Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Research Article

Antidiabetic Activity and HPTLC Analysis of a Classical Indian Herbomineral Formulation – Vidangadilouham

Author(s): Monojit Debnath, Moulisha Biswas Roy, Debdip Sarkar, Payel Ghosh Chowdhury, Ayan Goswami, Asis Bala and Pallab Kanti Haldar*

Volume 1, 2023

Published on: 20 October, 2023

Article ID: e2210299X256240 Pages: 8

DOI: 10.2174/012210299X256240231019071837

Price: $

Abstract

Background: Vidangalilouham (VDL) is an Ayurveda classical Indian herbomineral preparation prescribed for its effective antidiabetic activity. Among the official formulations of Ayurveda, five different compositions are available by the same name. The particular composition used in this study is only marketed but has yet to be evaluated.

Aim and Objective: The study aimed to assess and validate the antihyperglycemic activity of VDL in high-fat and low-dose streptozotocin (STZ)-induced diabetic animal models.

Methods: High-fat diet-induced animal model of hyperglycemia was generated by a single intraperitoneal injection of STZ (35 mg/kg body weight) into the rats fed with high fat for the previous 30 days. Seven days after STZ induction, the hyperglycemic rats were treated with VDL orally at 100 and 200 mg/kg body weight daily for 28 days. The fasting blood glucose levels (FBG) were measured every 7th day during the 28 days of treatment. The glycosylated hemoglobin levels, liver and serum biochemical parameters, and histopathological findings were estimated and compared.

Results and Discussion: VDL-treated animals significantly exhibited reduced FBG levels compared to the diabetic control group. The lipid peroxidation and antioxidant enzyme levels, such as CAT, GSH, and SOD, in the VDL-treated groups, were restored toward normal levels compared to diabetic control groups, and the values were comparable with the standard group (metformin). The critical diabetic marker, i.e., glycosylated hemoglobin levels were significantly (*p<0.05) decreased when treated with VDL.

Conclusion: Improvement in the FBG and the restoration of all other biomarkers observed in this study indicate VDL to have excellent antidiabetic activity with meager side effects, and thus, the findings provide a scientific rationale for its use as an antidiabetic agent.

[1]
Jaiswal, Y.S.; Williams, L.L. A glimpse of Ayurveda – The forgotten history and principles of Indian traditional medicine. J. Tradit. Complement. Med., 2017, 7(1), 50-53.
[http://dx.doi.org/10.1016/j.jtcme.2016.02.002] [PMID: 28053888]
[2]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules, 2016, 21(5), 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[3]
Debnath, M.; Paul, N.; Bhattacharya, S.; Biswas, M.; Haldar, P.K. Formulation and assessment of microbial and heavy metal contents of Vidangadilouham: A classical Ayurvedic formulation. Int. J. Herb. Med., 2020, 8(4), 101-102.
[4]
Nile, S.H.; Park, S.W. HPTLC Analysis, Antioxidant and Antigout Activity of Indian Plants. Iran. J. Pharm. Res., 2014, 13(2), 531-539.
[PMID: 25237348]
[5]
Haldar, P.K.; Chakraborty, M.; Bala, A.; Bhattacharya, S. Hypoglycemic effect of ethyl acetate fraction of methanol extract from Campylandra aurantiaca rhizome on high-fat diet and low-dose streptozotocin-induced diabetic rats. Pharmacogn. Mag., 2018, 14(59), 539-545.
[http://dx.doi.org/10.4103/pm.pm_194_17]
[6]
Haldar, P.K.; Patra, S.; Bhattacharya, S.; Bala, A. Antidiabetic effect of Drymaria cordata leaf against streptozotocin–nicotinamide-induced diabetic albino rats. J. Adv. Pharm. Technol. Res., 2020, 11(1), 44-52.
[http://dx.doi.org/10.4103/japtr.JAPTR_98_19] [PMID: 32154158]
[7]
Naskar, S.; Mazumder, U.K.; Pramanik, G.; Gupta, M.; Suresh Kumar, R.B.; Bala, A.; Islam, A. Evaluation of antihyperglycemic activity of Cocos nucifera Linn. on streptozotocin induced type 2 diabetic rats. J. Ethnopharmacol., 2011, 138(3), 769-773.
[http://dx.doi.org/10.1016/j.jep.2011.10.021] [PMID: 22041106]
[8]
Stott, N.L.; Marino, J.S. High Fat Rodent Models of Type 2 Diabetes: From Rodent to Human. Nutrients, 2020, 12(12), 3650.
[http://dx.doi.org/10.3390/nu12123650] [PMID: 33261000]
[9]
Yan, L-J.; Wu, J. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab. Syndr. Obes., 2015, 8, 181-188.
[http://dx.doi.org/10.2147/DMSO.S82272] [PMID: 25897251]
[10]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[11]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[12]
Suryawanshi, N.P.; Bhutey, A.K.; Nagdeote, A.N.; Jadhav, A.A.; Manoorkar, G.S. Study of lipid peroxide and lipid profile in diabetes mellitus. Indian J. Clin. Biochem., 2006, 21(1), 126-130.
[http://dx.doi.org/10.1007/BF02913080] [PMID: 23105583]
[13]
Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev., 2014, 2014, 1-31.
[http://dx.doi.org/10.1155/2014/360438] [PMID: 24999379]
[14]
Dolai, N.; Karmakar, I.; Kumar, R.B.; Bala, A.; Mazumder, U.K.; Haldar, P.K. Antitumor potential of Castanopsis indica (Roxb. ex Lindl.) A. DC. leaf extract against Ehrlich’s ascites carcinoma cell. Indian J. Exp. Biol., 2012, 50(5), 359-365.
[PMID: 22803326]
[15]
Ramesh, B.; Karuna, R.; Sreenivasa, R.S.; Haritha, K.; Sai, M.D.; Sasis, B.R.B.; Saralakumari, D. Effect of Commiphora mukul gum resin on hepatic marker enzymes, lipid peroxidation and antioxidants status in pancreas and heart of streptozotocin induced diabetic rats. Asian Pac. J. Trop. Biomed., 2012, 2(11), 895-900.
[http://dx.doi.org/10.1016/S2221-1691(12)60249-4] [PMID: 23569867]
[16]
Bala, A.; Haldar, P.K.; Kar, B.; Naskar, S.; Saha, P.; Kundusen, S. Antioxidant activity of the fractions of cleome gynandra promotes antitumor activity in ehrlich ascites carcinoma. Asian J. Chem., 2011, 23(11), 5055-5060.
[17]
Qin, Y.; Chen, J.P.; Li, C.Y.; Zhu, L.J.; Zhang, X.; Wang, J.H.; Yao, X.S. Flavonoid glycosides from the fruits of Embelia ribes and their anti-oxidant and α -glucosidase inhibitory activities. J. Asian Nat. Prod. Res., 2021, 23(8), 724-730.
[http://dx.doi.org/10.1080/10286020.2020.1776266] [PMID: 34253100]
[18]
Rambaran, N.; Naidoo, Y.; Mohamed, F.; Chenia, H.Y.; Baijnath, H. Antibacterial and anti-quorum sensing activities of the different solvent extracts of Embelia ruminata. S. Afr. J. Bot., 2022, 151, 996-1007.
[http://dx.doi.org/10.1016/j.sajb.2022.11.014]
[19]
Muthuraman, A.; Sood, S.; Singla, S.K. The antiinflammatory potential of phenolic compounds from Emblica officinalis L. in rat. Inflammopharmacology, 2011, 19(6), 327-334.
[http://dx.doi.org/10.1007/s10787-010-0041-9] [PMID: 20596897]
[20]
Saha, S.; Verma, R.J. Antioxidant activity of polyphenolic extract of Terminalia chebula Retzius fruits. J. Taibah Univ. Sci, 2016, 10(6), 805-812.
[http://dx.doi.org/10.1016/j.jtusci.2014.09.003]
[21]
Gupta, Ashutosh; Kumar, Ramesh; Bhattacharyya, Piyali; Bishayee, Anupam; Pandey, Abhay K. Terminalia bellirica (Gaertn.) roxb. (Bahera) in health and disease: A systematic and comprehensive review. Phytomedicine, 2020, 77, 153278.
[http://dx.doi.org/10.1016/j.phymed.2020.153278]
[22]
Topcagic, A.; Cavar Zeljkovic, S.; Karalija, E.; Galijasevic, S.; Sofic, E. Evaluation of phenolic profile, enzyme inhibitory and antimicrobial activities of Nigella sativa L. seed extracts. Bosn. J. Basic Med. Sci., 2017, 17(4), 286-294.
[http://dx.doi.org/10.17305/bjbms.2017.2049] [PMID: 28590231]
[23]
Kang, N.; Yuan, R.; Huang, L.; Liu, Z.; Huang, D.; Huang, L.; Gao, H.; Liu, Y.; Xu, Q.M.; Yang, S. Atypical Nitrogen-Containing Flavonoid in the Fruits of Cumin ( Cuminum cyminum L.) with Anti-inflammatory Activity. J. Agric. Food Chem., 2019, 67(30), 8339-8347.
[http://dx.doi.org/10.1021/acs.jafc.9b02879] [PMID: 31291543]
[24]
Ali, AMA.; El-Nour, MEM; Yagi, SM Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. J Genet Eng Biotechnol., 2018, 16(2), 677-682.
[http://dx.doi.org/10.1016/j.jgeb.2018.03.003]
[25]
Karigar, C.S.; Kamala, A.; Middha, S.K.; Gopinath, C.; Sindhura, H.S. In vitro antioxidant potentials of Cyperus rotundus L. rhizome extracts and their phytochemical analysis. Pharmacogn. Mag., 2018, 14(54), 261-267.
[http://dx.doi.org/10.4103/pm.pm_228_17] [PMID: 29720842]
[26]
Ahmad, A; Husain, A; Mujeeb, M; Khan, SA; Hani, A.A.A.; Bhandari, A. Quantification of total phenol, flavonoid content and pharmacognostical evaluation including HPTLC fingerprinting for the standardization of Piper nigrum Linn fruits. Asian Pac. J. Trop. Biomed, 2015, 5(2), 101-107.
[http://dx.doi.org/10.1016/S2221-1691(15)30152-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy