Heydrick, S.J.; Reed, K.L.; Cohen, P.A.; Aarons, C.B.; Gower, A.C.; Becker, J.M.; Stucchi, A.F. Intraperitoneal administration of methylene blue attenuates oxidative stress, increases peritoneal fibrinolysis, and inhibits intraabdominal adhesion formation. J. Surg. Res., 2007, 143(2), 311-319.
[http://dx.doi.org/10.1016/j.jss.2006.11.012] [PMID: 17826794]
[37]
Shukla, A.; Rasik, A.M.; Shankar, R. Nitric oxide inhibits wounds collagen synthesis. Mol. Cell. Biochem., 1999, 200(1/2), 27-33.
[http://dx.doi.org/10.1023/A:1006977513146] [PMID: 10569180]
[38]
Jiang, Z.L.; Zhu, X.; Diamond, M.P.; Abu-Soud, H.M.; Saed, G.M. Nitric oxide synthase isoforms expression in fibroblasts isolated from human normal peritoneum and adhesion tissues. Fertil. Steril., 2008, 90(3), 769-774.
[http://dx.doi.org/10.1016/j.fertnstert.2007.07.1313] [PMID: 18440510]
[39]
Rosen, G.M.; Tsai, P.; Weaver, J.; Porasuphatana, S.; Roman, L.J.; Starkov, A.A.; Fiskum, G.; Pou, S. The role of tetrahydrobiopterin in the regulation of neuronal nitric-oxide synthase-generated superoxide. J. Biol. Chem., 2002, 277(43), 40275-40280.
[http://dx.doi.org/10.1074/jbc.M200853200] [PMID: 12183447]
[40]
Fletcher, N.M.; Jiang, Z.L.; Diamond, M.P.; Abu-Soud, H.M.; Saed, G.M. Hypoxia-generated superoxide induces the development of the adhesion phenotype. Free Radic. Biol. Med., 2008, 45(4), 530-536.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.002] [PMID: 18538674]
[41]
Halliwell, B. Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: Measurement, mechanism and the effects of nutrition. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 1999, 443(1-2), 37-52.
[http://dx.doi.org/10.1016/S1383-5742(99)00009-5] [PMID: 10415430]
[42]
Balasubramanian, B.; Pogozelski, W.K.; Tullius, T.D. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc. Natl. Acad. Sci., 1998, 95(17), 9738-9743.
[http://dx.doi.org/10.1073/pnas.95.17.9738] [PMID: 9707545]
[43]
Shavell, V.I.; Saed, G.M.; Diamond, M.P. Review: Cellular metabolism: Contribution to postoperative adhesion development. Reprod. Sci., 2009, 16(7), 627-634.
[http://dx.doi.org/10.1177/1933719109332826] [PMID: 19293132]
[44]
Cookson, V.J.; Chapman, N.R. NF-kappaB function in the human myometrium during pregnancy and parturition. Histol. Histopathol., 2010, 25(7), 945-956.
[PMID: 20503182]
[45]
Chegini, N. The role of growth factors in peritoneal healing: Transforming growth factor beta (TGF-beta). Europ. J. Surg. Suppl., 1997, 577, 17-23.
[46]
Ivarsson, M-L.; Holmdahl, L.; Falk, P.; Mölne, J.; Risberg, B. Characterization and fibrinolytic properties of mesothelial cells isolated from peritoneal lavage. Scand. J. Clin. Lab. Invest., 1998, 58(3), 195-204.
[http://dx.doi.org/10.1080/00365519850186580] [PMID: 9670343]
[47]
Saed, G.M.; Diamond, M.P. Modulation of the expression of tissue plasminogen activator and its inhibitor by hypoxia in human peritoneal and adhesion fibroblasts. Fertil. Steril., 2003, 79(1), 164-168.
[http://dx.doi.org/10.1016/S0015-0282(02)04557-0] [PMID: 12524082]
[48]
Saed, G.M.; Zhang, W.; Diamond, M.P. Molecular characterization of fibroblasts isolated from human peritoneum and adhesions. Fertil. Steril., 2001, 75(4), 763-768.
[http://dx.doi.org/10.1016/S0015-0282(00)01799-4] [PMID: 11287032]
[49]
Saed, G.M.; Diamond, M.P. Differential expression of alpha smooth muscle cell actin in human fibroblasts isolated from intraperitoneal adhesions and normal peritoneal tissues. Fertil. Steril., 2004, 82(Suppl. 3), 1188-1192.
[http://dx.doi.org/10.1016/j.fertnstert.2004.02.147] [PMID: 15474094]
[50]
Saed, GM; Zhang, W; Chegini, N; Holmdahl, L; Diamond, MP Alteration of type I and III collagen expression in human peritoneal mesothelial cells in response to hypoxia and transforming growth factor-beta1. Wound Repair Regen., 1999, 7(6), 504-510.
[http://dx.doi.org/10.1046/j.1524-475X.1999.00504.x]
[51]
Lu, Y; Wahl, LM Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2, and prostaglandin E2 through enhancement of NF-kappa B activity in lipopolysaccharide-activated human primary monocytes. J. Immunol., 2005, 175(8), 16825-16832.
[52]
Xie, H.; Simon, M.C. Oxygen availability and metabolic reprogramming in cancer. J. Biol. Chem., 2017, 292(41), 16825-16832.
[http://dx.doi.org/10.1074/jbc.R117.799973] [PMID: 28842498]
[53]
Samanta, D.; Semenza, G.L. Metabolic adaptation of cancer and immune cells mediated by hypoxia-inducible factors. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(1), 15-22.
[http://dx.doi.org/10.1016/j.bbcan.2018.07.002] [PMID: 30006019]
[54]
Kim, W.Y.; Safran, M.; Buckley, M.R.M.; Ebert, B.L.; Glickman, J.; Bosenberg, M.; Regan, M.; Kaelin, W.G., Jr Failure to prolyl hydroxylate hypoxia-inducible factor α phenocopies VHL inactivation in vivo. EMBO J., 2006, 25(19), 4650-4662.
[http://dx.doi.org/10.1038/sj.emboj.7601300] [PMID: 16977322]
[55]
Zhang, L.; Li, L.; Liu, H.; Prabhakaran, K.; Zhang, X.; Borowitz, J.L.; Isom, G.E. HIF-1α activation by a redox-sensitive pathway mediates cyanide-induced BNIP3 upregulation and mitochondrial-dependent cell death. Free Radic. Biol. Med., 2007, 43(1), 117-127.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.04.005] [PMID: 17561100]
[56]
Andrianifahanana, M.; Hernandez, D.M.; Yin, X.; Kang, J.H.; Jung, M.Y.; Wang, Y.; Yi, E.S.; Roden, A.C.; Limper, A.H.; Leof, E.B. Profibrotic up‐regulation of glucose transporter 1 by TGF‐β involves activation of MEK and mammalian target of rapamycin complex 2 pathways. FASEB J., 2016, 30(11), 3733-3744.
[http://dx.doi.org/10.1096/fj.201600428R] [PMID: 27480571]
[57]
Yin, X.; Choudhury, M.; Kang, J.H.; Schaefbauer, K.J.; Jung, M.Y.; Andrianifahanana, M.; Hernandez, D.M.; Leof, E.B. Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-β. Sci. Signal., 2019, 12(612), eaax4067.
[http://dx.doi.org/10.1126/scisignal.aax4067] [PMID: 31848318]
[58]
Tang, L.; Wu, Y.; Tian, M.; Sjöström, C.D.; Johansson, U.; Peng, X.R.; Smith, D.M.; Huang, Y. Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes. Am. J. Physiol. Endocrinol. Metab., 2017, 313(5), E563-E576.
[http://dx.doi.org/10.1152/ajpendo.00086.2017] [PMID: 28811292]
[59]
Li, C.; Zhang, J.; Xue, M.; Li, X.; Han, F.; Liu, X.; Xu, L.; Lu, Y.; Cheng, Y.; Li, T.; Yu, X.; Sun, B.; Chen, L. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc. Diabetol., 2019, 18(1), 15.
[http://dx.doi.org/10.1186/s12933-019-0816-2] [PMID: 30710997]
[60]
Lu, Y.Y.; Wu, C.H.; Hong, C.H.; Chang, K.L.; Lee, C.H. GLUT-1 enhances glycolysis, oxidative stress, and fibroblast proliferation in keloid. Life, 2021, 11(6), 505.
[http://dx.doi.org/10.3390/life11060505] [PMID: 34070830]
[61]
Lin, S.; Sahai, A.; Chugh, S.S.; Pan, X.; Wallner, E.I.; Danesh, F.R.; Lomasney, J.W.; Kanwar, Y.S. High glucose stimulates synthesis of fibronectin via a novel protein kinase C, Rap1b, and B-Raf signaling pathway. J. Biol. Chem., 2002, 277(44), 41725-41735.
[http://dx.doi.org/10.1074/jbc.M203957200] [PMID: 12196513]
[62]
Chen, Y.; Choi, S.S.; Michelotti, G.A.; Chan, I.S.; Swiderska-Syn, M.; Karaca, G.F.; Xie, G.; Moylan, C.A.; Garibaldi, F.; Premont, R.; Suliman, H.B.; Piantadosi, C.A.; Diehl, A.M. Hedgehog controls hepatic stellate cell fate by regulating metabolism. Gastroenterology, 2012, 143(5), 1319-1329.e11.
[http://dx.doi.org/10.1053/j.gastro.2012.07.115] [PMID: 22885334]
[63]
Zhao, X.; Psarianos, P.; Ghoraie, L.S.; Yip, K.; Goldstein, D.; Gilbert, R.; Witterick, I.; Pang, H.; Hussain, A.; Lee, J.H.; Williams, J.; Bratman, S.V.; Ailles, L.; Haibe-Kains, B.; Liu, F.F. Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis. Nat. Metab., 2019, 1(1), 147-157.
[http://dx.doi.org/10.1038/s42255-018-0008-5] [PMID: 32694814]
[64]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[65]
Kottmann, R.M.; Kulkarni, A.A.; Smolnycki, K.A.; Lyda, E.; Dahanayake, T.; Salibi, R.; Honnons, S.; Jones, C.; Isern, N.G.; Hu, J.Z.; Nathan, S.D.; Grant, G.; Phipps, R.P.; Sime, P.J. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β. Am. J. Respir. Crit. Care Med., 2012, 186(8), 740-751.
[http://dx.doi.org/10.1164/rccm.201201-0084OC] [PMID: 22923663]
[66]
Isono, M.; Chen, S.; Won Hong, S.; Carmen Iglesias-de la Cruz, M.; Ziyadeh, F.N. Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-β-induced fibronectin in mesangial cells. Biochem. Biophys. Res. Commun., 2002, 296(5), 1356-1365.
[http://dx.doi.org/10.1016/S0006-291X(02)02084-3] [PMID: 12207925]
[67]
Liao, X.; Song, L.; Zhang, L.; Wang, H.; Tong, Q.; Xu, J.; Yang, G.; Yang, S.; Zheng, H. LAMP3 regulates hepatic lipid metabolism through activating PI3K/Akt pathway. Mol. Cell. Endocrinol., 2018, 470, 160-167.
[http://dx.doi.org/10.1016/j.mce.2017.10.010] [PMID: 29056532]
[68]
Guo, D.; Bell, E.; Mischel, P.; Chakravarti, A. Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr. Pharm. Des., 2014, 20(15), 2619-2626.
[http://dx.doi.org/10.2174/13816128113199990486] [PMID: 23859617]
[69]
Biswas, S.; Lunec, J.; Bartlett, K. Non-glucose metabolism in cancer cells-is it all in the fat? Cancer Metastasis Rev., 2012, 31(3-4), 689-698.
[http://dx.doi.org/10.1007/s10555-012-9384-6] [PMID: 22706846]
[70]
Calvisi, D.F.; Wang, C.; Ho, C.; Ladu, S.; Lee, S.A.; Mattu, S.; Destefanis, G.; Delogu, S.; Zimmermann, A.; Ericsson, J.; Brozzetti, S.; Staniscia, T.; Chen, X.; Dombrowski, F.; Evert, M. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology, 2011, 140(3), 1071-1083.e5.
[http://dx.doi.org/10.1053/j.gastro.2010.12.006] [PMID: 21147110]
[71]
Fujisawa, K.; Takami, T.; Sasai, N.; Matsumoto, T.; Yamamoto, N.; Sakaida, I. Metabolic alterations in spheroid-cultured hepatic stellate cells. Int. J. Mol. Sci., 2020, 21(10), 3451.
[http://dx.doi.org/10.3390/ijms21103451] [PMID: 32414151]
[72]
Heublein, S.; Mayr, D.; Meindl, A.; Kircher, A.; Jeschke, U.; Ditsch, N. Vitamin D receptor, Retinoid X receptor and peroxisome proliferator-activated receptor γ are overexpressed in BRCA1 mutated breast cancer and predict prognosis. J. Exp. Clin. Cancer Res., 2017, 36(1), 57.
[http://dx.doi.org/10.1186/s13046-017-0517-1] [PMID: 28427429]
[73]
Shu, Z.; Gao, Y.; Zhang, G.; Zhou, Y.; Cao, J.; Wan, D.; Zhu, X.; Xiong, W. A functional interaction between Hippo-YAP signalling and SREBPs mediates hepatic steatosis in diabetic mice. J. Cell. Mol. Med., 2019, 23(5), 3616-3628.
[http://dx.doi.org/10.1111/jcmm.14262] [PMID: 30821074]
[74]
Ke, R.; Xu, Q.; Li, C.; Luo, L.; Huang, D. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol. Int., 2018, 42(4), 384-392.
[http://dx.doi.org/10.1002/cbin.10915] [PMID: 29205673]
[75]
Glatz, J.F.C.; Luiken, J.J.F.P.; Bonen, A. Membrane fatty acid transporters as regulators of lipid metabolism: Implications for metabolic disease. Physiol. Rev., 2010, 90(1), 367-417.
[http://dx.doi.org/10.1152/physrev.00003.2009] [PMID: 20086080]
[76]
O’Neill, H.M.; Lally, J.S.; Galic, S.; Thomas, M.; Azizi, P.D.; Fullerton, M.D.; Smith, B.K.; Pulinilkunnil, T.; Chen, Z.; Samaan, M.C.; Jorgensen, S.B.; Dyck, J.R.B.; Holloway, G.P.; Hawke, T.J.; van Denderen, B.J.; Kemp, B.E.; Steinberg, G.R. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia, 2014, 57(8), 1693-1702.
[http://dx.doi.org/10.1007/s00125-014-3273-1] [PMID: 24913514]
[77]
Kramer, P.A.; Ravi, S.; Chacko, B.; Johnson, M.S.; Darley-Usmar, V.M. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: Implications for their use as bioenergetic biomarkers. Redox Biol., 2014, 2, 206-210.
[http://dx.doi.org/10.1016/j.redox.2013.12.026] [PMID: 24494194]
[78]
Bustos, R; Sobrino, F Stimulation of glycolysis as an activation signal in rat peritoneal macrophages. Effect of glucocorticoids on this process. Biochem. J., 1992, 282((Pt 1)), 299-303.
[79]
Casbon, A.J.; Long, M.E.; Dunn, K.W.; Allen, L.A.H.; Dinauer, M.C. Effects of IFN-γ on intracellular trafficking and activity of macrophage NADPH oxidase flavocytochrome b558. J. Leukoc. Biol., 2012, 92(4), 869-882.
[http://dx.doi.org/10.1189/jlb.0512244] [PMID: 22822009]
[80]
Griffiths, H.R.; Gao, D.; Pararasa, C. Redox regulation in metabolic programming and inflammation. Redox Biol., 2017, 12, 50-57.
[http://dx.doi.org/10.1016/j.redox.2017.01.023] [PMID: 28212523]
[81]
Düvel, K.; Yecies, J.L.; Menon, S.; Raman, P.; Lipovsky, A.I.; Souza, A.L.; Triantafellow, E.; Ma, Q.; Gorski, R.; Cleaver, S.; Vander Heiden, M.G.; MacKeigan, J.P.; Finan, P.M.; Clish, C.B.; Murphy, L.O.; Manning, B.D. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell, 2010, 39(2), 171-183.
[http://dx.doi.org/10.1016/j.molcel.2010.06.022] [PMID: 20670887]
[82]
Meng, X.; Yu, Z.; Xu, W.; Chai, J.; Fang, S.; Min, P.; Chen, Y.; Zhang, Y.; Zhang, Z. Control of fibrosis and hypertrophic scar formation via glycolysis regulation with IR780. Burns Trauma, 2022, 10, tkac015.
[http://dx.doi.org/10.1093/burnst/tkac015] [PMID: 35769829]
[83]
Rodríguez-García, A.; Samsó, P.; Fontova, P.; Simon-Molas, H.; Manzano, A.; Castaño, E.; Rosa, J.L.; Martinez-Outshoorn, U.; Ventura, F.; Navarro-Sabaté, À.; Bartrons, R. TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells. FEBS J., 2017, 284(20), 3437-3454.
[http://dx.doi.org/10.1111/febs.14201] [PMID: 28834297]
[84]
Cummins, E.P.; Keogh, C.E.; Crean, D.; Taylor, C.T. The role of HIF in immunity and inflammation. Mol. Aspects Med., 2016, 47-48, 24-34.
[http://dx.doi.org/10.1016/j.mam.2015.12.004] [PMID: 26768963]
[85]
Higgins, D.F.; Kimura, K.; Iwano, M.; Haase, V.H. Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle, 2008, 7(9), 1128-1132.
[http://dx.doi.org/10.4161/cc.7.9.5804] [PMID: 18418042]
[86]
Zhu, X.; Jiang, L.; Long, M.; Wei, X.; Hou, Y.; Du, Y. Metabolic reprogramming and renal fibrosis. Front. Med., 2021, 8, 746920.
[http://dx.doi.org/10.3389/fmed.2021.746920] [PMID: 34859009]
[87]
Delgado, M.E.; Cárdenas, B.I.; Farran, N.; Fernandez, M. Metabolic reprogramming of liver fibrosis. Cells, 2021, 10(12), 3604.
[http://dx.doi.org/10.3390/cells10123604] [PMID: 34944111]
[88]
Yilmaz, B.; Aksakal, O.; Gungor, T.; Sirvan, L.; Sut, N.; Kelekci, S.; Soysal, S.; Mollamahmutoglu, L. Metformin and atorvastatin reduce adhesion formation in a rat uterine horn model. Reprod. Biomed. Online, 2009, 18(3), 436-442.
[http://dx.doi.org/10.1016/S1472-6483(10)60106-X] [PMID: 19298747]
[89]
Gagnon, L.; Leduc, M.; Thibodeau, J.F.; Zhang, M.Z.; Grouix, B.; Sarra-Bournet, F.; Gagnon, W.; Hince, K.; Tremblay, M.; Geerts, L.; Kennedy, C.R.J.; Hébert, R.L.; Gutsol, A.; Holterman, C.E.; Kamto, E.; Gervais, L.; Ouboudinar, J.; Richard, J.; Felton, A.; Laverdure, A.; Simard, J.C.; Létourneau, S.; Cloutier, M.P.; Leblond, F.A.; Abbott, S.D.; Penney, C.; Duceppe, J.S.; Zacharie, B.; Dupuis, J.; Calderone, A.; Nguyen, Q.T.; Harris, R.C.; Laurin, P. A newly discovered antifibrotic pathway regulated by two fatty acid receptors: GPR40 and GPR84. Am. J. Pathol., 2018, 188(5), 1132-1148.
[http://dx.doi.org/10.1016/j.ajpath.2018.01.009] [PMID: 29454750]
[90]
Fatehi Hassanabad, A.; Zarzycki, A.N.; Jeon, K.; Deniset, J.F.; Fedak, P.W.M. Post-operative adhesions: A comprehensive review of mechanisms. Biomedicines, 2021, 9(8), 867.
[http://dx.doi.org/10.3390/biomedicines9080867] [PMID: 34440071]
[91]
Contribution of metabolic reprogramming to macrophage plasticity and function. Seminars in immunology; Kasmi, K.C.E.; Stenmark, K.R., Eds.; Elsevier, 2015.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy