Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Therapeutic Potential and Pharmacological Activities of (+)-Nantenine in Medicine: An Aporphine Class Phytocomponent of Nandina domestica Thunberg

Author(s): Dinesh Kumar Patel* and Kanika Patel

Volume 24, Issue 1, 2024

Published on: 20 October, 2023

Article ID: e201023222495 Pages: 8

DOI: 10.2174/0118715265244269231010090316

Price: $65

conference banner
Abstract

Plant material and their derived byproducts have been used in medicine for the treatment of human disorders and complications. Plants give us a distinct class of natural compounds, commonly called secondary metabolites and better examples are the flavonoids, phenols, terpenoids, alkaloids, tannins, and carotenoids. Plant derived phytoproducts have been used for the treatment of human disorders in both traditional as well as modern medicine. Naturally occurring aporphines and their synthetic derivatives are well known in medicine for their pharmacological activities, including an affinity for dopaminergic, adrenergic and serotonergic receptors. (+)-nantenine is an aporphine alkaloid isolated from Nandina domestica and other plants.

The aim of the present study is to analyze the biological potential and therapeutic effectiveness of nantenine in medicine. In the present work scientific information of nantenine for their medicinal uses and pharmacological activities have been collected from scientific databases such as Google, Google Scholar, PubMed, Scopus, and Science Direct . Scientific information of nantenine was further analyzed to know their health beneficial aspects in medicine. However, the detail pharmacological activity of nantenine has been discussed in the present work with its analytical aspects.

Scientific data analysis described the medicinal importance and pharmacological activities of nantenine. Nantenine revealed adrenergic response, behavioral response, cardiovascular effect, vasorelaxant effect, acetylcholinesterase inhibitory potential, cytotoxicity, and biphasic tracheal relaxation. Present work also signified the biological potential of nantenine for their anti-inflammatory activity, anticonvulsant effect, antiserotonergic activities, anti-MDMA effect, antileishmanial activity, effect on histamine and serotonin, human 5-hydroxytryptamine (5-HT(2A)) and h5-HT(2B) receptors and isolated tissues. Further, the analytical techniques used for the separation, isolation and identification of nantenine have also been described in this work. The present scientific data describes the therapeutic potential and pharmacological activities of (+)-nantenine in medicine.

Graphical Abstract

[1]
Wang, F; Wang, B; Wang, L; Xiong, Z-Y; Gao, W; Li, P. Discovery of discriminatory quality control markers for Chinese herbal medicines and related processed products by combination of chromatographic analysis and chemometrics methods: Radix Scutellariae as a case study. J. Pharm. Biomed. Anal., 2017, 138, 70-79.
[2]
Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[3]
Izzo, A.A. Interactions between herbs and conventional drugs: Overview of the clinical data. Med. Princ. Pract., 2012.
[4]
Patel, K.; Patel, D.K. Health Benefits of Avicularin in the Medicine Against Cancerous Disorders and other Complications: Biological Importance, Therapeutic Benefit and Analytical Aspects. Curr. Cancer Ther. Rev., 2022, 18, 41-50.
[5]
Patel, K.; Husain, G.M.; Katiyar, D.K.; Prasad, S.K.; Patel, D.K. Sophoricoside: Bioactive Compounds from Sophora japonica, their Role in Disease Prevention and Treatment. Curr. Tradit. Med., 2021, 7, 180-188.
[6]
Skalicka-Woźniak, K.; Georgiev, M.I.; Orhan, I.E. Adulteration of herbal sexual enhancers and slimmers: The wish for better sexual well-being and perfect body can be risky. Food Chem. Toxicol., 2017, 108, 355-364.
[7]
Khazdair, M.R.; Gholamnezhad, Z.; Rezaee, R.; Boskabady, M.H. Immuno-modulatory and anti-inflammatory effects of Thymus vulgaris, Zataria multiflora, and Portulaca oleracea and their constituents. Pharmacol Res -. Zhongguo Xiandai Zhongyao, 2021, 1, 100010
[8]
Zhu, J.; Zhang, Z.; Wang, R.; Huang, X.; Zhou, Y.; Zhang, K. Nanoparticles derived from Scutellaria barbata and Hedytois diffusa herb pair and their anti-cancer activity. Pharmacol Res -. Zhongguo Xiandai Zhongyao, 2022, 2, 100048
[9]
Li, S.; Wu, D.; Lv, G.; Zhao, J. Carbohydrates analysis in herbal glycomics. TrAC Trends Anal Chem, 2013, 52, 155-169.
[10]
Nkwocha, C.C.; Ogugofor, M.O.; Chukwuma, I.F.; Njoku, O.U. Identification and characterization of phytochemicals and constituents in Desmodium velutinum stem using high-performance liquid chromatography (HPLC). Pharmacol Res -. Zhongguo Xiandai Zhongyao, 2022, 3, 100090
[11]
Osifo, M.; Ihim, S.A.; Ani, N.; Nworu, C.S.; Akah, P. Wound healing and anti-inflammatory activities of Ceiba pentendra (l.) Gaertn. Pharmacol Res -. Zhongguo Xiandai Zhongyao, 2022, 3, 100077
[12]
Patel, D.K.; Patel, K. Therapeutic Importance and Pharmacological Activities of Karanjin in the Medicine for the Treatment of Human Disorders: A Review through Scientific Data Analysis. Curr. Drug Ther., 2022.
[13]
Patel, K.; Patel, D.K. Health Beneficial Potential of Pectolinarigenin on Human Diseases: An Updated Review of Medicinal Importance and Pharmacological Activity. Nat. Prod. J., 2021, 11, 3-12.
[14]
Thongkhao, K.; Prombutara, P.; Phadungcharoen, T.; Wiwatcharakornkul, W.; Tungphatthong, C.; Sukrong, M. Integrative approaches for unmasking hidden species in herbal dietary supplement products: What is in the capsule? J. Food Compos. Anal., 2020, 93, 103616
[15]
Iwara, I.A.; Mboso, E.O.; Eteng, O.E.; Elot, K.N.; Igile, G.O.; Ebong, P.E. Peristrophe bicalyculata extract and quercetin ameliorate high fat diet- streptozotocin-induced type ii diabetes in Wistar rats. Pharmacol Res -. Zhongguo Xiandai Zhongyao, 2022, 2, 100060
[16]
Wijayagunawardane, M.P.B.; Wijerathne, C.U.B.; Herath, C.B. Indigenous Herbal Recipes for Treatment of Liver Cirrhosis. Procedia Chem., 2015, 14, 270-276.
[17]
Cranz, H.; Anquez-Traxler, C. TradReg 2013: Regulation of herbal and traditional medicinal products – European and global strategies – International symposium. J. Ethnopharmacol., 2014, 158, 495-497.
[18]
Feng, X.; Nie, L.; He, Q.; Yu, S.; Yao, S. Making natural products as magnetic particles and fluids: A simple strategy based on ferromagnetic organic compounds with the structural nucleus of isoquinoline alkaloids. J. Mol. Liq., 2019, 296, 111852
[19]
Luo, T; Li, Z; Deng, X-M; Jiang, K; Liu, D; Zhang, H-H Isolation, synthesis and bioactivity evaluation of isoquinoline alkaloids from Corydalis hendersonii Hemsl. against gastric cancer in vitro and in vivo. Bioorg. Med. Chem., 2022, 60, 116705
[20]
Patel, K.; Gadewar, M.; Tripathi, R.; Prasad, S.K.; Patel, D.K. A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid “ Harmine. Asian Pac. J. Trop. Biomed., 2012, 2, 660-664.
[21]
Plazas, E.; Avila, M.M.C.; Muñoz, D.R.; Cuca, S.L.E. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases. Pharmacol. Res., 2022, 177, 106126
[22]
Zhou, S.; Huang, G.; Chen, G. Synthesis and anti-tumor activity of marine alkaloids. Bioorg. Med. Chem. Lett., 2021, 41, 128009
[23]
Patel, K.; Laloo, D.; Singh, G.K.; Gadewar, M.; Patel, D.K. A review on medicinal uses, analytical techniques and pharmacological activities of Strychnos nux-vomica Linn.: A concise report. Chin. J. Integr. Med., 2017, 1-13.
[24]
Rajput, A.; Sharma, R.; Bharti, R. Pharmacological activities and toxicities of alkaloids on human health. Mater. Today Proc., 2022, 48, 1407-1415.
[25]
Khodajou-Masouleh, H.; Mashhadi Akbar Boojar, M.; Khavari-Nejad, S.; Karimi, G. Induction of apoptosis by Oleracein A and Oleracein B in HepG2 cancerous cells is mediated by ceramide generation, caspase-9/caspase-3 pathway activation, and oxidative damage. Pharmacol Res -. Zhongguo Xiandai Zhongyao, 2022, 2, 100047
[26]
Salminen, K.A.; Meyer, A.; Jerabkova, L.; Korhonen, L.E.; Rahnasto, M.; Juvonen, R.O. Inhibition of human drug metabolizing cytochrome P450 enzymes by plant isoquinoline alkaloids. Phytomedicine, 2011, 18, 533-538.
[27]
Kapadia, N.; Harding, W.W. C4 phenyl aporphines with selective h5-HT2B receptor affinity. Bioorg. Med. Chem. Lett., 2015, 25, 3451-3454.
[28]
Pecic, S.; McAnuff, M.A.; Harding, W.W. Nantenine as an acetylcholinesterase inhibitor: SAR, enzyme kinetics and molecular modeling investigations. J. Enzyme Inhib. Med. Chem., 2011, 26, 46-55.
[29]
Karki, A.; Juarez, R.; Namballa, H.K.; Alberts, I.; Harding, W.W. Identification of C10 nitrogen-containing aporphines with dopamine D1 versus D5 receptor selectivity. Bioorg. Med. Chem. Lett., 2020, 30, 127053
[30]
Pecic, S.; Makkar, P.; Chaudhary, S.; Reddy, B.V.; Navarro, H.A.; Harding, W.W. Affinity of aporphines for the human 5-HT2A receptor: Insights from homology modeling and molecular docking studies. Bioorg. Med. Chem., 2010, 18, 5562-5575.
[31]
Ponnala, S.; Kapadia, N.; Madapa, S.; Alberts, I.L.; Harding, W.W. Synthesis and evaluation of aporphine analogs containing C1 allyl isosteres at the h5-HT2A receptor. Bioorg. Med. Chem. Lett., 2015, 25, 5102-5106.
[32]
Chaudhary, S.; Pecic, S.; LeGendre, O.; Harding, W.W. Microwave-assisted direct biaryl coupling: first application to the synthesis of aporphines. Tetrahedron Lett., 2009, 50, 2437-2439.
[33]
Indra, B.; Tadano, T.; Nakagawasai, O.; Arai, Y.; Yasuhara, H.; Ohizumi, Y. Suppressive effect of nantenine, isolated from Nandina domestica Thunberg. on the 5-hydroxy-L-tryptophan plus clorgyline-induced head-twitch response in mice. Life Sci., 2002, 70, 2647-2656.
[34]
Shoji, N.; Umeyama, A.; Takemoto, T.; Ohizumi, Y. Serotonergic Receptor Antagonist from Nandina domestica Thunberg. J. Pharm. Sci., 1984, 73, 568-570.
[35]
Ribeiro, R.D.A.; Garcez do Carmo, L.; Vladimirova, I.; Jurkiewicz, N.H.; Jurkiewicz, A. Nantenine blocks muscle contraction and Ca2+ transient induced by noradrenaline and K+ in rat vas deferens. Eur. J. Pharmacol., 2003, 470, 37-43.
[36]
Tsuchida, H.; Ohizumi, Y. (+)-Nantenine isolated from Nandina domestica Thunb. inhibits adrenergic pressor responses in pithed rats. Eur. J. Pharmacol., 2003, 477, 53-58.
[37]
Kaur, J.; Famta, P.; Famta, M.; Mehta, M.; Satija, S.; Sharma, N. Potential anti-epileptic phytoconstituents: An updated review. J. Ethnopharmacol., 2021, 268, 113565
[38]
Ribeiro, R de A. Rodríguez de Lores Arnaiz G. Nantenine and papaverine differentially modify synaptosomal membrane enzymes. Phytomedicine, 2000, 7, 313-323.
[39]
de A. Ribeiro R;Rodríguez de Lores Arnaiz G. In vitro dose dependent inverse effect of nantenine on synaptosomal membrane K+-p-NPPase activity. Phytomedicine, 2001, 8, 107-111.
[40]
Ribeiro, R.A.; Leite, J.R. Nantenine alkaloid presents anticonvulsant effect on two classical animal models. Phytomedicine, 2003, 10, 563-568.
[41]
Fantegrossi, WE; Kiessel, CL; Leach, PT; Martin, C; Van; Karabenick, RL; Chen, X Nantenine: an antagonist of the behavioral and physiological effects of MDMA in mice. Psychopharmacology (Berl.), 2004, 173, 270-277.
[42]
Kapadia, N; Harding, W. Aporphine Alkaloids as Ligands for Serotonin Receptors., 2016.
[43]
Hussain, G.; Rasul, A.; Anwar, H.; Aziz, N.; Razzaq, A.; Wei, W. Role of Plant Derived Alkaloids and Their Mechanism in Neurodegenerative Disorders. Int. J. Biol. Sci., 2018, 14, 341-357.
[44]
Chen, J.; Gao, K.; Liu, T.; Zhao, H.; Wang, J.; Wu, H. Aporphine Alkaloids: A Kind of Alkaloids’ Extract Source, Chemical Constitution and Pharmacological Actions in Different Botany. Asian J. Chem., 2013, 25, 10015-10027.
[45]
Indra, B.; Matsunaga, K.; Hoshino, O.; Suzuki, M.; Ogasawara, H.; Ohizumi, Y. Structure–activity relationship studies with (±)-nantenine derivatives for α1-adrenoceptor antagonist activity. Eur. J. Pharmacol., 2002, 437, 173-178.
[46]
Chaudhary, S.; Pecic, S.; LeGendre, O.; Navarro, H.A.; Harding, W.W. (±)-Nantenine analogs as antagonists at human 5-HT2A receptors: C1 and flexible congeners. Bioorg. Med. Chem. Lett., 2009, 19, 2530-2532.
[47]
Ponnala, S.; Kapadia, N.; Navarro, H.A.; Harding, W.W. Aporphinoid Antagonists of 5-HT 2A Receptors: Further Evaluation of Ring A Substituents and the Size of Ring C. Chem. Biol. Drug Des., 2014, 84, 558-566.
[48]
Chaudhary, S.; Ponnala, S.; LeGendre, O.; Gonzales, J.A.; Navarro, H.A.; Harding, W.W. New aporphinoid 5-HT2A and α1A antagonists via structural manipulations of nantenine. Bioorg. Med. Chem., 2011, 19, 5861-5868.
[49]
Ponnala, S.; Gonzales, J.; Kapadia, N.; Navarro, H.A.; Harding, W.W. Evaluation of structural effects on 5-HT2A receptor antagonism by aporphines: Identification of a new aporphine with 5-HT2A antagonist activity. Bioorg. Med. Chem. Lett., 2014, 24, 1664-1667.
[50]
Philipov, S.; Ivanovska, N.; Istatkova, R.; Velikova, M.; Tuleva, P. Phytochemical study and cytotoxic activity of alkaloids from Uvaria chamae P. Beauv. Pharmazie, 2000, 55, 688-689.
[51]
Qin, J; Zhang, S-Y; Zhang, Y-B; Chen, L-F; Chen, N-H; Wu, Z-N Two new isoquinoline alkaloids from the seeds of Nandina domestica. Nat. Prod. Res., 2021, 35, 3254-3260.
[52]
Sun, R.; Jiang, H.; Zhang, W.; Yang, K.; Wang, C.; Fan, L. Cytotoxicity of Aporphine, Protoberberine, and Protopine Alkaloids from Dicranostigma leptopodum (Maxim.) Fedde. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-6.
[53]
Ponnala, S.; Chaudhary, S.; González-Sarrias, A.; Seeram, N.P.; Harding, W.W. Cytotoxicity of aporphines in human colon cancer cell lines HCT-116 and Caco-2: An SAR study. Bioorg. Med. Chem. Lett., 2011, 21, 4462-4464.
[54]
Orallo, F. Acute Cardiovascular Effects of (+)-Nantenine, an Alkaloid Isolated from Platycapnos spicata, in Anaesthetised Normotensive Rats. Planta Med., 2004, 70, 117-126.
[55]
Ueki, T.; Akaishi, T.; Okumura, H.; Abe, K. Extract from Nandina domestica Inhibits Lipopolysaccharide-Induced Cyclooxygenase-2 Expression in Human Pulmonary Epithelial A549 Cells. Biol. Pharm. Bull., 2012, 35, 1041-1047.
[56]
Orallo, F.; Alzueta, A.F. Preliminary Study of the Vasorelaxant Effects of (+)-Nantenine, an Alkaloid Isolated from Platycapnos spicata, in Rat Aorta. Planta Med., 2001, 67, 800-806.
[57]
Indra, B.; Matsunaga, K.; Hoshino, O.; Suzuki, M.; Ogasawara, H.; Ishiguro, M. Structure–activity relationship on (±)-nantenine derivatives in antiserotonergic activities in rat aorta. Can. J. Physiol. Pharmacol., 2002, 80, 198-204.
[58]
LeGendre, O.; Pecic, S.; Chaudhary, S.; Zimmerman, S.M.; Fantegrossi, W.E.; Harding, W.W. Synthetic studies and pharmacological evaluations on the MDMA (‘Ecstasy’) antagonist nantenine. Bioorg. Med. Chem. Lett., 2010, 20, 628-631.
[59]
Ueki, T.; Akaishi, T.; Okumura, H.; Morioka, T.; Abe, K. Biphasic Tracheal Relaxation Induced by Higenamine and Nantenine From Nandina domestica THUNBERG. J. Pharmacol. Sci., 2011, 115, 254-257.
[60]
Orallo, F. Pharmacological Effects of (+)-Nantenine, an Alkaloid Isolated From Platycapnos spicata, in Several Rat Isolated Tissues. Planta Med., 2003, 69, 135-142.
[61]
Tsukiyama, M.; Akaishi, T.; Ueki, T.; Okumura, H.; Abe, K. The Extract from Nandina domestica THUNBERG Inhibits Histamine- and Serotonin-Induced Contraction in Isolated Guinea Pig Trachea. Biol. Pharm. Bull., 2007, 30, 2063-2068.
[62]
Correa, J; Ríos, C; del Rosario Castillo, A; Romero, L; Ortega-Barría, E; Coley, P Minor Alkaloids From Guatteria dumetorum with Antileishmanial Activity. Planta Med., 2006, 72, 270-272.
[63]
Kiryakov, H.; Iskrenova, E.; Kuzmanov, B.; Evstatieva, L. Alkaloids from Corydalis bulbosa. Planta Med., 1981, 43, 51-55.
[64]
Kiryakov, H.; Iskrenova, E.; Daskalova, E.; Kuzmanov, B.; Evstatieva, L. Alkaloids of Corydalis slivenensis. Planta Med., 1982, 44, 168-170.
[65]
Peng, C-Y.; Liu, J-Q.; Zhang, R.; Shu, J-C. A new alkaloid from the fruit of Nandina domestica Thunb. Nat. Prod. Res., 2014, 28, 1159-1164.
[66]
Kiryakov, H.; Iskrenova, E.; Kuzmanov, B.; Evstatieva, L. Alkaloids from Corydalis marschalliana. Planta Med., 1981, 41, 298-302.
[67]
Lall, N.; Kishore, N.; Bodiba, D.; More, G.; Tshikalange, E.; Kikuchi, H. Alkaloids from aerial parts of Annona senegalensis against Streptococcus mutans. Nat. Prod. Res., 2017, 31, 1944-1947.
[68]
Iwasa, K.; Takahashi, T.; Nishiyama, Y.; Moriyasu, M.; Sugiura, M.; Takeuchi, A. Online Structural Elucidation of Alkaloids and Other Constituents in Crude Extracts and Cultured Cells of Nandina domestica by Combination of LC-MS/MS, LC-NMR, and LC-CD Analyses. J. Nat. Prod., 2008, 71, 1376-1385.
[69]
Hu, T.; Zhang, X.; Ma, S.; Cheng, Y.; Yao, X. Zhongguo Zhongyao Zazhi, 2009, 34, 1917-1920. [Chemical constituents from Corydalis yanhusuo
[70]
Singh, S.; Pathak, N.; Fatima, E.; Negi, A.S. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur. J. Med. Chem., 2021, 226, 113839
[71]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Kumar Patel, D. Health Benefits of Furanocoumarins ‘Psoralidin’ An Active Phytochemical of Psoralea corylifolia: The Present, Past and Future Scenario. Curr. Bioact. Compd., 2019, 15, 369-376.
[72]
Patel, K.; Singh, G.K.; Patel, D.K. A Review on Pharmacological and Analytical Aspects of Naringenin. Chin. J. Integr. Med., 2018, 24, 551-560.
[73]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2017, 7, 360-366.
[74]
Patel, D.K.; Patel, K. Potential therapeutic applications of Eudesmin in medicine: An overview on Medicinal importance, Pharmacological Activities and analytical prospects. Pharmacol Res -. Zhongguo Xiandai Zhongyao, 2022, 100175.
[75]
Patel, D.K. Biological Importance, Therapeutic Benefit, and Medicinal Importance of Flavonoid, Cirsiliol for the Development of Remedies against Human Disorders. Curr. Bioact. Compd., 2022, 18.
[76]
Alyami, H.S.; Orabi, M.A.A.; Aldhabbah, F.M.; Alturki, H.N.; Aburas, W.I.; Alfayez, A.I. Knowledge about COVID-19 and beliefs about and use of herbal products during the COVID-19 pandemic: A cross-sectional study in Saudi Arabia. Saudi Pharm. J., 2020, 28, 1326-1332.
[77]
Jung, J.; Hermanns-Clausen, M.; Weinmann, W. Anorectic sibutramine detected in a Chinese herbal drug for weight loss. Forensic Sci. Int., 2006, 161, 221-222.
[78]
Patel, D.K. Biological Importance, Therapeutic Benefit and Analytical Aspects of Bioactive Flavonoid Pectolinarin in the Nature. Drug Metab. Lett., 2021, 14, 117-125.
[79]
Patel, D.K. Biological Importance of a Biflavonoid ‘Bilobetin’ in the Medicine: Medicinal Importance, Pharmacological Activities and Analytical Aspects. Infect. Disord. Drug Targets, 2022, 22.
[80]
WU X-M;XU J-Y. Current natural products with antihypertensive activity. Chin. J. Nat. Med., 2015, 13, 721-729.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy