Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Research-based Analytical Procedures to Evaluate Diabetic Biomarkers and Related Parameters: In Vitro and In Vivo Methods

Author(s): Nadeem Rais*, Akash Ved, Rizwan Ahmad and Aashna Parveen

Volume 20, Issue 6, 2024

Published on: 20 October, 2023

Article ID: e201023222417 Pages: 16

DOI: 10.2174/0115733998252495231011182012

Price: $65

Abstract

Background: The degenerative tendency of diabetes leads to micro- and macrovascular complications due to abnormal levels of biochemicals, particularly in patients with poor diabetic control. Diabetes is supposed to be treated by reducing blood glucose levels, scavenging free radicals, and maintaining other relevant parameters close to normal ranges. In preclinical studies, numerous in vivo trials on animals as well as in vitro tests are used to assess the antidiabetic and antioxidant effects of the test substances. Since a substance that performs poorly in vitro won't perform better in vivo, the outcomes of in vitro studies can be utilized as a direct indicator of in vivo activities.

Objective: The objective of the present study is to provide research scholars with a comprehensive overview of laboratory methods and procedures for a few selected diabetic biomarkers and related parameters.

Method: The search was conducted on scientific database portals such as ScienceDirect, PubMed, Google Scholar, BASE, DOAJ, etc.

Conclusion: The development of new biomarkers is greatly facilitated by modern technology such as cell culture research, lipidomics study, microRNA biomarkers, machine learning techniques, and improved electron microscopies. These biomarkers do, however, have some usage restrictions. There is a critical need to find more accurate and sensitive biomarkers. With a few modifications, these biomarkers can be used with or even replace conventional markers of diabetes.

[1]
Rais N, Ahmad R, Ved A, Parveen K, Bari DG, Prakash O. Diabetic ketoacidosis (DKA), a leading risk factor for mucormycosis (Black Fungus), during the era of coronavirus disease-2019 (COVID-19): An Overview. Curr Diabetes Rev 2023; 19(1): e150322202260.
[http://dx.doi.org/10.2174/1573399818666220315162424] [PMID: 35293299]
[2]
Rais N, Ved A, Ahmad R, Parveen K, Prakash O. Prevalence of diabetes mellitus and sociodemographic survey in the community of Western Uttar Pradesh, India in the Year 2019-2020. Int J Curr Res Rev 2021; 13(1): 10-5.
[http://dx.doi.org/10.31782/IJCRR.2021.13129]
[3]
Bajaj S, Khan A. Antioxidants and diabetes. Indian J Endocrinol Metab 2012; 16(8): 267.
[http://dx.doi.org/10.4103/2230-8210.104057] [PMID: 23565396]
[4]
Ved A, Rais N, Ahmad R, et al. Model of streptozotocin-nicotinamide induced type 2 diabetes: A comparative review. Curr Diabetes Rev 2022; 18(8): e171121198001.
[http://dx.doi.org/10.2174/1573399818666211117123358] [PMID: 34789130]
[5]
Lorian V. Differences between in vitro and in vivo studies. Antimicrob Agents Chemother 1988; 32(10): 1600-1.
[http://dx.doi.org/10.1128/AAC.32.10.1600] [PMID: 3190189]
[6]
Tundis R, Loizzo MR, Menichini F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev Med Chem 2010; 10(4): 315-31.
[http://dx.doi.org/10.2174/138955710791331007] [PMID: 20470247]
[7]
Gong L, Feng D, Wang T, Ren Y, Liu Y, Wang J. Inhibitors of α‐amylase and α‐glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci Nutr 2020; 8(12): 6320-37.
[http://dx.doi.org/10.1002/fsn3.1987] [PMID: 33312519]
[8]
Sales PM, Souza PM, Simeoni LA, Magalhães PO, Silveira D. αAmylase inhibitors: A review of raw material and isolated compounds from plant source. J Pharm Pharm Sci 2012; 15(1): 141-83.
[http://dx.doi.org/10.18433/J35S3K] [PMID: 22365095]
[9]
Banerjee A, Maji B, Mukherjee S, et al. In vitro antidiabetic and anti-oxidant activities of methanol extract of tinospora sinensis. J Appl Biol Biotechnol 2017; 5(3)
[http://dx.doi.org/10.7324/JABB.2017.50311]
[10]
Casirola DM, Ferraris RP. α-Glucosidase inhibitors prevent dietinduced increases in intestinal sugar transport in diabetic mice. Metabolism 2006; 55(6): 832-41.
[http://dx.doi.org/10.1016/j.metabol.2006.02.011] [PMID: 16713445]
[11]
Laar F. Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Vasc Health Risk Manag 2008; 4(6): 1189-95.
[http://dx.doi.org/10.2147/VHRM.S3119] [PMID: 19337532]
[12]
Subramanian R, Asmawi MZ, Sadikun A. In vitro alpha-glucosidase and alpha-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim Pol 2008; 55(2): 391-8.
[http://dx.doi.org/10.18388/abp.2008_3087] [PMID: 18511986]
[13]
Antony J, Debroy S, Manisha C, Thomas P, Jeyarani V, Choephel T. In-vitro cell line Models and Assay methods to study the Anti-diabetic Activity. RJPT 2019; 12(5): 2200.
[http://dx.doi.org/10.5958/0974-360X.2019.00367.6]
[14]
Huang Q, Chen L, Teng H, Song H, Wu X, Xu M. Phenolic compounds ameliorate the glucose uptake in HepG2 cells’ insulin resistance via activating AMPK. J Funct Foods 2015; 19: 487-94.
[http://dx.doi.org/10.1016/j.jff.2015.09.020]
[15]
Sagbo IJ, van de Venter M, Koekemoer T, et al. In vitro antidiabetic activity and mechanism of action of brachylaena elliptica (Thunb.) DC. Evid Based Complement Alternat Med 2018; 2018: 4170372.
[http://dx.doi.org/10.1155/2018/4170372]
[16]
Gao F, Jian L, Zafar MI, et al. 4-Hydroxyisoleucine improves insulin resistance in HepG2 cells by decreasing TNF-α and regulating the expression of insulin signal transduction proteins. Mol Med Rep 2015; 12(5): 6555-60.
[http://dx.doi.org/10.3892/mmr.2015.4298] [PMID: 26352439]
[17]
Romulo A. The principle of some in vitro antioxidant activity methods: Review. IOP Conf Ser Earth Environ Sci 2020; 426(1): 012177. [Review].
[http://dx.doi.org/10.1088/1755-1315/426/1/012177]
[18]
Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem 1996; 239(1): 70-6.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[19]
Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int J Mol Sci 2021; 22(7): 3380.
[http://dx.doi.org/10.3390/ijms22073380] [PMID: 33806141]
[20]
Oyaizu M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Eiyogaku Zasshi 1986; 44(6): 307-15.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[21]
Gulcin İ. Antioxidants and antioxidant methods: An updated overview. Arch Toxicol 2020; 94(3): 651-715.
[http://dx.doi.org/10.1007/s00204-020-02689-3] [PMID: 32180036]
[22]
Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem 2017; 86(1): 715-48.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[23]
Ruch RJ, Cheng S, Klaunig JE. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 1989; 10(6): 1003-8.
[http://dx.doi.org/10.1093/carcin/10.6.1003] [PMID: 2470525]
[24]
Akar Z, Küçük M. Doğan H. A new colorimetric DPPH • scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. J Enzyme Inhib Med Chem 2017; 32(1): 640-7.
[http://dx.doi.org/10.1080/14756366.2017.1284068] [PMID: 28262029]
[25]
Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 2011; 48(4): 412-22.
[http://dx.doi.org/10.1007/s13197-011-0251-1] [PMID: 23572765]
[26]
Hasan MS, Ahmed MI, Mondal S, et al. Antioxidant, antinociceptive activity and general toxicity study of Dendrophthoe falcata and isolation of quercitrin as the major component. Orient Pharm Exp Med 2006; 6(4): 355-60.
[http://dx.doi.org/10.3742/OPEM.2006.6.4.355]
[27]
Fridman M, Lucas ME, Paprocki Y, Dang-Tan T, Iyer NN. Impact of weight change in adults with type 2 diabetes mellitus: A literature review and critical analysis. Clinicoecon Outcomes Res 2020; 12: 555-66.
[http://dx.doi.org/10.2147/CEOR.S266873] [PMID: 33061488]
[28]
Halali F, Lapveteläinen A, Aittola K, et al. Associations between weight loss history and factors related to type 2 diabetes risk in the Stop Diabetes study. Int J Obes 2022; 46(5): 935-42.
[http://dx.doi.org/10.1038/s41366-021-01061-4] [PMID: 35022546]
[29]
Nelson RL. Oral glucose tolerance test: Indications and limitations. Mayo Clin Proc 1988; 63(3): 263-9.
[http://dx.doi.org/10.1016/S0025-6196(12)65100-3] [PMID: 3278175]
[30]
Tan AYS, Tan MS, Wu A, et al. Self-administered oral glucose tolerance test with capillary glucose measurements for the screening of diabetes mellitus in high-risk adults: A feasibility study. BMJ Open Diabetes Res Care 2021; 9(2): e002556.
[http://dx.doi.org/10.1136/bmjdrc-2021-002556] [PMID: 34952842]
[31]
Dalgård C, Möller S, Kyvik KO. Heritability of curve patterns in oral glucose tolerance test. Twin Res Hum Genet 2020; 23(1): 39-44.
[http://dx.doi.org/10.1017/thg.2020.3] [PMID: 32083524]
[32]
Parveen K, Ishrat T, Malik S, Kausar MA, Siddiqui WA. Modulatory effects of Pycnogenol® in a rat model of insulin-dependent diabetes mellitus: Biochemical, histological, and immunohistochemical evidences. Protoplasma 2013; 250(1): 347-60.
[http://dx.doi.org/10.1007/s00709-012-0418-2] [PMID: 22660838]
[33]
Qi X, Tester RF. Fructose, galactose and glucose - In health and disease. Clin Nutr ESPEN 2019; 33: 18-28.
[http://dx.doi.org/10.1016/j.clnesp.2019.07.004] [PMID: 31451258]
[34]
Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus-atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci 2020; 21(5): 1835.
[http://dx.doi.org/10.3390/ijms21051835] [PMID: 32155866]
[35]
Choudhry MN, Malik RA, Charalambous CP. Blood glucose levels following intra-articular steroid injections in patients with diabetes. JBJS Rev 2016; 4(3): e5.
[http://dx.doi.org/10.2106/JBJS.RVW.O.00029] [PMID: 27500431]
[36]
Trinder P. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 1969; 22(2): 158-61.
[http://dx.doi.org/10.1136/jcp.22.2.158] [PMID: 5776547]
[37]
Unnikrishnan R, Mohan V. Challenges in estimation of glycated hemoglobin in India. Diabetes Technol Ther 2013; 15(10): 897-9.
[http://dx.doi.org/10.1089/dia.2013.0144] [PMID: 23944907]
[38]
Peacock I. Glycosylated haemoglobin: Measurement and clinical use. J Clin Pathol 1984; 37(8): 841-51.
[http://dx.doi.org/10.1136/jcp.37.8.841] [PMID: 6381544]
[39]
Zhang B, Zhang B, Zhou Z, Guo Y, Wang D. The value of glycosylated hemoglobin in the diagnosis of diabetic retinopathy: A systematic review and meta-analysis. BMC Endocr Disord 2021; 21(1): 82.
[http://dx.doi.org/10.1186/s12902-021-00737-2] [PMID: 33902557]
[40]
Little RR, Roberts WL. A review of variant hemoglobins interfering with hemoglobin A1c measurement. J Diabetes Sci Technol 2009; 3(3): 446-51.
[http://dx.doi.org/10.1177/193229680900300307] [PMID: 20144281]
[41]
Nathan DM, Singer DE, Hurxthal K, Goodson JD. The clinical information value of the glycosylated hemoglobin assay. N Engl J Med 1984; 310(6): 341-6.
[http://dx.doi.org/10.1056/NEJM198402093100602] [PMID: 6690962]
[42]
Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS 2010; 5(6): 463-6.
[http://dx.doi.org/10.1097/COH.0b013e32833ed177] [PMID: 20978388]
[43]
Gowda S, Desai PB, Kulkarni SS, Hull VV, Math AA, Vernekar SN. Markers of renal function tests. N Am J Med Sci 2010; 2(4): 170-3.
[PMID: 22624135]
[44]
Griffin BR, Faubel S, Edelstein CL. Biomarkers of drug-induced kidney toxicity. Ther Drug Monit 2019; 41(2): 213-26.
[http://dx.doi.org/10.1097/FTD.0000000000000589] [PMID: 30883514]
[45]
Zhang WR, Parikh CR. Biomarkers of acute and chronic kidney disease. Annu Rev Physiol 2019; 81(1): 309-33.
[http://dx.doi.org/10.1146/annurev-physiol-020518-114605] [PMID: 30742783]
[46]
Wybenga DR, Di Giorgio J, Pileggi VJ. Manual and automated methods for urea nitrogen measurement in whole serum. Clin Chem 1971; 17(9): 891-5.
[http://dx.doi.org/10.1093/clinchem/17.9.891] [PMID: 5571487]
[47]
van Veldhuisen DJ, Ruilope LM, Maisel AS, Damman K. Biomarkers of renal injury and function: Diagnostic, prognostic and therapeutic implications in heart failure. Eur Heart J 2016; 37(33): 2577-85.
[http://dx.doi.org/10.1093/eurheartj/ehv588] [PMID: 26543046]
[48]
Taegtmeyer H, Ingwall JS. Creatine--a dispensable metabolite? Circ Res 2013; 112(6): 878-80.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.300974] [PMID: 23493302]
[49]
Dasgupta P, Kumar V, Krishnaswamy PR, Bhat N. Biochemical assay for serum creatinine detection through a 1-methylhydantoin and cobalt complex. RSC Advances 2020; 10(64): 39092-101.
[http://dx.doi.org/10.1039/D0RA06470J] [PMID: 35518446]
[50]
Bonsnes RW, Taussky HH. On the colorimetric determination of creatinine by the jaffe reaction. J Biol Chem 1945; 158(3): 581-91.
[http://dx.doi.org/10.1016/S0021-9258(19)51334-5]
[51]
Sharma U, Pal D, Prasad R. Alkaline phosphatase: An overview. Indian J Clin Biochem 2014; 29(3): 269-78.
[http://dx.doi.org/10.1007/s12291-013-0408-y] [PMID: 24966474]
[52]
Taliercio JJ, Schold JD, Simon JF, et al. Prognostic importance of serum alkaline phosphatase in CKD stages 3-4 in a clinical population. Am J Kidney Dis 2013; 62(4): 703-10.
[http://dx.doi.org/10.1053/j.ajkd.2013.04.012] [PMID: 23769134]
[53]
Kind PRN, King EJ. Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. J Clin Pathol 1954; 7(4): 322-6.
[http://dx.doi.org/10.1136/jcp.7.4.322] [PMID: 13286357]
[54]
Wu L, Parhofer KG. Diabetic dyslipidemia. Metabolism 2014; 63(12): 1469-79.
[http://dx.doi.org/10.1016/j.metabol.2014.08.010] [PMID: 25242435]
[55]
Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord 2019; 20(4): 461-72.
[http://dx.doi.org/10.1007/s11154-019-09512-0] [PMID: 31707624]
[56]
Xepapadaki E, Nikdima I, Sagiadinou EC, Zvintzou E, Kypreos KE. HDL and type 2 diabetes: The chicken or the egg? Diabetologia 2021; 64(9): 1917-26.
[http://dx.doi.org/10.1007/s00125-021-05509-0] [PMID: 34255113]
[57]
Weitgasser R, Ratzinger M, Hemetsberger M, Siostrzonek P. LDL-cholesterol and cardiovascular events: The lower the better? Wien Med Wochenschr 2018; 168(5-6): 108-20.
[http://dx.doi.org/10.1007/s10354-016-0518-2] [PMID: 27770320]
[58]
Prenner SB, Mulvey CK, Ferguson JF, Rickels MR, Bhatt AB, Reilly MP. Very low density lipoprotein cholesterol associates with coronary artery calcification in type 2 diabetes beyond circulating levels of triglycerides. Atherosclerosis 2014; 236(2): 244-50.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.07.008] [PMID: 25105581]
[59]
Cox RA, García-Palmieri MR. Cholesterol, triglycerides, and associated lipoproteins.In: Clinical Methods: The History, Physical, and Laboratory Examinations 3rd Ed. Boston: Butterworths 1990.
[60]
Schade DS, Shey L, Eaton RP. Cholesterol review: A metabolically important molecule. Endocr Pract 2020; 26(12): 1514-23.
[http://dx.doi.org/10.4158/EP-2020-0347] [PMID: 33471744]
[61]
Wybenga DR, Pileggi VJ, Dirstine PH, Giorgio JD. Direct manual determination of serum total cholesterol with a single stable reagent. Clin Chem 1970; 16(12): 980-4.
[http://dx.doi.org/10.1093/clinchem/16.12.980] [PMID: 4098216]
[62]
Chen AH, Tseng CH. The role of triglyceride in cardiovascular disease in asian patients with type 2 diabetes--a systematic review. Rev Diabet Stud 2013; 10(2-3): 101-9.
[http://dx.doi.org/10.1900/RDS.2013.10.101] [PMID: 24380086]
[63]
Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J 2020; 41(1): 99-109c.
[http://dx.doi.org/10.1093/eurheartj/ehz785] [PMID: 31764986]
[64]
Stein EA, Myers GL. National Cholesterol Education Program recommendations for triglyceride measurement: Executive summary. Clin Chem 1995; 41(10): 1421-6.
[http://dx.doi.org/10.1093/clinchem/41.10.1421] [PMID: 7586511]
[65]
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18(6): 499-502.
[http://dx.doi.org/10.1093/clinchem/18.6.499] [PMID: 4337382]
[66]
Züllig T, Trötzmüller M, Köfeler HC. Lipidomics from sample preparation to data analysis: a primer. Anal Bioanal Chem 2020; 412(10): 2191-209.
[http://dx.doi.org/10.1007/s00216-019-02241-y] [PMID: 31820027]
[67]
Yang K, Han X. Lipidomics: Techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci 2016; 41(11): 954-69.
[http://dx.doi.org/10.1016/j.tibs.2016.08.010] [PMID: 27663237]
[68]
Khan SR, Mohan H, Liu Y, et al. The discovery of novel predictive biomarkers and early-stage pathophysiology for the transition from gestational diabetes to type 2 diabetes. Diabetologia 2019; 62(4): 687-703.
[http://dx.doi.org/10.1007/s00125-018-4800-2] [PMID: 30645667]
[69]
Swinnen JV, Dehairs J. A beginner’s guide to lipidomics. Biochemist 2022; 44(1): 20-4.
[http://dx.doi.org/10.1042/bio_2021_181]
[70]
Ulmer CZ, Koelmel JP, Jones CM, et al. A review of efforts to improve lipid stability during sample preparation and standardization efforts to ensure accuracy in the reporting of lipid measurements. Lipids 2021; 56(1): 3-16.
[http://dx.doi.org/10.1002/lipd.12263] [PMID: 32519378]
[71]
Apffel A, Zhao L, Sartain MJ. A novel solid phase extraction sample preparation method for lipidomic analysis of human plasma using liquid chromatography/mass spectrometry. Metabolites 2021; 11(5): 294.
[http://dx.doi.org/10.3390/metabo11050294] [PMID: 34064397]
[72]
Wu Z, Bagarolo GI, Thoröe-Boveleth S, Jankowski J. “Lipidomics”: Mass spectrometric and chemometric analyses of lipids. Adv Drug Deliv Rev 2020; 159: 294-307.
[http://dx.doi.org/10.1016/j.addr.2020.06.009] [PMID: 32553782]
[73]
Pati S, Nie B, Arnold RD, Cummings BS. Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomed Chromatogr 2016; 30(5): 695-709.
[http://dx.doi.org/10.1002/bmc.3683] [PMID: 26762903]
[74]
Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biol 2013; 1(1): 483-91.
[http://dx.doi.org/10.1016/j.redox.2013.07.006] [PMID: 24251116]
[75]
Abu Youssef HA, Elshazly MI, Rashed LA, Sabry IM, Ibrahim EK. Thiobarbituric acid reactive substance (TBARS) a marker of oxidative stress in obstructive sleep apnea. Egypt J Chest Dis Tuberc 2014; 63(1): 119-24.
[http://dx.doi.org/10.1016/j.ejcdt.2013.10.012]
[76]
Lovell MA, Ehmann WD, Butler SM, Markesbery WR. Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 1995; 45(8): 1594-601.
[http://dx.doi.org/10.1212/WNL.45.8.1594] [PMID: 7644059]
[77]
Utley HG, Bernheim F, Hochstein P. Effect of sulfhydryl reagents on peroxidation in microsomes. Arch Biochem Biophys 1967; 118(1): 29-32.
[http://dx.doi.org/10.1016/0003-9861(67)90273-1]
[78]
Forman HJ, Zhang H, Rinna A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 2009; 30(1-2): 1-12.
[http://dx.doi.org/10.1016/j.mam.2008.08.006] [PMID: 18796312]
[79]
Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 1974; 11(3): 151-69.
[http://dx.doi.org/10.1159/000136485] [PMID: 4831804]
[80]
Singh RR, Reindl KM. Glutathione s-transferases in cancer. Antioxidants 2021; 10(5): 701.
[http://dx.doi.org/10.3390/antiox10050701] [PMID: 33946704]
[81]
Dasari S, Ganjayi MS, Meriga B. Glutathione S-transferase is a good biomarker in acrylamide induced neurotoxicity and genotoxicity. Interdiscip Toxicol 2018; 11(2): 115-21.
[http://dx.doi.org/10.2478/intox-2018-0007] [PMID: 31719782]
[82]
Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. J Biol Chem 1974; 249(22): 7130-9.
[http://dx.doi.org/10.1016/S0021-9258(19)42083-8] [PMID: 4436300]
[83]
Nandi A, Yan LJ, Jana CK, Das N. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid Med Cell Longev 2019; 2019: 1-19.
[http://dx.doi.org/10.1155/2019/9613090] [PMID: 31827713]
[84]
Claiborne A. Catalase activity. In: Greenwald RA, Ed. CRC handbook of methods for oxygen radical research, Florida. Boca Raton: CRC Press 1985; pp. 283-4.
[85]
Palmieri C, Foster RA, Grieco V, et al. Histopathological terminology standards for the reporting of prostatic epithelial lesions in dogs. J Comp Pathol 2019; 171: 30-7.
[http://dx.doi.org/10.1016/j.jcpa.2019.07.005] [PMID: 31540623]
[86]
Klopfleisch R. Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology - a systematic review. BMC Vet Res 2013; 9(1): 123.
[http://dx.doi.org/10.1186/1746-6148-9-123] [PMID: 23800279]
[87]
Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. Histopathological image analysis: A review. IEEE Rev Biomed Eng 2009; 2: 147-71.
[http://dx.doi.org/10.1109/RBME.2009.2034865] [PMID: 20671804]
[88]
Gutiérrez-Medina B. Optical sectioning of unlabeled samples using bright-field microscopy. Proc Natl Acad Sci USA 2022; 119(14): e2122937119.
[http://dx.doi.org/10.1073/pnas.2122937119] [PMID: 35344419]
[89]
Trizna EY, Sinitca AM, Lyanova AI, et al. Brightfield vs. fluorescent staining dataset-a test bed image set for machine learning based virtual staining. Sci Data 2023; 10(1): 160.
[http://dx.doi.org/10.1038/s41597-023-02065-7] [PMID: 36949058]
[90]
Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease. Clin J Am Soc Nephrol 2017; 12(12): 2032-45.
[http://dx.doi.org/10.2215/CJN.11491116] [PMID: 28522654]
[91]
Palygin O, Spires D, Levchenko V, et al. Progression of diabetic kidney disease in T2DN rats. Am J Physiol Renal Physiol 2019; 317(6): F1450-61.
[http://dx.doi.org/10.1152/ajprenal.00246.2019] [PMID: 31566426]
[92]
Ding Y, Zou J, Li Z, et al. Study of histopathological and molecular changes of rat kidney under simulated weightlessness and resistance training protective effect. PLoS One 2011; 6(5): e20008.
[http://dx.doi.org/10.1371/journal.pone.0020008] [PMID: 21625440]
[93]
Liu PY, Phillips GE, Kempf M, Cuttle L, Kimble RM, McMillan JR. Cyanoacrylate glue as an alternative mounting medium for resin-embedded semithin sections. J Electron Microsc 2010; 59(1): 87-90.
[http://dx.doi.org/10.1093/jmicro/dfp040] [PMID: 19666907]
[94]
Shylaja S. M S, Srilatha T, O v R, Reddy S, Vamshi R. Natural alternative to D.P.X (Mounting Medium) - comparison between honey and castor oil. Int J Contemp Med Res 2019; 6(1): A6-9.
[http://dx.doi.org/10.21276/ijcmr.2019.6.1.15]
[95]
Carrara C, Abbate M, Conti S, Rottoli D, Rizzo P, Marchetti G. Histological examination of the diabetic kidney. Methods Mol Biol 2020; 2067: 63-87.
[http://dx.doi.org/10.1007/978-1-4939-9841-8_6] [PMID: 31701446]
[96]
Im K, Mareninov S, Diaz MFP, Yong WH. An introduction to performing immunofluorescence staining. Methods Mol Biol 2019; 1897: 299-311.
[http://dx.doi.org/10.1007/978-1-4939-8935-5_26] [PMID: 30539454]
[97]
Asai D. Immunofluorescence microscopy. Curr Protoc Essent Lab Tech 2008.
[http://dx.doi.org/10.1002/9780470089941.et0902s00]
[98]
Sart S, Tomasi RFX, Barizien A, Amselem G, Cumano A, Baroud CN. Mapping the structure and biological functions within mesenchymal bodies using microfluidics. Sci Adv 2020; 6(10): eaaw7853.
[http://dx.doi.org/10.1126/sciadv.aaw7853] [PMID: 32181333]
[99]
Fischer ER, Hansen BT, Nair V, Hoyt FH, Dorward DW. Scanning electron microscopy. Curr Protoc Microbiol 2012; 25(1): 2.
[http://dx.doi.org/10.1002/9780471729259.mc02b02s25] [PMID: 22549162]
[100]
Joy DC, Pawley JB. High-resolution scanning electron microscopy. Ultramicroscopy 1992; 47(1-3): 80-100.
[http://dx.doi.org/10.1016/0304-3991(92)90186-N] [PMID: 1481281]
[101]
Kizilyaprak C, Daraspe J, Humbel BM. Focused ion beam scanning electron microscopy in biology. J Microsc 2014; 254(3): 109-14.
[http://dx.doi.org/10.1111/jmi.12127] [PMID: 24707797]
[102]
Koga D, Kusumi S, Shibata M, Watanabe T. Applications of scanning electron microscopy using secondary and backscattered electron signals in neural structure. Front Neuroanat 2021; 15: 759804.
[http://dx.doi.org/10.3389/fnana.2021.759804] [PMID: 34955763]
[103]
Yamamoto T, Takahashi S, Hasegawa T, Hongo H, Amizuka N. Morphological variety of capillary ends invading the epiphyseal plate in rat femora using scanning electron microscopy with osmium maceration. J Oral Biosci/JAOB, Jpn Assoc Oral Biol 2022; 64(3): 346-51.
[http://dx.doi.org/10.1016/j.job.2022.04.006] [PMID: 35537657]
[104]
Malatesta M. Transmission electron microscopy as a powerful tool to investigate the interaction of nanoparticles with subcellular structures. Int J Mol Sci 2021; 22(23): 12789.
[http://dx.doi.org/10.3390/ijms222312789] [PMID: 34884592]
[105]
Franken LE, Grünewald K, Boekema EJ, Stuart MCA. A technical introduction to transmission electron microscopy for soft‐matter: Imaging, possibilities, choices, and technical developments. Small 2020; 16(14): 1906198.
[http://dx.doi.org/10.1002/smll.201906198] [PMID: 32130784]
[106]
Graham L, Orenstein JM. Processing tissue and cells for transmission electron microscopy in diagnostic pathology and research. Nat Protoc 2007; 2(10): 2439-50.
[http://dx.doi.org/10.1038/nprot.2007.304] [PMID: 17947985]
[107]
Ma J, Zhou C, Chen X. miR-636 inhibits EMT, cell proliferation and cell cycle of ovarian cancer by directly targeting transcription factor Gli2 involved in Hedgehog pathway. Cancer Cell Int 2021; 21(1): 64.
[http://dx.doi.org/10.1186/s12935-020-01725-7] [PMID: 33472614]
[108]
Chen H, Lan HY, Roukos DH, Cho WC. Application of microRNAs in diabetes mellitus. J Endocrinol 2014; 222(1): R1-R10.
[http://dx.doi.org/10.1530/JOE-13-0544] [PMID: 24781254]
[109]
Tang X, Tang G, Ozcan S. Role of microRNAs in diabetes. Biochim Biophys Acta Gene Regul Mech 2008; 1779(11): 697-701.
[http://dx.doi.org/10.1016/j.bbagrm.2008.06.010] [PMID: 18655850]
[110]
Zhou X, Xiang C, Zheng X. miR-132 serves as a diagnostic biomarker in gestational diabetes mellitus and its regulatory effect on trophoblast cell viability. Diagn Pathol 2019; 14(1): 119.
[http://dx.doi.org/10.1186/s13000-019-0899-9] [PMID: 31653266]
[111]
Ramya S, Kalaivani DD. Machine learning approach for diabetes prediction. Int J Res Appl Sci Eng Technol 2022; 10(7): 4444-8.
[http://dx.doi.org/10.22214/ijraset.2022.46012]
[112]
Mujumdar A, Vaidehi V. Diabetes prediction using machine learning algorithms. Procedia Comput Sci 2019; 165: 292-9.
[http://dx.doi.org/10.1016/j.procs.2020.01.047]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy