Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

An Improved Amperometric D-amino Acid Biosensor Based on Immobilization of D-Amino Acid Oxidase on Nanocomposite of Chitosan/Fe3O4NPs/ cMWCNT/GC Electrode

Author(s): Chandra Shekhar Pundir*, Suman Lata, Bhawna Batra and Jyoti Ahlawat

Volume 19, Issue 8, 2023

Published on: 03 November, 2023

Page: [621 - 631] Pages: 11

DOI: 10.2174/1573411018666220819100617

Price: $65

conference banner
Abstract

Objective: An improved amperometric D aminoacid (DAA) biosensor was fabricated by immobilizing covalently, D-amino acid oxidase (DAAO) onto nanocomposite of chitosan (CHIT)/ iron oxide nanoparticles (Fe3O4NPs)/ carboxylated multiwalled carbon nanotubes (cMWCNT)/ electrodeposited onto glassy carbon (GC) electrode.

Methods: The iron oxide nanoparticles (Fe3O4NPs) were prepared and characterized by UV spectroscopy, transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy.

Results: The enzyme electrode (DAAO/CHIT/ Fe3O4NPs/cMWCNT/GC) was characterized by scanning electron microscopy (SEM), FTIR and electrochemical impedance spectroscopy (EIS). The biosensor showed maximum response within 2s at pH 8.0, 35°C and potential of 0.09V vs. Ag/AgCl with a linear working range of 0.02-0.80 μM, sensitivity of 919.29 μAcm-2μM-1 and detection limit of 0.02 μM.

Conclusion: The within and between batch coefficients of variation (CVs) for determination of DAA by present biosensor were 2.35% and 2.87%, respectively. The level of DAA in real fruit juices as measured by the present biosensor matched with those by the standard spectrophotometric method with a good correlation (r = 0.978). The biosensor lost 30 % of its initial activity over a period of 120 days when stored dry at 4°C.

Keywords: D-amino acid, D-amino acid oxidase, D-amino acid biosensor, Glassy carbon electrode, Iron oxide nanoparticles, Chitosan, cMWCNT, ruit juices

« Previous
Graphical Abstract

[1]
Friedman, M. Chemistry, nutrition, and microbiology of D-amino acids. J. Agric. Food Chem., 1999, 47(9), 3457-3479.
[http://dx.doi.org/10.1021/jf990080u] [PMID: 10552672]
[2]
Tomlinson, C.; Rafii, M.; Ball, R.O.; Pencharz, P. The significance of d-isomers in stable isotope studies in humans is dependent on the age of the subject and the amino acid tracer. Metabolism, 2010, 59(1), 14-19.
[http://dx.doi.org/10.1016/j.metabol.2009.06.024] [PMID: 19709694]
[3]
Gandolfi, I.; Palla, G.; Marchelli, R.; Dossena, A.; Puelli, S.; Salvadori, C. D‐Alanine in fruit juices: A molecular marker of bacterial activity, heat treatments and shelf‐life. J. Food Sci., 1994, 59(1), 152-154.
[http://dx.doi.org/10.1111/j.1365-2621.1994.tb06921.x]
[4]
Friedman, M. Origin, microbiology, nutrition, and pharmacology of D-amino acids. Chem. Biodivers., 2010, 7(6), 1491-1530.
[http://dx.doi.org/10.1002/cbdv.200900225] [PMID: 20564567]
[5]
Hamase, K.; Morikawa, A.; Ohgusu, T.; Lindner, W.; Zaitsu, K. Comprehensive analysis of branched aliphatic D-amino acids in mammals using an integrated multi-loop two-dimensional column-switching high-performance liquid chromatographic system combining reversed-phase and enantioselective columns. J. Chromatogr. A, 2007, 1143(1-2), 105-111.
[http://dx.doi.org/10.1016/j.chroma.2006.12.078] [PMID: 17223114]
[6]
Carlavilla, D.; Moreno-Arribas, M.V.; Fanali, S.; Cifuentes, A. Chiral MEKC-LIF of amino acids in foods: Analysis of vinegars. Electrophoresis, 2006, 27(13), 2551-2557.
[http://dx.doi.org/10.1002/elps.200500909] [PMID: 16732620]
[7]
Huang, Y.; Shi, M.; Zhao, S. Quantification of D-Asp and D-Glu in rat brain and human cerebrospinal fluid by microchip electrophoresis. J. Sep. Sci., 2009, 32(17), 3001-3006.
[http://dx.doi.org/10.1002/jssc.200900026] [PMID: 19642099]
[8]
Pätzold, R.; Brückner, H. Gas chromatographic determination and mechanism of formation of D-amino acids occurring in fermented and roasted cocoa beans, cocoa powder, chocolate and cocoa shell. Amino Acids, 2006, 31(1), 63-72.
[http://dx.doi.org/10.1007/s00726-006-0330-1] [PMID: 16733618]
[9]
Sarkar, P.; Tothill, I.E.; Setford, S.J.; Turner, A.P.F. Screen-printed amperometric biosensors for the rapid measurement of L- and D-amino acids. Analyst (Lond.), 1999, 124(6), 865-870.
[http://dx.doi.org/10.1039/a901404g] [PMID: 10736871]
[10]
Li, B.X.; Zhang, Z. Chemiluminescence flow biosensor for determination of total D-amino acid in serum with immobilized reagents. Sens. Actuators B Chem., 2000, 69(1-2), 70-74.
[http://dx.doi.org/10.1016/S0925-4005(00)00405-6]
[11]
Domínguez, R.; Serra, B.; Reviejo, A.J.; Pingarrón, J.M. Chiral analysis of amino acids using electrochemical composite bienzyme biosensors. Anal. Biochem., 2001, 298(2), 275-282.
[http://dx.doi.org/10.1006/abio.2001.5371] [PMID: 11700983]
[12]
Inaba, Y.; Mizukami, K.; Hamada-Sato, N.; Kobayashi, T.; Imada, C.; Watanabe, E. Development of a D-alanine sensor for the monitoring of a fermentation using the improved selectivity by the combination of D-amino acid oxidase and pyruvate oxidase. Biosens. Bioelectron., 2003, 19(5), 423-431.
[http://dx.doi.org/10.1016/S0956-5663(03)00200-8] [PMID: 14623466]
[13]
Zhang, G.; Liu, D.; Shuang, S.; Martin, M.F. A homocysteine biosensor with eggshell membrane as an enzyme immobilization platform. Sens. Actuators B Chem., 2006, 114(2), 936-942.
[http://dx.doi.org/10.1016/j.snb.2005.08.011]
[14]
Wcisło, M.; Compagnone, D.; Trojanowicz, M. Enantioselective screen-printed amperometric biosensor for the determination of D-amino acids. Bioelectrochemistry, 2007, 71(1), 91-98.
[http://dx.doi.org/10.1016/j.bioelechem.2006.09.001] [PMID: 17071143]
[15]
Rosini, E.; Molla, G.; Rossetti, C.; Pilone, M.S.; Pollegioni, L.; Sacchi, S. A biosensor for all D-amino acids using evolved D-amino acid oxidase. J. Biotechnol., 2008, 135(4), 377-384.
[http://dx.doi.org/10.1016/j.jbiotec.2008.06.001] [PMID: 18588925]
[16]
Lata, S.; Pundir, C.S. Fabrication of an amperometric D-amino acid biosensor based on nickel hexacyanoferrate polypyrrole hybrid film deposited on glassy carbon electrode. Bioprocess Biosyst. Eng., 2013, 36(1), 81-89.
[http://dx.doi.org/10.1007/s00449-012-0763-8] [PMID: 22767396]
[17]
Lata, S.; Batra, B.; Kumar, P.; Pundir, C.S. Constuction of an amperometric D-amino acid biosensor based on D-amino acid oxidase/cMWCNT/CuNPs/Polyaniline/gold electrode. Anal. Biochem., 2013, 437, 1-9.
[http://dx.doi.org/10.1016/j.ab.2013.01.030] [PMID: 23399389]
[18]
Dave, S.R.; Gao, X. Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: A versatile and evolving technology. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(6), 583-609.
[http://dx.doi.org/10.1002/wnan.51] [PMID: 20049819]
[19]
Mohapatra, M.; Anand, S. Synthesis and applications of nano-structured iron oxides/hydroxides-a review. Int. J. Eng. Sci. Technol., 2010, 2, 127-146.
[20]
Guo, S.; Li, D.; Zhang, L.; Li, J.; Wang, E. Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials, 2009, 30(10), 1881-1889.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.042] [PMID: 19135248]
[21]
Zhou, Q.; Xie, Q.; Fu, Y.; Su, Z.; Jia, X.; Yao, S. Electrodeposition of carbon nanotubes-chitosan-glucose oxidase biosensing composite films triggered by reduction of p-benzoquinone or H2O2. J. Phys. Chem. B, 2007, 111(38), 11276-11284.
[http://dx.doi.org/10.1021/jp073884i] [PMID: 17803301]
[22]
López-León, T.; Carvalho, E.L.S.; Seijo, B.; Ortega-Vinuesa, J.L.; Bastos-González, D. Physicochemical characterization of chitosan nanoparticles: Electrokinetic and stability behavior. J. Colloid Interface Sci., 2005, 283(2), 344-351.
[http://dx.doi.org/10.1016/j.jcis.2004.08.186] [PMID: 15721903]
[23]
Jacobs, C.B.; Peairs, M.J.; Venton, B.J.; Venton, J. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta, 2010, 662(2), 105-127.
[http://dx.doi.org/10.1016/j.aca.2010.01.009] [PMID: 20171310]
[24]
Rahman, M.M.; Umar, A.; Sawada, K. Development of amperometric glucose biosensor based on glucose oxidase co-immobilized with multi-walled carbon nanotubes at low potential. Sens. Act. Biol. Chem., 2009, 137, 327-333.
[25]
Wei, C.; Srivastava, D.; Cho, K. Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett., 2002, 2(6), 647-650.
[http://dx.doi.org/10.1021/nl025554]
[26]
Shoja, Y.; Rafati, A.A.; Ghodsi, J. Enzymatic biosensor based on entrapment of d-amino acid oxidase on gold nanofilm/MWCNTs nanocomposite modified glassy carbon electrode by sol-gel network: Analytical applications for d-alanine in human serum. Enz. Microb. Tech., 2017, 100, 20-27.
[http://dx.doi.org/10.1016/j.enzmictec.2017.02.001] [PMID: 28284308]
[27]
Batra, B.; Lata, S.; Pundir, C.S. Constrcuction of an improved acrylamide biosensor based on haemoglobin immobilized onto cMWCNT/Fe3O4NPs/CHIT composite film. Bioprocess Biosyst. Eng., 2013, 36, 1591-1599.
[http://dx.doi.org/10.1007/s00449-013-0931-5] [PMID: 23494399]
[28]
Nassar, N.; Husein, M. Preparation of iron oxide nanoparticles from FeCl3 solid powder using microemulsions. Phys. Status Solidi., A Appl. Mater. Sci., 2006, 203(6), 1324-1328.
[http://dx.doi.org/10.1002/pssa.200566154]
[29]
Kaushik, A.; Khan, R.; Solanki, P.R.; Pandey, P.; Alam, J.; Ahmad, S.; Malhotra, B.D. Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens. Bioelectron., 2008, 24(4), 676-683.
[http://dx.doi.org/10.1016/j.bios.2008.06.032] [PMID: 18692384]
[30]
Mahdavi, M.; Ahmad, M.B.; Haron, M.J.; Namvar, F.; Nadi, B.; Rahman, M.Z.A.; Amin, J. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 2013, 18(7), 7533-7548.
[http://dx.doi.org/10.3390/molecules18077533] [PMID: 23807578]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy