Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

The Anti-hypoxia Potentials of Trans-sodium Crocetinate in Hypoxiarelated Diseases: A Review

Author(s): Natalia S. Klunko, Harun Achmad, Tamara Muayad Abdullah, Sami Mohammed, Indranil Saha, Khulood Saadoon Salim, Rasha Fadhel Obaid, Rosario Mireya Romero-Parra, Shaker Shanawa Al-Hasnawi, Wissam Hamid Al-Janabi and Bagher Farhood*

Volume 17, Issue 1, 2024

Published on: 24 October, 2023

Page: [30 - 37] Pages: 8

DOI: 10.2174/0118744710268127231020083505

Price: $65

Abstract

Crocetin is a kind of apocarotenoid carboxylic acid extracted from saffron (Crocus sativus L.), which is effective in upregulating tissue oxygenation. However, crocetin is difficult to solubilize. It was shown that the trans isomer of crocetin is effective in improving oxygen diffusivity, while its cis isomer appears not to be. Hence, the isolated trans isomer of crocetin or trans-sodium crocetinate (TSC) can be used instead of crocetin. It is shown that TSC can upregulate hypoxic tissue oxygenation and be effective in treating some hypoxia-related diseases. Moreover, experimental and clinical studies have reported no adverse effects following TSC treatment, even at high doses. The current study will discuss the potential role of TSC in hemorrhagic shock, ischemia, brain tumor radiotherapy, and others.

Graphical Abstract

[1]
Umigai, N.; Murakami, K.; Ulit, M.V.; Antonio, L.S.; Shirotori, M.; Morikawa, H.; Nakano, T. The pharmacokinetic profile of crocetin in healthy adult human volunteers after a single oral administration. Phytomedicine, 2011, 18(7), 575-578.
[http://dx.doi.org/10.1016/j.phymed.2010.10.019] [PMID: 21112749]
[2]
Gainer, J.L. Trans-sodium crocetinate, methods of making and methods of use thereof; Google Patents, 2000.
[3]
Shah, H.M.; Jain, A.S.; Joshi, S.V.; Kharkar, P.S. Crocetin and related oxygen DIFFUSION‐ENHANCING compounds: Review of chemical synthesis, pharmacology, clinical development, and novel therapeutic applications. Drug Dev. Res., 2021, 82(7), 883-895.
[http://dx.doi.org/10.1002/ddr.21814] [PMID: 33817811]
[4]
Gainer, J.L. Trans -sodium crocetinate for treating hypoxia/ischemia. Expert Opin. Investig. Drugs, 2008, 17(6), 917-924.
[http://dx.doi.org/10.1517/13543784.17.6.917] [PMID: 18491992]
[5]
Bergman, S. COVID-19 treatment: Investigational drugs and other therapies., 2021, 2021, 1-49.
[6]
Mertes, P.M.; Collange, O.; Coliat, P.; Banerjee, M.; Diringer, M.C.; Roche, A.; Delabranche, X.; Chaban, V.; Voegelin, M.; Bernard, A.; Sartori, V.; Laurent, N.; Velten, M.; Dhindsa, N.; Defuria, J.; Kim, G.; Xu, Z.H.; Theodorou, M.; Huang, Z.R.; Khalifa, K.; Geng, B.; Niyikiza, C.; Moyo, V.; Gizzi, P.; Villa, P.; Detappe, A.; Pivot, X. Liposomal encapsulation of trans-crocetin enhances oxygenation in patients with COVID-19-related ARDS receiving mechanical ventilation. J. Control. Release, 2021, 336, 252-261.
[http://dx.doi.org/10.1016/j.jconrel.2021.06.033] [PMID: 34175365]
[7]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2023 update. Nucleic Acids Res., 2023, 51(D1), D1373-D1380.
[http://dx.doi.org/10.1093/nar/gkac956] [PMID: 36305812]
[8]
Stennett, A.K.; Dempsey, G.L.; Gainer, J.L. trans-Sodium crocetinate and diffusion enhancement. J. Phys. Chem. B, 2006, 110(37), 18078-18080.
[http://dx.doi.org/10.1021/jp064308+] [PMID: 16970413]
[9]
Mohler, E.R., III; Gainer, J.L.; Whitten, K.; Eraso, L.H.; Thanaporn, P.K.; Bauer, T. Evaluation of trans sodium crocetinate on safety and exercise performance in patients with peripheral artery disease and intermittent claudication. Vasc. Med., 2011, 16(5), 346-353.
[http://dx.doi.org/10.1177/1358863X11422742] [PMID: 22003000]
[10]
Graham, K.; Unger, E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int. J. Nanomedicine, 2018, 13, 6049-6058.
[http://dx.doi.org/10.2147/IJN.S140462] [PMID: 30323592]
[11]
Harrison, L.; Blackwell, K. Hypoxia and anemia: Factors in decreased sensitivity to radiation therapy and chemotherapy? Oncologist, 2004, 9(S5)(Suppl. 5), 31-40.
[http://dx.doi.org/10.1634/theoncologist.9-90005-31] [PMID: 15591420]
[12]
Roy, J.W.; Graham, M.C.; Griffin, A.M.; Gainer, J.L. A novel fluid resuscitation therapy for hemorrhagic shock. Shock, 1998, 10(3), 213-217.
[http://dx.doi.org/10.1097/00024382-199809000-00010] [PMID: 9744650]
[13]
Giassi, L.J.; Gilchrist, M.J.; Graham, M.C.; Gainer, J.L. Trans-sodium crocetinate restores blood pressure, heart rate, and plasma lactate after hemorrhagic shock. J. Trauma, 2001, 51(5), 932-938.
[http://dx.doi.org/10.1097/00005373-200111000-00018] [PMID: 11706343]
[14]
Giassi, L.J.; Poynter, A.K.; Gainer, J.L. Trans sodium crocetinate for hemorrhagic shock: Effect of time delay in initiating therapy. Shock, 2002, 18(6), 585-588.
[http://dx.doi.org/10.1097/00024382-200212000-00017] [PMID: 12462570]
[15]
Stennett, A.K.; Gainer, J.L. TSC for hemorrhagic shock: Effects on cytokines and blood pressure. Shock, 2004, 22(6), 569-574.
[http://dx.doi.org/10.1097/01.shk.0000144133.21524.1e] [PMID: 15545830]
[16]
Stennett, A.K.; Murray, R.J.; Roy, J.W.; Gainer, J.L. Trans-sodium crocetinate and hemorrhagic shock. Shock, 2007, 28(3), 339-344.
[http://dx.doi.org/10.1097/shk.0b013e3180487b2d] [PMID: 17545940]
[17]
Wang, Y. Trans-sodium crocetinate improves outcomes in rodent models of occlusive and hemorrhagic stroke. Brain Res., 2014, 1583(3), 245-254.
[18]
Wang, Y.; Schretter, C.; Clarke, R.; Lee, K.S. Perihematomal cellular injury is reduced by trans-sodium crocetinate in a model of intracerebral hemorrhage. Mol. Neurobiol., 2015, 52(2), 985-989.
[http://dx.doi.org/10.1007/s12035-015-9245-8] [PMID: 26050085]
[19]
Lapchak, P.A. Efficacy and safety profile of the carotenoid trans sodium crocetinate administered to rabbits following multiple infarct ischemic strokes: A combination therapy study with tissue plasminogen activator. Brain Res., 2010, 1309, 136-145.
[http://dx.doi.org/10.1016/j.brainres.2009.10.067] [PMID: 19891959]
[20]
Manabe, H.; Okonkwo, D.O.; Gainer, J.L.; Clarke, R.H.; Lee, K.S. Protection against focal ischemic injury to the brain by trans-sodium crocetinate. J. Neurosurg., 2010, 113(4), 802-809.
[http://dx.doi.org/10.3171/2009.10.JNS09562] [PMID: 19961314]
[21]
Manabe, H.; Yoshimura, R.; Wang, Y. Metabolic reflow as a therapy for ischemic brain injury. Acta Neurochir. Suppl., 2011, 110(Pt 2), 87-91.
[22]
Deng, J.; Xiong, L.; Zuo, Z. Trans-sodium crocetinate provides neuroprotection against cerebral ischemia and reperfusion in obese mice. J. Neurosci. Res., 2015, 93(4), 615-622.
[http://dx.doi.org/10.1002/jnr.23522] [PMID: 25491171]
[23]
Chang, G.; Chen, Y.; Zhang, H.; Zhou, W. Trans sodium crocetinate alleviates ischemia/reperfusion-induced myocardial oxidative stress and apoptosis via the SIRT3/FOXO3a/SOD2 signaling pathway. Int. Immunopharmacol., 2019, 71, 361-371.
[http://dx.doi.org/10.1016/j.intimp.2019.03.056] [PMID: 30952100]
[24]
Sheehan, J.; Ionescu, A.; Pouratian, N.; Hamilton, D.K.; Schlesinger, D.; Oskouian, R.J., Jr; Sansur, C. Use of trans sodium crocetinate for sensitizing glioblastoma multiforme to radiation. J. Neurosurg., 2008, 108(5), 972-978.
[http://dx.doi.org/10.3171/JNS/2008/108/5/0972] [PMID: 18447715]
[25]
Sheehan, J.; Sherman, J.; Cifarelli, C.; Jagannathan, J.; Dassoulas, K.; Olson, C.; Rainey, J.; Han, S. Effect of trans sodium crocetinate on brain tumor oxgenation. J. Neurosurg., 2009, 111(2), 226-229.
[http://dx.doi.org/10.3171/2009.3.JNS081339] [PMID: 19326986]
[26]
Sheehan, J.; Cifarelli, C.P.; Dassoulas, K.; Olson, C.; Rainey, J.; Han, S. Trans-sodium crocetinate enhancing survival and glioma response on magnetic resonance imaging to radiation and temozolomide. J. Neurosurg., 2010, 113(2), 234-239.
[http://dx.doi.org/10.3171/2009.11.JNS091314] [PMID: 20001586]
[27]
Sheehan, J.P.; Popp, B.; Monteith, S.; Toulmin, S.; Tomlinson, J.; Martin, J.; Cifarelli, C.P.; Lee, D.H.; Park, D.M. Trans sodium crocetinate: Functional neuroimaging studies in a hypoxic brain tumor. J. Neurosurg., 2011, 115(4), 749-753.
[http://dx.doi.org/10.3171/2011.5.JNS101954] [PMID: 21682571]
[28]
Gainer, J.L.; Sheehan, J.P.; Larner, J.M.; Jones, D.R. Trans sodium crocetinate with temozolomide and radiation therapy for glioblastoma multiforme. J. Neurosurg., 2017, 126(2), 460-466.
[http://dx.doi.org/10.3171/2016.3.JNS152693] [PMID: 27177177]
[29]
Gainer, J.L.; Stennett, A.K.; Murray, R.J. The effect of trans sodium crocetinate (TSC) in a rat oleic acid model of acute lung injury. Pulm. Pharmacol. Ther., 2005, 18(3), 213-216.
[http://dx.doi.org/10.1016/j.pupt.2004.12.004] [PMID: 15707856]
[30]
Graham, M.C.; Gainer, J.L. Increasing oxygen consumption and survival with fluid resuscitation therapy for hemorrhagic shock in rats. Adv. Exp. Med. Biol., 1997, 428, 343-347.
[http://dx.doi.org/10.1007/978-1-4615-5399-1_48] [PMID: 9500068]
[31]
Institute of Medicine Committee on Fluid Resuscitation for Combat. Pope, A.; French, G.; Longnecker, D.E., Eds.Fluid Resuscitation: State of the Science for Treating Combat Casualties and Civilian Injuries; National Academies Press (US): Washington (DC), 1999.
[32]
Okonkwo, D.O.; Wagner, J.; Melon, D.E.; Alden, T.; Stone, J.R.; Helm, G.A.; Jane, J.A., Sr Trans-sodium crocetinate increases oxygen delivery to brain parenchyma in rats on oxygen supplementation. Neurosci. Lett., 2003, 352(2), 97-100.
[http://dx.doi.org/10.1016/j.neulet.2003.08.044] [PMID: 14625032]
[33]
Morgan, T.J.; Venkatesh, B.; Crerar-Gilbert, A.; Willgoss, D.; Endre, Z.H. Sodium crocetinate does not alter gut hypercapnic responses or renal energy stores during transient sub-diaphragmatic ischaemia. Intensive Care Med., 2003, 29(4), 652-654.
[http://dx.doi.org/10.1007/s00134-003-1641-2] [PMID: 12577154]
[34]
Singer, M.; Stidwill, R.P.; Nathan, A.; Gainer, J.L. Intravenous crocetinate prolongs survival in a rat model of lethal hypoxemia. Crit. Care Med., 2000, 28(6), 1968-1972.
[http://dx.doi.org/10.1097/00003246-200006000-00047] [PMID: 10890649]
[35]
Kemi, O.J.; Ellingsen, Ø. Trans‐sodium crocetinate does not affect oxygen uptake in rats during treadmill running. Scand. J. Clin. Lab. Invest., 2005, 65(7), 577-584.
[http://dx.doi.org/10.1080/00291950500228121] [PMID: 16271989]
[36]
Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[37]
Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol., 2007, 114(2), 97-109.
[http://dx.doi.org/10.1007/s00401-007-0243-4] [PMID: 17618441]
[38]
Arabzadeh, A.; Mortezazadeh, T.; Aryafar, T.; Gharepapagh, E.; Majdaeen, M.; Farhood, B. Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: A mechanistic review. Cancer Cell Int., 2021, 21(1), 391.
[http://dx.doi.org/10.1186/s12935-021-02099-0] [PMID: 34289841]
[39]
Holland, E.C. Glioblastoma multiforme: The terminator. Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6242-6244.
[http://dx.doi.org/10.1073/pnas.97.12.6242] [PMID: 10841526]
[40]
Maher, E.A.; Furnari, F.B.; Bachoo, R.M.; Rowitch, D.H.; Louis, D.N.; Cavenee, W.K.; DePinho, R.A. Malignant glioma: Genetics and biology of a grave matter. Genes Dev., 2001, 15(11), 1311-1333.
[http://dx.doi.org/10.1101/gad.891601] [PMID: 11390353]
[41]
Schwartzbaum, J.A. Epidemiology and molecular pathology of glioma. Nat. Clin. Pract. Neurol., 2006, 2(9), 494-503.
[http://dx.doi.org/10.1038/ncpneuro0289]
[42]
Agnihotri, S.; Burrell, K.E.; Wolf, A.; Jalali, S.; Hawkins, C.; Rutka, J.T.; Zadeh, G. Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch. Immunol. Ther. Exp. (Warsz.), 2013, 61(1), 25-41.
[http://dx.doi.org/10.1007/s00005-012-0203-0] [PMID: 23224339]
[43]
Roh, J. Im, M.; Kang, J.; Youn, B.; Kim, W. Long non-coding RNA in glioma: Novel genetic players in temozolomide resistance. Anim. Cells Syst., 2023, 27(1), 19-28.
[http://dx.doi.org/10.1080/19768354.2023.2175497] [PMID: 36819921]
[44]
Karimi, E.; Yu, M.W.; Maritan, S.M.; Perus, L.J.M.; Rezanejad, M.; Sorin, M.; Dankner, M.; Fallah, P.; Doré, S.; Zuo, D.; Fiset, B.; Kloosterman, D.J.; Ramsay, L.; Wei, Y.; Lam, S.; Alsajjan, R.; Watson, I.R.; Roldan Urgoiti, G.; Park, M.; Brandsma, D.; Senger, D.L.; Chan, J.A.; Akkari, L.; Petrecca, K.; Guiot, M.C.; Siegel, P.M.; Quail, D.F.; Walsh, L.A. Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature, 2023, 614(7948), 555-563.
[http://dx.doi.org/10.1038/s41586-022-05680-3] [PMID: 36725935]
[45]
Ostrom, Q.T.; Gittleman, H.; Liao, P.; Vecchione-Koval, T.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-oncol., 2017, 19(Suppl. 5), v1-v88.
[http://dx.doi.org/10.1093/neuonc/nox158] [PMID: 29117289]
[46]
Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, ShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pacific journal of cancer prevention. APJCP, 2017, 18(1), 3-9.
[PMID: 28239999]
[47]
Ohka, F.; Natsume, A.; Wakabayashi, T. Current trends in targeted therapies for glioblastoma multiforme. Neurol. Res. Int., 2012, 2012, 878425.
[http://dx.doi.org/10.1155/2012/878425]
[48]
Thakkar, J.P.; Dolecek, T.A.; Horbinski, C.; Ostrom, Q.T.; Lightner, D.D.; Barnholtz-Sloan, J.S.; Villano, J.L. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol. Biomarkers Prev., 2014, 23(10), 1985-1996.
[http://dx.doi.org/10.1158/1055-9965.EPI-14-0275] [PMID: 25053711]
[49]
Mrugala, M.M. Advances and challenges in the treatment of glioblastoma: A clinician’s perspective. Discov. Med., 2013, 15(83), 221-230.
[PMID: 23636139]
[50]
Kesari, S. Understanding glioblastoma tumor biology: The potential to improve current diagnosis and treatments. Semin. Oncol., 2011, 38(Suppl. 4), S2-S10.
[http://dx.doi.org/10.1053/j.seminoncol.2011.09.005]
[51]
Urso, K.; Fernández, A.; Velasco, P.; Cotrina, J.; de Andrés, B.; Sánchez-Gómez, P.; Hernández-Laín, A.; Hortelano, S.; Redondo, J.M.; Cano, E. NFATc3 controls tumour growth by regulating proliferation and migration of human astroglioma cells. Sci. Rep., 2019, 9(1), 9361.
[http://dx.doi.org/10.1038/s41598-019-45731-w] [PMID: 31249342]
[52]
Shabaninejad, Z.; Pourhanifeh, M.H.; Movahedpour, A.; Mottaghi, R.; Nickdasti, A.; Mortezapour, E.; Shafiee, A.; Hajighadimi, S.; Moradizarmehri, S.; Sadeghian, M.; Mousavi, S.M.; Mirzaei, H. Therapeutic potentials of curcumin in the treatment of glioblstoma. Eur. J. Med. Chem., 2020, 188, 112040.
[http://dx.doi.org/10.1016/j.ejmech.2020.112040] [PMID: 31927312]
[53]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[54]
Ford, E.C.; Terezakis, S. How safe is safe? Risk in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2010, 78(2), 321-322.
[http://dx.doi.org/10.1016/j.ijrobp.2010.04.047] [PMID: 20832662]
[55]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[56]
Mortezaee, K.; Parwaie, W.; Motevaseli, E.; Mirtavoos-Mahyari, H.; Musa, A.E.; Shabeeb, D.; Esmaely, F.; Najafi, M.; Farhood, B. Targets for improving tumor response to radiotherapy. Int. Immunopharmacol., 2019, 76, 105847.
[http://dx.doi.org/10.1016/j.intimp.2019.105847] [PMID: 31466051]
[57]
Bawaskar, H.S.; Bawaskar, P.H. Scorpion sting: Update. J. Assoc. Physicians India, 2012, 60, 46-55.
[PMID: 22715546]
[58]
Bagheri, H.; Rabie Mahdavi, S.; Shekarchi, B.; Manouchehri, F.; Farhood, B. Measurement of the contralateral breast photon and thermal neutron doses in breast cancer radiotherapy: A comparison between physical and dynamic wedges. Radiat. Prot. Dosimetry, 2018, 178(1), 73-81.
[http://dx.doi.org/10.1093/rpd/ncx076] [PMID: 28591863]
[59]
Moding, E.J.; Kastan, M.B.; Kirsch, D.G. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat. Rev. Drug Discov., 2013, 12(7), 526-542.
[http://dx.doi.org/10.1038/nrd4003] [PMID: 23812271]
[60]
Farhood, B. khodamoradi, E.; Hoseini-Ghahfarokhi, M.; Motevaseli, E.; Mirtavoos-Mahyari, H.; Eleojo Musa, A.; Najafi, M. TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacol. Res., 2020, 155, 104745.
[http://dx.doi.org/10.1016/j.phrs.2020.104745] [PMID: 32145401]
[61]
Najafi, M.; Farhood, B.; Mortezaee, K.; Kharazinejad, E.; Majidpoor, J.; Ahadi, R. Hypoxia in solid tumors: A key promoter of cancer stem cell (CSC) resistance. J. Cancer Res. Clin. Oncol., 2020, 146(1), 19-31.
[http://dx.doi.org/10.1007/s00432-019-03080-1] [PMID: 31734836]
[62]
Rankin, E.B.; Giaccia, A.J. Hypoxic control of metastasis. Science, 2016, 352(6282), 175-180.
[http://dx.doi.org/10.1126/science.aaf4405] [PMID: 27124451]
[63]
Chouaib, S.; Noman, M.Z.; Kosmatopoulos, K.; Curran, M.A. Hypoxic stress: Obstacles and opportunities for innovative immunotherapy of cancer. Oncogene, 2017, 36(4), 439-445.
[http://dx.doi.org/10.1038/onc.2016.225 ] [PMID: 27345407]
[64]
Wu, S.L.; Li, Y.J.; Liao, K.; Shi, L.; Zhang, N.; Liu, S.; Hu, Y.Y.; Li, S.L.; Wang, Y. 2-Methoxyestradiol inhibits the proliferation and migration and reduces the radioresistance of nasopharyngeal carcinoma CNE-2 stem cells via NF-κB/HIF-1 signaling pathway inactivation and EMT reversal. Oncol. Rep., 2017, 37(2), 793-802.
[http://dx.doi.org/10.3892/or.2016.5319 ] [PMID: 28000883]
[65]
Pollom, E.L. Gastrointestinal toxicities with combined antiangiogenic and stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 2015, 92(3), 568-576.
[http://dx.doi.org/10.1016/j.ijrobp.2015.02.016]
[66]
Kavanagh, B.D. 2010, Radiation dose–volume effects in the stomach and small bowel. Int. J. Radiat. Oncol. Biol. Phys., 2010, 76(3)(Suppl.), S101-S107.
[http://dx.doi.org/10.1016/j.ijrobp.2009.05.071]
[67]
Yahyapour, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Farhood, B.; Nouruzi, F.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin protects against radiation-induced heart injury and attenuates the upregulation of dual oxidase genes following rat’s chest irradiation. Int. J. Mol. Cell. Med., 2018, 7(3), 193-202.
[PMID: 31565651]
[68]
Khezerloo, D.; Mortezazadeh, T.; Farhood, B.; Sheikhzadeh, P.; Seyfizadeh, N.; Pezhman, L. The effect of date palm seed extract as a new potential radioprotector in gamma-irradiated mice. J. Cancer Res. Ther., 2019, 15(3), 517-521.
[http://dx.doi.org/10.4103/jcrt.JCRT_1341_16] [PMID: 31169213]
[69]
Aliasgharzadeh, A.; Farhood, B.; Amini, P.; Saffar, H.; Motevaseli, E.; Rezapoor, S.; Nouruzi, F.; Shabeeb, D.H.; Eleojo Musa, A.; Mohseni, M.; Moradi, H.; Najafi, M. Melatonin attenuates upregulation of Duox1 and Duox2 and protects against lung injury following chest irradiation in rats. Cell J., 2019, 21(3), 236-242.
[PMID: 31210428]
[70]
Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Saffar, H.; Motevaseli, E.; Rezapoor, S.; Nouruzi, F.; Shabeeb, D.; Eleojo Musa, A.; Ashabi, G.; Mohseni, M.; Moradi, H.; Najafi, M. Radiation-induced dual oxidase upregulation in rat heart tissues: Protective effect of melatonin. Medicina (Kaunas), 2019, 55(7), 317.
[http://dx.doi.org/10.3390/medicina55070317 ] [PMID: 31252673]
[71]
Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Rezaeyan, A.; Tavassoli, A.; Motevaseli, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Mitigation of radiation-induced lung pneumonitis and fibrosis using metformin and melatonin: A histopathological study. Medicina (Kaunas), 2019, 55(8), 417.
[http://dx.doi.org/10.3390/medicina55080417 ] [PMID: 31366142]
[72]
Amini, P. Resveratrol induces apoptosis and attenuates proliferation of MCF-7 cells in combination with radiation and hyperthermia. Curr. Mol. Med., 2021, 21(2), 142-150.
[PMID: 32436827]
[73]
Farhood, B. 2020, Mitigation of radiation-induced gastrointestinal system injury using resveratrol or alpha-lipoic acid: A pilot histopathological study. Antiinflamm. Antiallergy Agents Med. Chem., 2020, 19(4), 413-424.
[http://dx.doi.org/10.2174/1871523018666191111124028]
[74]
Nodooshan, S.J. Suberosin attenuates the proliferation of MCF-7 breast cancer cells in combination with radiotherapy or hyperthermia. Curr. Drug Res. Rev., 2020.
[PMID: 33371865]
[75]
Motallebzadeh, E.; Tameh, A.A.; Zavareh, S.A.T.; Farhood, B.; Aliasgharzedeh, A.; Mohseni, M. Neuroprotective effect of melatonin on radiation‐induced oxidative stress and apoptosis in the brainstem of rats. J. Cell. Physiol., 2020, 235(11), 8791-8798.
[http://dx.doi.org/10.1002/jcp.29722 ] [PMID: 32324264]
[76]
Sheikholeslami, S.; Khodaverdian, S.; Dorri-Giv, M.; Mohammad Hosseini, S.; Souri, S.; Abedi-Firouzjah, R.; Zamani, H.; Dastranj, L.; Farhood, B. The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: A systematic review. Int. Immunopharmacol., 2021, 96, 107741.
[http://dx.doi.org/10.1016/j.intimp.2021.107741] [PMID: 33989970]
[77]
Yang, Y.P.; Chang, Y.L.; Huang, P.I.; Chiou, G.Y.; Tseng, L.M.; Chiou, S.H.; Chen, M.H.; Chen, M.T.; Shih, Y.H.; Chang, C.H.; Hsu, C.C.; Ma, H.I.; Wang, C.T.; Tsai, L.L.; Yu, C.C.; Chang, C.J. Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis. J. Cell. Physiol., 2012, 227(3), 976-993.
[http://dx.doi.org/10.1002/jcp.22806 ] [PMID: 21503893]
[78]
Szejk, M.; Kołodziejczyk-Czepas, J.; Żbikowska, H.M. Radioprotectors in radiotherapy – advances in the potential application of phytochemicals. Postepy Hig. Med. Dosw., 2016, 70(0), 722-734.
[http://dx.doi.org/10.5604/17322693.1208039] [PMID: 27356603]
[79]
Wardman, P. Chemical radiosensitizers for use in radiotherapy. Clin. Oncol. (R. Coll. Radiol.), 2007, 19(6), 397-417.
[http://dx.doi.org/10.1016/j.clon.2007.03.010 ] [PMID: 17478086]
[80]
Spirou, S.; Basini, M.; Lascialfari, A.; Sangregorio, C.; Innocenti, C. Magnetic Hyperthermia and Radiation Therapy: Radiobiological Principles and Current Practice †. Nanomaterials (Basel), 2018, 8(6), 401.
[http://dx.doi.org/10.3390/nano8060401] [PMID: 29865277]
[81]
Eckert, F.; Zwirner, K.; Boeke, S.; Thorwarth, D.; Zips, D.; Huber, S.M. Rationale for combining radiotherapy and immune checkpoint inhibition for patients with hypoxic tumors. Front. Immunol., 2019, 10, 407.
[http://dx.doi.org/10.3389/fimmu.2019.00407] [PMID: 30930892]
[82]
Sharma, G.M. Hypoxia inducible factor-1α (HIF-1 α) and its role in tumour progression to malignancy. Online J. Health Allied Sci., 2008, 7(2), 6.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy