Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Systematic Review Article

The Antimicrobial Activities of Nanoparticles against Helicobacter Pylori: A Systematic Review

Author(s): Pegah Shakib, Reza Saki, Gholamreza Goudarzi* and Mohammad Reza Zolfaghari

Volume 20, Issue 6, 2024

Published on: 31 October, 2023

Article ID: e241023222638 Pages: 9

DOI: 10.2174/0115734072273911231010060747

Price: $65

conference banner
Abstract

Background: Helicobacter Pylori is widely present in human populations, making it one of the most common bacteria found in humans. Due to the drug's side effects, extensive research is being done to find new effective nanoparticles against Helicobacter Pylori in the world. Therefore, this systematic review aims to investigate nanoparticles' antimicrobial activities against Helicobacter Pylori.

Methods: All articles published from 2000 to 2023 from Scopus, PubMed, Science Direct, Cochrane, and Ovid databases with keywords Helicobacter Pylori, H.pylori, nanoparticles, solid lipid NPS, and lipid nanocarrier were extracted and transferred to EndNote X9 software by two researchers.

Results: During the first stage, 280 articles were chosen. Following the application of the eligibility criteria for inclusion/exclusion, 37 studies were ultimately selected, considering the removal of duplicates, irrelevant articles, and those containing complete text. In the present systematic review study, most nanoparticles used against Helicobacter Pylori were polymericbased nanoparticles.

Conclusion: The results indicate the high potential of various nanoparticles against Helicobacter Pylori. Therefore, the results show that these nanoparticles have the potential to prepare anti- Helicobacter Pylori nanoparticles. In addition, these nanoparticles have fewer side effects than chemical drugs.

Graphical Abstract

[1]
Taylor, D.N.; Blaser, M.J. The epidemiology of Helicobacter pylori infection. Epidemiol. Rev., 1991, 13(1), 42-59.
[http://dx.doi.org/10.1093/oxfordjournals.epirev.a036078] [PMID: 1765119]
[2]
O’Connor, A.; Furuta, T.; Gisbert, J.P.; O’Morain, C. Review – treatment of Helicobacter pylori infection 2020. Helicobacter, 2020, 25(S1), e12743.
[http://dx.doi.org/10.1111/hel.12743] [PMID: 32918350]
[3]
Marie, M.A.M. Alimentary tract: Seroprevalence of Helicobacter pylori infection in large series of patients in an urban area of Saudi Arabia. Korean J. Gastroenterol., 2008, 52(4), 226-229.
[PMID: 19077524]
[4]
Sayed, Z.M.E.; Elewa, A.; Abdelwahab, A.M.; Shehta, A. Study of virulence genes cag A and vac A in Helicobacter pylori isolated from Mansoura University hospital patients by multiplex PCR. Int. J. Curr. Microbiol. Appl. Sci., 2016, 5(2), 154-160.
[http://dx.doi.org/10.20546/ijcmas.2016.502.018]
[5]
Olbermann, P.; Josenhans, C.; Moodley, Y.; Uhr, M.; Stamer, C.; Vauterin, M.; Suerbaum, S.; Achtman, M.; Linz, B. A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet., 2010, 6(8), e1001069.
[http://dx.doi.org/10.1371/journal.pgen.1001069] [PMID: 20808891]
[6]
Hong, K.S.; Ki, M.R.; Ullah, H.M.A.; Lee, E.J.; Kim, Y.D.; Chung, M.J.; Elfadl, A.K.; Park, J.K.; Jeong, K.S. Preventive effect of anti-VacA egg yolk immunoglobulin (IgY) on Helicobacter pylori -infected mice. Vaccine, 2018, 36(3), 371-380.
[http://dx.doi.org/10.1016/j.vaccine.2017.11.082] [PMID: 29223485]
[7]
O’Morain, N.R.; Dore, M.P.; O’Connor, A.J.P.; Gisbert, J.P.; O’Morain, C.A. Treatment of Helicobacter pylori infection in 2018. Helicobacter, 2018, 23(S1), e12519.
[http://dx.doi.org/10.1111/hel.12519] [PMID: 30203585]
[8]
Bluemel, B.; Goelz, H.; Goldmann, B.; Grüger, J.; Hamel, H.; Loley, K.; Ludolph, T.; Meyer, J.; Miehlke, S.; Mohr, A.; Tüffers, K.; Usadel, H.; Wagner, S.; Wenzel, H.; Wiemer, L.; Vorreiter, J.; Eisele, B.; Hofreuter, D.; Glocker, E.O. Antimicrobial resistance of Helicobacter pylori in Germany, 2015 to 2018. Clin. Microbiol. Infect., 2020, 26(2), 235-239.
[http://dx.doi.org/10.1016/j.cmi.2019.06.007] [PMID: 31212078]
[9]
Shoosanglertwijit, R.; Kamrat, N.; Werawatganon, D.; Chatsuwan, T.; Chaithongrat, S.; Rerknimitr, R. Real-world data of Helicobacter pylori prevalence, eradication regimens, and antibiotic resistance in Thailand, 2013–2018. JGH Open, 2020, 4(1), 49-53.
[http://dx.doi.org/10.1002/jgh3.12208] [PMID: 32055697]
[10]
Bakhshi, S.; Ghazvini, K.; Beheshti, A.; Ahadi, M. Sheykhi MJmjomuoms. Review of antibiotic resistance of Helicobacter pylori in Iran and the world. Med J Mashhad Univ Med Sci, 2017, 60(4), 648-661.
[http://dx.doi.org/10.22038/mjms.2017.10191]
[11]
Pop, R. Tăbăran, A.F.; Ungur, A.P.; Negoescu, A.; Cătoi, C. Helicobacter Pylori-induced gastric infections: From pathogenesis to novel therapeutic approaches using silver nanoparticles. Pharmaceutics, 2022, 14(7), 1463.
[http://dx.doi.org/10.3390/pharmaceutics14071463] [PMID: 35890358]
[12]
Elmehbad, N.; Mohamed, N.A.; Abd El-Ghany, N.A.; Abdel-Aziz, M.M. "green synthesis of nano-silver/sodium alginate/carboxymethyl xanthan gum hydrogel and evaluation of its anti-inflammatory and anti-Helicobacter pylori activity". Cellul. Chem. Technol., 2022, 56(9-10), 983-995.
[http://dx.doi.org/10.35812/CelluloseChemTechnol.2022.56.88]
[13]
Abd El-Moaty, H.I.; Soliman, N.A.; Hamad, R.S.; Ismail, E.H.; Sabry, D.Y.; Khalil, M.M.H. Comparative therapeutic effects of Pituranthos tortuosus aqueous extract and phyto-synthesized gold nanoparticles on Helicobacter pylori, diabetic and cancer proliferation. S. Afr. J. Bot., 2021, 139, 167-174.
[http://dx.doi.org/10.1016/j.sajb.2021.02.009]
[14]
Amin, M.; Anwar, F.; Janjua, M.R.S.A.; Iqbal, M.A.; Rashid, U. Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int. J. Mol. Sci., 2012, 13(8), 9923-9941.
[http://dx.doi.org/10.3390/ijms13089923] [PMID: 22949839]
[15]
Khalil, M.; soliman,; Abdel- Moaty, H.; Ismael, E.; Sabry, D. Anti-Helicobacter pylori, anti-diabetic and cytotoxicity activity of biosynthesized gold nanoparticles using Moricandia nitens water extract. Egypt. J. Chem., 2018, 61(4), 691-703.
[http://dx.doi.org/10.21608/ejchem.2018.3744.1318]
[16]
Amin, M.; Hameed, S.; Ali, A.; Anwar, F.; Shahid, S.A.; Shakir, I.; Yaqoob, A.; Hasan, S.; Khan, S.A. Sajjad-ur-Rahman, Green synthesis of silver nanoparticles: Structural features and in vivo and in vitro therapeutic effects against Helicobacter pylori induced gastritis. Bioinorg. Chem. Appl., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/135824] [PMID: 25214825]
[17]
Attia, H.G.; Albarqi, H.A.; Said, I.G.; Alqahtani, O.; Raey, M.A.E.I. Synergistic effect between amoxicillin and zinc oxide nanoparticles reduced by oak gall extract against helicobacter pylori. Molecules, 2022, 27(14), 4559.
[http://dx.doi.org/10.3390/molecules27144559] [PMID: 35889432]
[18]
Naseer, M.; Ramadan, R.; Xing, J.; Samak, N.A. Facile green synthesis of copper oxide nanoparticles for the eradication of multidrug resistant Klebsiella pneumonia and Helicobacter pylori biofilms. Int. Biodeterior. Biodegradation, 2021, 159, 105201.
[http://dx.doi.org/10.1016/j.ibiod.2021.105201]
[19]
Saravanan, M.; Gopinath, V.; Chaurasia, M.K.; Syed, A.; Ameen, F.; Purushothaman, N. Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb. Pathog., 2018, 115, 57-63.
[http://dx.doi.org/10.1016/j.micpath.2017.12.039] [PMID: 29248514]
[20]
Jing, Z.W.; Jia, Y.Y.; Wan, N.; Luo, M.; Huan, M.L.; Kang, T.B.; Zhou, S.Y.; Zhang, B.L. Design and evaluation of novel pH-sensitive ureido-conjugated chitosan/TPP nanoparticles targeted to Helicobacter pylori. Biomaterials, 2016, 84, 276-285.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.045] [PMID: 26851392]
[21]
Saravanakumar, K.; Chelliah, R. MubarakAli, D.; Oh, D-H.; Kathiresan, K.; Wang, M-H. Unveiling the potentials of biocompatible silver nanoparticles on human lung carcinoma A549 cells and Helicobacter pylori. Sci. Rep., 2019, 9(1), 5787.
[http://dx.doi.org/10.1038/s41598-019-42112-1] [PMID: 30626917]
[22]
Cai, J.; Huang, H.; Song, W.; Hu, H.; Chen, J.; Zhang, L.; Li, P.; Wu, R.; Wu, C. Preparation and evaluation of lipid polymer nanoparticles for eradicating H. pylori biofilm and impairing antibacterial resistance in vitro. Int. J. Pharm., 2015, 495(2), 728-737.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.055] [PMID: 26417849]
[23]
Ramteke, S.; Jain, N.K. Clarithromycin- and omeprazole-containing gliadin nanoparticles for the treatment of Helicobacter pylori. J. Drug Target., 2008, 16(1), 65-72.
[http://dx.doi.org/10.1080/10611860701733278] [PMID: 18172822]
[24]
Arora, S.; Gupta, S.; Narang, R.K.; Budhiraja, R.D. Amoxicillin loaded chitosan-alginate polyelectrolyte complex nanoparticles as mucopenetrating delivery system for H. Pylori. Sci. Pharm., 2011, 79(3), 673-694.
[http://dx.doi.org/10.3797/scipharm.1011-05] [PMID: 21886911]
[25]
Pan-In, P.; Banlunara, W.; Chaichanawongsaroj, N.; Wanichwecharungruang, S. Ethyl cellulose nanoparticles: Clarithomycin encapsulation and eradication of H. pylori. Carbohydr. Polym., 2014, 109, 22-27.
[http://dx.doi.org/10.1016/j.carbpol.2014.03.025] [PMID: 24815396]
[26]
Khoshnood, S.; Negahdari, B.; Kaviar, V.H.; Sadeghifard, N.; Abdullah, M.A.; El-Shazly, M.; Haddadi, M.H. Amoxicillin-docosahexaenoic acid encapsulated chitosan-alginate nanoparticles as a delivery system with enhanced biocidal activities against Helicobacter pylori and improved ulcer healing. Front. Microbiol., 2023, 14, 1083330.
[http://dx.doi.org/10.3389/fmicb.2023.1083330] [PMID: 36846798]
[27]
Arif, M.; Ahmad, R.; Sharaf, M. Samreen, ; Muhammad, J.; Abdalla, M.; Eltayb, W.A.; Liu, C.G. Antibacterial and antibiofilm activity of mannose-modified chitosan/PMLA nanoparticles against multidrug-resistant Helicobacter pylori. Int. J. Biol. Macromol., 2022, 223(Pt A), 418-432.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.10.265] [PMID: 36356866]
[28]
Alam, J.; Dilnawaz, F.; Sahoo, S.; Singh, D.; Mukhopadhyay, A.; Hussain, T.; Pati, S. Curcumin encapsulated into biocompatible co-polymer PLGA nanoparticle enhanced anti-gastric cancer and anti-Helicobacter Pylori effect. Asian Pac. J. Cancer Prev., 2022, 23(1), 61-70.
[http://dx.doi.org/10.31557/APJCP.2022.23.1.61] [PMID: 35092372]
[29]
Sampath, G.; Govarthanan, M.; Krishnamurthy, S.; Nagarajan, P.; Rameshkumar, N.; Krishnan, M.; Nagarajan, K. Isolation and identification of metronidazole resistance Helicobacter pylori from gastric patients in the southeastern region of India and its advanced antibacterial treatment using biological silver oxide nanoparticles. Biochem. Eng. J., 2022, 187, 108445.
[http://dx.doi.org/10.1016/j.bej.2022.108445]
[30]
Sampath, G.; Shyu, D.J.H.; Rameshkumar, N.; Krishnan, M.; Sivasankar, P.; Kayalvizhi, N. Synthesis and characterization of pyrogallol capped silver nanoparticles and evaluation of their in vitro anti-bacterial, anti-cancer profile against AGS cells. J. Cluster Sci., 2021, 32(3), 549-557.
[http://dx.doi.org/10.1007/s10876-020-01813-8]
[31]
Yang, S.J.; Huang, C.H.; Yang, J.C.; Wang, C.H.; Shieh, M.J. Residence time-extended nanoparticles by magnetic field improve the eradication efficiency of Helicobacter pylori. ACS Appl. Mater. Interfaces, 2020, 12(49), 54316-54327.
[http://dx.doi.org/10.1021/acsami.0c13101] [PMID: 33236884]
[32]
Al-Bahrani, R.M.; Radif, H.M.; Albaayit, S. Evaluation of potent silver nanoparticles production from Agaricus bisporus against Helicobacter pylori. Pak. J. Agric. Sci., 2020, 57(4), 1197-1201.
[http://dx.doi.org/10.21162/PAKJAS/20.9893]
[33]
Yao, C.J.; Yang, S.J.; Huang, C.H.; Chang, Y.T.; Wang, C.H.; Shieh, M.J.; Young, T.H. Retention time extended by nanoparticles improves the eradication of highly antibiotic-resistant helicobacter pylori. Pharmaceutics, 2022, 14(10), 2117.
[http://dx.doi.org/10.3390/pharmaceutics14102117] [PMID: 36297552]
[34]
Gopalakrishnan, V.; Masanam, E.; Ramkumar, V.S.; Baskaraligam, V.; Selvaraj, G. Influence of N-acylhomoserine lactonase silver nanoparticles on the quorum sensing system of Helicobacter pylori: A potential strategy to combat biofilm formation. J. Basic Microbiol., 2020, 60(3), 207-215.
[http://dx.doi.org/10.1002/jobm.201900537] [PMID: 31960983]
[35]
Seabra, C.L.; Nunes, C.; Brás, M.; Gomez-Lazaro, M.; Reis, C.A.; Gonçalves, I.C.; Reis, S.; Martins, M.C.L. Lipid nanoparticles to counteract gastric infection without affecting gut microbiota. Eur. J. Pharm. Biopharm., 2018, 127, 378-386.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.030] [PMID: 29524597]
[36]
Yahya, R.; Al-Rajhi, A.M.H.; Alzaid, S.Z.; Al Abboud, M.A.; Almuhayawi, M.S.; Al Jaouni, S.K.; Selim, S.; Ismail, K.S.; Abdelghany, T.M. Molecular docking and efficacy of Aloe vera gel based on chitosan nanoparticles against Helicobacter pylori and its antioxidant and anti-inflammatory activities. Polymers , 2022, 14(15), 2994.
[http://dx.doi.org/10.3390/polym14152994] [PMID: 35893958]
[37]
Arif, M.; Sharaf, M. Samreen; Khan, S.; Chi, Z.; Liu, C.G. Chitosan-based nanoparticles as delivery-carrier for promising antimicrobial glycolipid biosurfactant to improve the eradication rate of Helicobacter pylori biofilm. J. Biomater. Sci. Polym. Ed., 2021, 32(6), 813-832.
[http://dx.doi.org/10.1080/09205063.2020.1870323] [PMID: 33428545]
[38]
Grande, R.; Sisto, F.; Puca, V.; Carradori, S.; Ronci, M.; Aceto, A.; Muraro, R.; Mincione, G.; Scotti, L. Antimicrobial and antibiofilm activities of new synthesized silver ultra-nanoclusters (SUNCs) against Helicobacter pylori. Front. Microbiol., 2020, 11, 1705.
[http://dx.doi.org/10.3389/fmicb.2020.01705] [PMID: 32849359]
[39]
Zhang, W.; Zhou, Y.; Fan, Y.; Cao, R.; Xu, Y.; Weng, Z.; Ye, J.; He, C.; Zhu, Y.; Wang, X. Metal–organic-framework-based hydrogen-release platform for multieffective Helicobacter pylori targeting therapy and intestinal flora protective capabilities. Adv. Mater., 2022, 34(2), 2105738.
[http://dx.doi.org/10.1002/adma.202105738] [PMID: 34655499]
[40]
Fateh, R.; Javadi, A.; Kardan-Yamch, J.; Ali Rahdar, H.; Amini, M.; Ghasemi, F.; Azimi, A.; Davarpanah, M.; Mohammadzadeh, R. Construction of metronidazole capped in gold nanoparticles against Helicobacter pylori: antimicrobial activity improvement. Folia Med., 2021, 63(2), 197-202.
[http://dx.doi.org/10.3897/folmed.63.e53479] [PMID: 33932009]
[41]
Al-Radadi, N.S. Microwave assisted green synthesis of Fe@Au core–shell NPs magnetic to enhance olive oil efficiency on eradication of Helicobacter pylori (life preserver). Arab. J. Chem., 2022, 15(5), 103685.
[http://dx.doi.org/10.1016/j.arabjc.2022.103685]
[42]
Umamaheshwari, R.B.; Ramteke, S.; Jain, N.K. Anti-Helicobacter pylori effect of mucoadhesive nanoparticles bearing amoxicillin in experimental gerbils model. AAPS PharmSciTech, 2004, 5(2), 60-68.
[http://dx.doi.org/10.1208/pt050232] [PMID: 15760090]
[43]
Umamaheshwari, R.B.; Jain, N.K. Receptor mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori. J. Drug Target., 2003, 11(7), 415-424.
[http://dx.doi.org/10.1080/10611860310001647771] [PMID: 15203930]
[44]
Fontana, G.; Licciardi, M.; Mansueto, S.; Schillaci, D.; Giammona, G. Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: Influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials, 2001, 22(21), 2857-2865.
[http://dx.doi.org/10.1016/S0142-9612(01)00030-8] [PMID: 11561891]
[45]
Cao, B.; Zhang, Y.; Liu, Z. Chitosan-DNA nanoparticles enhancing the immune response of Helicobacter pylori Lpp20 DNA vaccine following the mucosal immunization. Chin. J. Microbiol. Immunol., 2011, 2011(12), 140-145.
[46]
Chang, C.H.; Lin, Y.H.; Yeh, C.L.; Chen, Y.C.; Chiou, S.F.; Hsu, Y.M.; Chen, Y.S.; Wang, C.C. Nanoparticles incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of Helicobacter pylori. Biomacromolecules, 2010, 11(1), 133-142.
[http://dx.doi.org/10.1021/bm900985h] [PMID: 19924885]
[47]
Abd El-Moaty, H.I.; Ismail, E.H.; Abu-Khudir, R.; Soliman, N.A.; Sabry, D.Y.; Al Abdulsalam, N.K.; Sorour, W.A.; Khalil, M.M.H. Characterization and evaluation of multiple biological activities of phytosynthesized gold nanoparticles using aqueous extract of Euphorbia dendroides. Nanomater. Nanotechnol., 2022, 12.
[http://dx.doi.org/10.1177/18479804221141266]
[48]
Mohammed, N. In vitro study of antimicrobial activity of silver nanoparticles usage (Curcuma Longa L.) rhizomes against Helicobacter pylori. Plant Arch., 2019, 19(1), 1102-1106.
[49]
Nirmala Grace, A.; Pandian, K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles-A brief study. Colloids Surf. A Physicochem. Eng. Asp., 2007, 297(1-3), 63-70.
[http://dx.doi.org/10.1016/j.colsurfa.2006.10.024]
[50]
Xie, J.; Lee, S.; Chen, X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev., 2010, 62(11), 1064-1079.
[http://dx.doi.org/10.1016/j.addr.2010.07.009] [PMID: 20691229]
[51]
Weber, S.; Zimmer, A.; Pardeike, J. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: A review of the state of the art. Eur. J. Pharm. Biopharm., 2014, 86(1), 7-22.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.013] [PMID: 24007657]
[52]
Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges. OpenNano, 2022, 7, 100048.
[http://dx.doi.org/10.1016/j.onano.2022.100048]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy