Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Application of the Static Headspace Method as a Tool for Rapid Control of Fennel Seed Tea Vapors

Author(s): Karim Assami*, Dalila Meziane-Assami, Zahia Ghouila, Riad Guerroudj and Lazhar Gacem

Volume 19, Issue 8, 2023

Published on: 24 October, 2023

Page: [613 - 620] Pages: 8

DOI: 10.2174/0115734110266351231020094820

Price: $65

Abstract

Background: In recent years, there have been tensions surrounding the accessibility of drugs at pharmacies. This situation has led people to turn to alternative medicine with increased use of plants as medicines. Nevertheless, a good knowledge of the plant's chemical composition is necessary for its proper use due to the presence of toxic products.

Objective: The research objectives are to expand a novel use of the static headspace technique to control the chemical composition of the vapor of fennel seed tea (Foeniculum vulgare Mill.) and also constitute an attempt to develop a targeted qualitative analytical method for quality control and safety assurance of a consumer product.

Methods: This study qualitatively investigated the amount of estragole in fennel herbal tea vapour by successful rehabilitation of the static headspace gas chromatography/mass spectrometry method. In addition, an analysis is conducted on the total phenolic and flavonoid content in both tea and methanol extract. Antioxidant activities of all extracts were measured and compared to Gallic acid.

Results: The fennel seed tea showed total phenolic and flavonoid contents at 187.7 ± 17.1 GAE/100 g and 133.8 ± 9.07 mg CE/100 g, respectively. Fennel seeds tea exhibited good DPPH anti-radical action with an IC50 of 92.38 ± 10.64 mg/g. Even though studies on the total phenols, flavonoid contents, and antioxidant activity of this herbal tea have all yielded positive outcomes, the application of the static headspace method combined with gas chromatography and mass spectrometry indicated the presence of estragole at 37.63 ± 3.77%. This compound was found at 80.67 ± 0.29% in the essential oil.

Conclusion: The application of this method has made it possible to reduce the handling time by eliminating the extraction step and solvent use. The presence of estragole at an alarming level makes it clear that employing plants as medicines must be regulated.

Graphical Abstract

[1]
van den Berg, S.J.P.L.; Alhusainy, W.; Restani, P.; Rietjens, I.M.C.M. Chemical analysis of estragole in fennel based teas and associated safety assessment using the Margin of Exposure (MOE) approach. Food Chem. Toxicol., 2014, 65, 147-154.
[http://dx.doi.org/10.1016/j.fct.2013.12.035] [PMID: 24384409]
[2]
Shahat, A.; Ibrahim, A.; Hendawy, S.; Omer, E.; Hammouda, F.; Abdel-Rahman, F.; Saleh, M. Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars. Molecules, 2011, 16(2), 1366-1377.
[http://dx.doi.org/10.3390/molecules16021366] [PMID: 21285921]
[3]
Ruberto, G.; Baratta, M.T.; Deans, S.G.; Dorman, H.J.D. Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Med., 2000, 66(8), 687-693.
[http://dx.doi.org/10.1055/s-2000-9773] [PMID: 11199122]
[4]
Rather, M.A.; Dar, B.A.; Sofi, S.N.; Bhat, B.A.; Qurishi, M.A. Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arab. J. Chem., 2016, 9(2), S1574-S1583.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.011]
[5]
Orhan, İ.E.; Özçeli̇k, B.; Kartal, M.; Kan, Y. Antimicrobial and antiviral effects of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components. Turk. J. Biol., 2012, 36(3), 239-246.
[http://dx.doi.org/10.3906/biy-0912-30]
[6]
García-Jiménez, N.; Péerez-Alonso, M.J.; Velasco-Negueruela, A. Chemical composition of Fennel Oil, Foeniculum vulgare Miller, from Spain. J. Essent. Oil Res., 2000, 12(2), 159-162.
[http://dx.doi.org/10.1080/10412905.2000.9699487]
[7]
Diao, W-R.; Hu, Q-P.; Zhang, H.; Xu, J.G. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control, 2014, 35(1), 109-116.
[http://dx.doi.org/10.1016/j.foodcont.2013.06.056]
[8]
Ben Abdesslem, S.; Boulares, M.; Elbaz, M.; Ben Moussa, O.; St-Gelais, A.; Hassouna, M.; Aider, M. Chemical composition and biological activities of fennel (Foeniculum vulgare Mill.) essential oils and ethanolic extracts of conventional and organic seeds. J. Food Process. Preserv., 2021, 45(1), e15034.
[http://dx.doi.org/10.1111/jfpp.15034]
[9]
Alam, P.; Abdel-Kader, M.S.; Alqarni, M.H.; Zaatout, H.H.; Ahamad, S.R.; Shakeel, F. Chemical composition of fennel seed extract and determination of fenchone in commercial formulations by GC–MS method. J. Food Sci. Technol., 2019, 56(5), 2395-2403.
[http://dx.doi.org/10.1007/s13197-019-03695-9] [PMID: 31168122]
[10]
Afifi, S.M.; El-Mahis, A.; Heiss, A.G.; Farag, M.A. Gas chromatography–mass spectrometry-based classification of 12 Fennel (Foeniculum vulgare Miller) varieties based on their aroma profiles and estragole levels as analyzed using chemometric tools. ACS Omega, 2021, 6(8), 5775-5785.
[http://dx.doi.org/10.1021/acsomega.0c06188] [PMID: 33681616]
[11]
Anwar, F.; Ali, M.; Hussain, A.I.; Shahid, M. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare Mill.) seeds from Pakistan. Flavour Fragr. J., 2009, 24(4), 170-176.
[http://dx.doi.org/10.1002/ffj.1929]
[12]
Yadav, S.S.; Sangwan, P.; Ganie, S.A.; Gulia, S.S. Studies on free radical Scavenging activity and total phenolic content of Foeniculum vulgare Mill. Res. J. Pharm. Technol., 2020, 13(7), 3394-3398.
[http://dx.doi.org/10.5958/0974-360X.2020.00603.4]
[13]
Dua, A.; Garg, G.; Mahajan, R. Polyphenols, flavonoids and antimicrobial properties of methanolic extract of fennel (Foeniculum vulgare Miller). Eur. J. Exp. Biol., 2013, 3(4), 203-208.
[14]
Ghorbani, M.; Aboonajmi, M.; Ghorbani, J.M.; Arabhosseini, A. Effect of ultrasound extraction conditions on yield and antioxidant properties of the fennel seed (foeniculum vulgare) extract. Int. J. Food Sci. Technol., 2017, 14(67), 63-73.
[15]
Akhtar, I.; Javad, S.; Ansari, M.; Ghaffar, N.; Tariq, A. Process optimization for microwave assisted extraction of Foeniculum vulgare Mill using response surface methodology. J. King Saud Univ. Sci., 2020, 32(2), 1451-1458.
[http://dx.doi.org/10.1016/j.jksus.2019.11.041]
[16]
Ribeiro, D.B.; Santos Silva, G.; dos Santos, D.R.; Castro Costa, A.R.; Braga Ribeiro, E.; Badea, M.; Nunes, G.S. Determination of the antioxidant activity of samples of tea and commercial sources of vitamin C, using an enzymatic biosensor. Antioxidants, 2021, 10(2), 324.
[http://dx.doi.org/10.3390/antiox10020324] [PMID: 33671686]
[17]
Cavalli, J.F.; Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A.M. Comparison of static headspace, headspace solid phase microextraction, headspace sorptive extraction, and direct thermal desorption techniques on chemical composition of French olive oils. J. Agric. Food Chem., 2003, 51(26), 7709-7716.
[http://dx.doi.org/10.1021/jf034834n] [PMID: 14664533]
[18]
Schubert, J.; Luch, A.; Schulz, T.G. Waterpipe smoking: Analysis of the aroma profile of flavored waterpipe tobaccos. Talanta, 2013, 115, 665-674.
[http://dx.doi.org/10.1016/j.talanta.2013.06.022] [PMID: 24054646]
[19]
Zhang, W.; Liang, X. Headspace gas chromatography-mass spectrometry for volatile components analysis in Ipomoea Cairica (L.) Sweet leaves: Natural deep eutectic solvents as green extraction and dilution matrix. Foods, 2019, 8(6), 205.
[http://dx.doi.org/10.3390/foods8060205] [PMID: 31212696]
[20]
Shapira, A.; Berman, P.; Futoran, K.; Guberman, O.; Meiri, D. Tandem mass spectrometric quantification of 93 terpenoids in Cannabis using static headspace injections. Anal. Chem., 2019, 91(17), 11425-11432.
[http://dx.doi.org/10.1021/acs.analchem.9b02844] [PMID: 31369251]
[21]
Krill, C.; Rochfort, S.; Spangenberg, G. A high-throughput method for the comprehensive analysis of terpenes and terpenoids in medicinal cannabis biomass. Metabolites, 2020, 10(7), 276.
[http://dx.doi.org/10.3390/metabo10070276] [PMID: 32640707]
[22]
Shinde, A.; Ormond, R.B. Development of a headpsace sampling gas chromatography-mass spectrometry method for the anlaysis of fireground contaminants on firefighter turnout materials. J. Chem. Health Saf., 2020, 27(6), 352-361.
[http://dx.doi.org/10.1021/acs.chas.0c00041]
[23]
Giovanini de Oliveira Sartori, A.; Papa Spada, F.; Pena Ribeiro, V.; Rosalen, P.L.; Ikegaki, M.; Kenupp Bastos, J.; de Alencar, S.M. An insight into the botanical origins of propolis from permanent preservation and reforestation areas of southern Brazil. Sci. Rep., 2021, 11(1), 22043.
[http://dx.doi.org/10.1038/s41598-021-01709-1] [PMID: 34764418]
[24]
Jang, M.; Yang, H.; Shin, G.; Koo, J-M.; Hwang, S.; Park, J.; Oh, D. Determination of methanol in commercialized alcohol-based hand sanitizing and other similar products using headspace GC-MS. Curr. Anal. Chem., 2022, 18, 774-780.
[http://dx.doi.org/10.2174/1573411018666220107145321]
[25]
Clevenger, J.F. Apparatus for the determination of volatile oil. J. Am. Pharm. Assoc., 1928, 17(4), 345-349.
[http://dx.doi.org/10.1002/jps.3080170407]
[26]
Assami, K.; Pingret, D.; Chemat, S.; Meklati, B.Y.; Chemat, F. Ultrasound induced intensification and selective extraction of essential oil from Carum carvi L. seeds. Chem. Eng. Process., 2012, 62, 99-105.
[http://dx.doi.org/10.1016/j.cep.2012.09.003]
[27]
Adams, R.P. Identification of Essential Oil Components by Gas Chromatography, Quadrupole Mass Spectroscopy; Allured Pub Corporation: Carol Stream, IL, 2001.
[28]
Lapornik, B.; Prošek, M.; Golc Wondra, A. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng., 2005, 71(2), 214-222.
[http://dx.doi.org/10.1016/j.jfoodeng.2004.10.036]
[29]
Mellouk, H.; Meullemiestre, A.; Maache-Rezzoug, Z.; Bejjani, B.; Dani, A.; Rezzoug, S.A. Valorization of industrial wastes from French maritime pine bark by solvent free microwave extraction of volatiles. J. Clean. Prod., 2016, 112(5), 4398-4405.
[http://dx.doi.org/10.1016/j.jclepro.2015.06.129]
[30]
Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999, 64(4), 555-559.
[http://dx.doi.org/10.1016/S0308-8146(98)00102-2]
[31]
Meziane-Assami, D.; Ghouila, Z.; Assami, K.; Meklati, B.Y.; Chemat, F. The deep impacting microwave irradiation on the quality and antioxidant capacity of rosemary essential oils obtained by solvent-free microwave extraction. J. Essent. Oil Res., 2022, 34(1), 12-20.
[http://dx.doi.org/10.1080/10412905.2021.2008028]
[32]
Khammassi, M.; Loupassaki, S.; Tazarki, H.; Mezni, F.; Slama, A.; Tlili, N.; Zaouali, Y.; Mighri, H.; Jamoussi, B.; Khaldi, A. Variation in essential oil composition and biological activities of Foeniculum vulgare Mill. populations growing widely in Tunisia. J. Food Biochem., 2018, 42(3), e12532.
[http://dx.doi.org/10.1111/jfbc.12532]
[33]
Ahmed, A.F.; Shi, M.; Liu, C.; Kang, W. Comparative analysis of antioxidant activities of essential oils and extracts of fennel (Foeniculum vulgare Mill.) seeds from Egypt and China. Food Sci. Hum. Wellness, 2019, 8(1), 67-72.
[http://dx.doi.org/10.1016/j.fshw.2019.03.004]
[34]
Bedini, S.; Bougherra, H.H.; Flamini, G.; Cosci, F.; Belhamel, K.; Ascrizzi, R.; Conti, B. Repellency of anethole- and estragole-type fennel essential oils against stored grain pests: the different twins. Bull. Insectol., 2016, 69(1), 149-157.
[35]
Piccaglia, R.; Marotti, M. Characterization of some Italian types of wild fennel (Foeniculum vulgare Mill.). J. Agric. Food Chem., 2001, 49(1), 239-244.
[http://dx.doi.org/10.1021/jf000636+] [PMID: 11170583]
[36]
Hartwig, A.; Arand, M.; Epe, B.; Guth, S.; Jahnke, G.; Lampen, A.; Martus, H.J.; Monien, B.; Rietjens, I.M.C.M.; Schmitz-Spanke, S.; Schriever-Schwemmer, G.; Steinberg, P.; Eisenbrand, G. Mode of action-based risk assessment of genotoxic carcinogens. Arch. Toxicol., 2020, 94(6), 1787-1877.
[http://dx.doi.org/10.1007/s00204-020-02733-2] [PMID: 32542409]
[37]
Anthony, A.; Caldwell, J.; Hutt, A.J.; Smith, R.L. Metabolism of estragole in rat and mouse and influence of dose size on excretion of the proximate carcinogen 1′-hydroxyestragole. Food Chem. Toxicol., 1987, 25(11), 799-806.
[http://dx.doi.org/10.1016/0278-6915(87)90257-2] [PMID: 3121480]
[38]
McDonald, T.A. Evidence on the carcinogenicity of estragole; Reproductive and Cancer Hazard Assessment Section Office of Environmental Health Hazard Assessment California Environmental Protection Agency: Sacramento, California, USA , 1999. ,Available from: https://books.google.dz/books?id=ETi5tgAACAAJ
[39]
Von Rechemberg, C. Theory of the extraction and separation of essential oils through distillation, self-published by Schimel, Miltiz beiï; Leipzing, 1910.
[40]
Koedam, A.; Scheffer, J.J.C.; Baerheim Svendsen, A. Monoterpenes in the volatile leaf oil of Abies. times. arnoldiana Nitz. J. Agric. Food Chem., 1980, 28(4), 862-866.
[http://dx.doi.org/10.1021/jf60230a023]
[41]
Cvetanović, A.; Švarc-Gajić, J.; Zeković, Z.; Mašković, P.; Đurović, S.; Zengin, G.; Delerue-Matos, C.; Lozano-Sánchez, J.; Jakšić, A. Chemical and biological insights on aronia stems extracts obtained by different extraction techniques: From wastes to functional products. J. Supercrit. Fluids, 2017, 128, 173-181.
[http://dx.doi.org/10.1016/j.supflu.2017.05.023]
[42]
Onyebuchi, C.; Kavaz, D. Effect of extraction temperature and solvent type on the bioactive potential of Ocimum gratissimum L. extracts. Sci. Rep., 2020, 10(1), 21760.
[http://dx.doi.org/10.1038/s41598-020-78847-5] [PMID: 33303935]
[43]
Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci., 2007, 30(18), 3268-3295.
[http://dx.doi.org/10.1002/jssc.200700261] [PMID: 18069740]
[44]
Christova-Bagdassarian, V.L.; Bagdassarian, K.S.; Atanassova, M.S.; Ahmad, M.A. Comparative analysis of total phenolic and total flavonoid contents, rutin, tannins and antioxidant capacity in apiaceae and lamiaceae families. Indian J. Hortic., 2014, 4(3/4), 131-140.
[45]
Barakat, H.; Alkabeer, I.A.; Aljutaily, T.; Almujaydil, M.S.; Algheshairy, R.M.; Alhomaid, R.M.; Almutairi, A.S.; Mohamed, A. Phenolics and volatile compounds of fennel (Foeniculum vulgare) seeds and their sprouts prevent oxidative DNA damage and ameliorates CCl4-induced hepatotoxicity and oxidative stress in rats. Antioxidants, 2022, 11(12), 2318.
[http://dx.doi.org/10.3390/antiox11122318] [PMID: 36552526]
[46]
Ahmed, A.F.; He, N.; Xia, Z.Y.; Kang, W.Y. Total phenolic and flavoniod content and antioxidant properties of Nigella sativa L. seeds. Curr. Top. Nutraceutical Res., 2018, 16(2), 147-154.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy