Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Thiazolidinedione as a Promising Medicinal Scaffold for the Treatment of Type 2 Diabetes

Author(s): Gurvinder Singh*, Rajesh Kumar, Desna D.S., Manish Chaudhary, Charanjit Kaur and Navneet Khurrana

Volume 20, Issue 6, 2024

Published on: 20 October, 2023

Article ID: e201023222411 Pages: 21

DOI: 10.2174/0115733998254798231005095627

Price: $65

Abstract

Background: Thiazolidinediones, also known as glitazones, are considered as biologically active scaffold and a well-established class of anti-diabetic agents for the treatment of type 2 diabetes mellitus. Thiazolidinediones act by reducing insulin resistance through elevated peripheral glucose disposal and glucose production. These molecules activate peroxisome proliferated activated receptor (PPARγ), one of the sub-types of PPARs, and a diverse group of its hybrid have also shown numerous therapeutic activities along with antidiabetic activity.

Objective: The objective of this review was to collect and summarize the research related to the medicinal potential, structure-activity relationship and safety aspects of thiazolidinedione analogues designed and investigated in type 2 diabetes during the last two decades.

Methods: The mentioned objective was achieved by collecting and reviewing the research manuscripts, review articles, and patents from PubMed, Science Direct, Embase, google scholar and journals related to the topic from different publishers like Wiley, Springer, Elsevier, Taylor and Francis, Indian and International government patent sites etc.

Results: The thiazolidinedione scaffold has been a focus of research in the design and synthesis of novel derivatives for the management of type 2 diabetes, specifically in the case of insulin resistance. The complications like fluid retention, idiosyncratic hepatotoxicity, weight gain and congestive heart failure in the case of trosiglitazone, and pioglitazone have restricted their use. The newer analogues have been synthesized by different research groups to attain better efficacy and less side effects.

Conclusion: Thus, the potential of thiazolidinediones in terms of their chemical evolution, action on nuclear receptors, aldose reductase and free fatty acid receptor 1 is well established. The newer TZD analogues with better safety profiles and tolerability will soon be available in the market for common use without further delay.

[1]
Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes–global burden of disease and forecasted trends. J Epidemiol Glob Health 2019; 10(1): 107-11.
[http://dx.doi.org/10.2991/jegh.k.191028.001] [PMID: 32175717]
[2]
Ahrén B, Foley J. Improved glucose regulation in type 2 diabetic patients with DPP-4 inhibitors: Focus on alpha and beta cell function and lipid metabolism. Diabetologia 2016; 59: 907-17.
[http://dx.doi.org/10.1007/s00125-016-3899-2]
[3]
Belete TM. A recent achievement in the discovery and development of novel targets for the treatment of type-2 diabetes mellitus. J Exp Pharmacol 2020; 12: 1-15.
[http://dx.doi.org/10.2147/JEP.S226113] [PMID: 32021494]
[4]
Agrawal R, Jain P, Dikshit SN. Balaglitazone: A second generation peroxisome proliferator-activated receptor (PPAR) gamma (γ) agonist. Mini Rev Med Chem 2012; 12(2): 87-97.
[http://dx.doi.org/10.2174/138955712798995048] [PMID: 22372600]
[5]
Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010; 87(1): 4-14.
[http://dx.doi.org/10.1016/j.diabres.2009.10.007] [PMID: 19896746]
[6]
DeFronzo RA, Bonadonna RC, Ferrannini EJ. D c. Pathogenesis of NIDDM: a balanced overview. Diabetes Care 1992; 15(3): 318-68.
[http://dx.doi.org/10.2337/diacare.15.3.318]
[7]
Challis BG, Semple RK. Genetic disorders of insulin action: far more than diabetes. Curr Obes Rep 2013; 2(4): 293-300.
[http://dx.doi.org/10.1007/s13679-013-0075-6]
[8]
Fathallah N, Slim R, Larif S, Hmouda H, Ben Salem C. Drug-induced hyperglycaemia and diabetes. Drug Saf 2015; 38(12): 1153-68.
[http://dx.doi.org/10.1007/s40264-015-0339-z] [PMID: 26370106]
[9]
Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J 2012; 27(4): 269-73.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[10]
Top WMC, Kooy A, Stehouwer CDA. Metformin: A Narrative review of its potential benefits for cardiovascular disease, cancer and dementia. Pharmaceuticals (Basel) 2022; 15(3): 312.
[http://dx.doi.org/10.3390/ph15030312] [PMID: 35337110]
[11]
Scheen AJ. Sulphonylureas in the management of type 2 diabetes: To be or not to be? Diabetes Epidemiology and Management 2021; 1: 100002.
[http://dx.doi.org/10.1016/j.deman.2021.100002]
[12]
Nirwan S, Chahal V, Kakkar R. Thiazolidinones: Synthesis, reactivity, and their biological applications. J Heterocycl Chem 2019; 56(4): 1239-53.
[http://dx.doi.org/10.1002/jhet.3514]
[13]
Akmal M, Wadhwa R. Alpha glucosidase inhibitors.In: StatPearls. StatPearls Publishing 2022.
[14]
Neumiller JJ. Incretin-based therapies. Med Clin North Am 2015; 99(1): 107-29.
[http://dx.doi.org/10.1016/j.mcna.2014.08.013] [PMID: 25456646]
[15]
Kasina SVSK, Baradhi KM. Dipeptidyl Peptidase IV (DPP IV) Inhibitors. In: StatPearls. StatPearls Publishing 2021.
[16]
Chaluvaraju KC, Niranjan MS, Manjuthej TR, Zaranappa TR, Mane K. Review of insulin and its analogues in diabetes mellitus. J Basic Clin Pharm 2012; 3(2): 283-93.
[http://dx.doi.org/10.4103/0976-0105.103822] [PMID: 24826038]
[17]
Jain AK, Vaidya A, Ravichandran V, Kashaw SK, Agrawal RK. Recent developments and biological activities of thiazolidinone derivatives: A review. Bioorg Med Chem 2012; 20(11): 3378-95.
[http://dx.doi.org/10.1016/j.bmc.2012.03.069] [PMID: 22546204]
[18]
Kotha S, Sreevani G, Dzhemileva LU, Yunusbaeva MM, Dzhemilev UM, D’yakonov VA. Diversity-oriented synthesis of spirothiazolidinediones and their biological evaluation. Beilstein J Org Chem 2019; 15(1): 2774-81.
[http://dx.doi.org/10.3762/bjoc.15.269] [PMID: 31807211]
[19]
Koufany M, Moulin D, Bianchi A, et al. Anti-inflammatory effect of antidiabetic thiazolidinediones prevents bone resorption rather than cartilage changes in experimental polyarthritis. Arthritis Res Ther 2008; 10(1): R6.
[http://dx.doi.org/10.1186/ar2354] [PMID: 18199331]
[20]
Youssef AM, Sydney White M, Villanueva EB, El-Ashmawy IM, Klegeris A. Synthesis and biological evaluation of novel pyrazolyl-2,4-thiazolidinediones as anti-inflammatory and neuroprotective agents. Bioorg Med Chem 2010; 18(5): 2019-28.
[http://dx.doi.org/10.1016/j.bmc.2010.01.021] [PMID: 20138770]
[21]
Gupta A, Singh R, Sonar PK, Saraf SK. Novel 4-thiazolidinone derivatives as anti-infective agents: Synthesis, characterization, and antimicrobial evaluation. Biochem Res Int 2016; 2016: 8086762.
[http://dx.doi.org/10.1155/2016/8086762]
[22]
Chadha N, Bahia MS, Kaur M, Silakari O. Thiazolidine-2,4-dione derivatives: Programmed chemical weapons for key protein targets of various pathological conditions. Bioorg Med Chem 2015; 23(13): 2953-74.
[http://dx.doi.org/10.1016/j.bmc.2015.03.071] [PMID: 25890697]
[23]
Gale EAM. Lessons from the glitazones: A story of drug development. Lancet 2001; 357(9271): 1870-5.
[http://dx.doi.org/10.1016/S0140-6736(00)04960-6] [PMID: 11410214]
[24]
Lalloyer F, Staels B. Fibrates, glitazones, and peroxisome proliferator-activated receptors. Arterioscler Thromb Vasc Biol 2010; 30(5): 894-9.
[http://dx.doi.org/10.1161/ATVBAHA.108.179689] [PMID: 20393155]
[25]
Parker JC. Troglitazone: the discovery and development of a novel therapy for the treatment of type 2 diabetes mellitus. Adv Drug Deliv Rev 2002; 54(9): 1173-97.
[http://dx.doi.org/10.1016/S0169-409X(02)00093-5] [PMID: 12393300]
[26]
Yamazaki H, Shibata A, Suzuki M, et al. Disposition, oxidation of troglitazone to a quinone-type metabolite catalyzed by cytochrome P-450 2C8 and P-450 3A4 in human liver microsomes. Drug Metab Dispos 1999; 27(11): 1260-6.
[27]
Kassahun K, Pearson PG, Tang W, et al. Studies on the metabolism of troglitazone to reactive intermediates in vitro and in vivo. Chem Res Toxicol 2001; 14(1): 62-70.
[http://dx.doi.org/10.1021/tx000180q]
[28]
Smith M. Mechanisms of troglitazone hepatotoxicity. Chem Res Toxicol 2003; 16(6): 679-87.
[http://dx.doi.org/10.1021/tx034033e]
[29]
Graham DJ, Green L, Senior JR, Nourjah P. Troglitazone-induced liver failure: A case study. Am J Med 2003; 114(4): 299-306.
[http://dx.doi.org/10.1016/S0002-9343(02)01529-2]
[30]
Arnold SV, Inzucchi SE, Echouffo-Tcheugui JB, et al. Understanding contemporary use of thiazolidinediones: An analysis from the diabetes collaborative registry. Circ Heart Fail 2019; 12(6): e005855.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.118.005855]
[31]
Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 366(9493): 1279-89.
[http://dx.doi.org/10.1016/S0140-6736(05)67528-9]
[32]
Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg Chem 2018; 77: 548-67.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.009] [PMID: 29475164]
[33]
McMurray JJV, Gerstein HC, Holman RR, Pfeffer MA. Heart failure: A cardiovascular outcome in diabetes that can no longer be ignored. Lancet Diabetes Endocrinol 2014; 2(10): 843-51.
[http://dx.doi.org/10.1016/S2213-8587(14)70031-2] [PMID: 24731668]
[34]
Tanuja Rajan M, Ferro EG, Elshazly MB. FDA guidance for diabetes drug development: Cardiorenal populations and outcomes: lessons learned and future directions. 2020. Available from: https://www.acc.org/Latest-in-Cardiology/Articles/2021/09/10/13/46/2020-FDA-Guidance-for-Diabetes-Drug-Development (Accessed on: 4 august).
[35]
Saad MF, Greco S, Osei K, et al. Ragaglitazar improves glycemic control and lipid profile in type 2 diabetic subjects: A 12-week, double-blind, placebo-controlled dose-ranging study with an open pioglitazone arm. Diabetes Care 2004; 27(6): 1324-9.
[http://dx.doi.org/10.2337/diacare.27.6.1324] [PMID: 15161783]
[36]
Chakrabarti R, Vikramadithyan RK, Misra P, et al. Ragaglitazar: a novel PPAR α & PPAR γ agonist with potent lipid-lowering and insulin-sensitizing efficacy in animal models. Br J Pharmacol 2003; 140(3): 527-37.
[http://dx.doi.org/10.1038/sj.bjp.0705463] [PMID: 12970088]
[37]
Bisserbe N. How Dr Reddy’s chased diabetes molecule dream. The Economic Times 2007.
[38]
Bailey CJ. Thiazolidinediones. In: xPharm: The comprehensive pharmacology reference. Elsevier 2011.
[39]
Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev 2002; 18(S2) (Suppl. 2): S10-5.
[http://dx.doi.org/10.1002/dmrr.249] [PMID: 11921433]
[40]
Kahn CR, Chen L, Cohen SE. Unraveling the mechanism of action of thiazolidinediones. J Clin Invest 2000; 106(11): 1305-7.
[http://dx.doi.org/10.1172/JCI11705] [PMID: 11104782]
[41]
Wang A, Li X, Zheng Y, et al. Thiazolidinediones protect mouse pancreatic β-cells directly from cytokine-induced cytotoxicity through PPARγ-dependent mechanisms. Acta Diabetol 2013; 50(2): 163-73.
[http://dx.doi.org/10.1007/s00592-010-0239-8] [PMID: 21153483]
[42]
Villacorta L, Schopfer FJ, Zhang J, Freeman BA, Chen YE. PPARγ and its ligands: Therapeutic implications in cardiovascular disease. Clin Sci (Lond) 2009; 116(3): 205-18.
[http://dx.doi.org/10.1042/CS20080195] [PMID: 19118492]
[43]
Lebovitz HE. Thiazolidinediones: The forgotten diabetes medications. Curr Diab Rep 2019; 19(12): 151.
[http://dx.doi.org/10.1007/s11892-019-1270-y] [PMID: 31776781]
[44]
Olefsky J, Saltiel A. PPAR γ and the treatment of insulin resistance. Trends Endocrinol Metab 2000; 11(9): 362-8.
[http://dx.doi.org/10.1016/S1043-2760(00)00306-4] [PMID: 11042466]
[45]
Lebovitz HE, Banerji MA. Insulin resistance and its treatment by thiazolidinediones. Recent Prog Horm Res 2001; 56(1): 265-94.
[http://dx.doi.org/10.1210/rp.56.1.265] [PMID: 11237217]
[46]
Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: from orphan receptors to drug discovery. J Med Chem 2000; 43(4): 527-50.
[http://dx.doi.org/10.1021/jm990554g] [PMID: 10691680]
[47]
Zhang W, Wu R, Zhang F, et al. Thiazolidinediones improve hepatic fibrosis in rats with non-alcoholic steatohepatitis by activating the adenosine monophosphate-activated protein kinase signalling pathway. Clin Exp Pharmacol Physiol 2012; 39(12): 1026-33.
[http://dx.doi.org/10.1111/1440-1681.12020] [PMID: 23127227]
[48]
Potz BA, Parulkar AB, Abid RM, Sodha NR, Sellke FW. Novel molecular targets for coronary angiogenesis and ischemic heart disease. Coron Artery Dis 2017; 28(7): 605-13.
[http://dx.doi.org/10.1097/MCA.0000000000000516] [PMID: 28678145]
[49]
Zhang HY, Reddy SR, Kotchen TA. Antihypertensive effect of pioglitazone is not invariably associated with increased insulin sensitivity. Hypertension 1994; 24(1): 106-10.
[http://dx.doi.org/10.1161/01.HYP.24.1.106] [PMID: 8020998]
[50]
Gilling L, Suwattee P, DeSouza C, Asnani S, Fonseca V. Effects of the thiazolidinediones on cardiovascular risk factors. Am J Cardiovasc Drugs 2002; 2(3): 149-56.
[http://dx.doi.org/10.2165/00129784-200202030-00002] [PMID: 14727977]
[51]
Gerstein HC, Yusuf S, Bosch J, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: A randomised controlled trial. Lancet 2006; 368(9541): 1096-105.
[http://dx.doi.org/10.1016/S0140-6736(06)69420-8] [PMID: 16997664]
[52]
Martens FMAC, Visseren FLJ, Lemay J, de Koning EJP, Rabelink TJ. Metabolic and additional vascular effects of thiazolidinediones. Drugs 2002; 62(10): 1463-80.
[http://dx.doi.org/10.2165/00003495-200262100-00004] [PMID: 12093315]
[53]
Consoli A, Devangelio E. Thiazolidinediones and inflammation. Lupus 2005; 14(9): 794-7.
[http://dx.doi.org/10.1191/0961203305lu2223oa] [PMID: 16218490]
[54]
Boden G, Vaidyula VR, Homko C, Cheung P, Rao AK. Circulating tissue factor procoagulant activity and thrombin generation in patients with type 2 diabetes: effects of insulin and glucose. J Clin Endocrinol Metab 2007; 92(11): 4352-8.
[http://dx.doi.org/10.1210/jc.2007-0933] [PMID: 17785358]
[55]
Walter H, Lübben G. Potential role of oral thiazolidinedione therapy in preserving β-cell function in type 2 diabetes mellitus. Drugs 2005; 65(1): 1-13.
[http://dx.doi.org/10.2165/00003495-200565010-00001] [PMID: 15610048]
[56]
Bełtowski J, Rachańczyk J, Włodarczyk M. Thiazolidinedione-induced fluid retention: Recent insights into the molecular mechanisms. PPAR Res 2013; 2013: 628628.
[http://dx.doi.org/10.1155/2013/628628]
[57]
Strömberg A, Mårtensson J. Gender differences in patients with heart failure. Eur J Cardiovasc Nurs 2003; 2(1): 7-18.
[http://dx.doi.org/10.1016/S1474-5151(03)00002-1] [PMID: 14622644]
[58]
Yang T, Soodvilai S. Renal and vascular mechanisms of thiazolidinedione-induced fluid retention. PPAR Res 2008; 2008: 943614.
[http://dx.doi.org/10.1155/2008/943614]
[59]
Shokouh P, Joharimoghadam A, Roohafza H, et al. Effects of pioglitazone on asymmetric dimethylarginine and components of the metabolic syndrome in nondiabetic patients (EPICAMP Study): a double-blind, randomized clinical trial. PPAR research 2013; 2013.
[60]
Patel C, Wyne KL, McGuire DK. Thiazolidinediones, peripheral oedema and congestive heart failure: What is the evidence? Diab Vasc Dis Res 2005; 2(2): 61-6.
[http://dx.doi.org/10.3132/dvdr.2005.010] [PMID: 16305060]
[61]
Lebovitz HE, Kreider M, Freed MI. Evaluation of liver function in type 2 diabetic patients during clinical trials: Evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care 2002; 25(5): 815-21.
[http://dx.doi.org/10.2337/diacare.25.5.815] [PMID: 11978674]
[62]
Casey DE, Haupt DW, Newcomer JW, et al. Antipsychotic-induced weight gain and metabolic abnormalities: implications for increased mortality in patients with schizophrenia. J Clin Psychiatry 2004; 65 (Suppl. 7): 4-18.
[PMID: 15151456]
[63]
Guan Y, Hao C, Cha DR, et al. Thiazolidinediones expand body fluid volume through PPARγ stimulation of ENaC-mediated renal salt absorption. Nat Med 2005; 11(8): 861-6.
[http://dx.doi.org/10.1038/nm1278] [PMID: 16007095]
[64]
Zhang H, Zhang A, Kohan DE, Nelson RD, Gonzalez FJ, Yang T. Collecting duct-specific deletion of peroxisome proliferator-activated receptor γ blocks thiazolidinedione-induced fluid retention. Proc Natl Acad Sci USA 2005; 102(26): 9406-11.
[http://dx.doi.org/10.1073/pnas.0501744102] [PMID: 15956187]
[65]
Giles TD, Miller AB, Elkayam U, Bhattacharya M, Perez A. Pioglitazone and heart failure: Results from a controlled study in patients with type 2 diabetes mellitus and systolic dysfunction. J Card Fail 2008; 14(6): 445-52.
[http://dx.doi.org/10.1016/j.cardfail.2008.02.007] [PMID: 18672190]
[66]
Singh S, Loke YK, Furberg CD. Thiazolidinediones and heart failure: a teleo-analysis. Diabetes Care 2007; 30(8): 2148-53.
[http://dx.doi.org/10.2337/dc07-0141] [PMID: 17536074]
[67]
Bazelier MT, Vestergaard P, Gallagher AM, et al. Risk of fracture with thiazolidinediones: disease or drugs? Calcif Tissue Int 2012; 90(6): 450-7.
[http://dx.doi.org/10.1007/s00223-012-9591-8] [PMID: 22488176]
[68]
Grey A. Skeletal consequences of thiazolidinedione therapy. Osteoporos Int 2008; 19(2): 129-37.
[http://dx.doi.org/10.1007/s00198-007-0477-y] [PMID: 17901911]
[69]
Kanda J, Izumo N, Kobayashi Y, et al. Effect of the antidiabetic agent pioglitazone on bone metabolism in rats. J Pharmacol Sci 2017; 135(1): 22-8.
[http://dx.doi.org/10.1016/j.jphs.2017.08.004] [PMID: 28928054]
[70]
Lewis JD, Habel LA, Quesenberry CP, et al. Pioglitazone use and risk of bladder cancer and other common cancers in persons with diabetes. JAMA 2015; 314(3): 265-77.
[http://dx.doi.org/10.1001/jama.2015.7996] [PMID: 26197187]
[71]
Levin D, Bell S, Sund R, et al. Pioglitazone and bladder cancer risk: a multipopulation pooled, cumulative exposure analysis. Diabetologia 2015; 58(3): 493-504.
[http://dx.doi.org/10.1007/s00125-014-3456-9] [PMID: 25481707]
[72]
Davidson MB. Pioglitazone (Actos) and bladder cancer: Legal system triumphs over the evidence. J Diabetes Complications 2016; 30(6): 981-5.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.04.004] [PMID: 27133452]
[73]
Filipova E, Uzunova K, Kalinov K, Vekov T. Pioglitazone and the risk of bladder cancer: A meta-analysis. Diabetes Ther 2017; 8(4): 705-26.
[http://dx.doi.org/10.1007/s13300-017-0273-4] [PMID: 28623552]
[74]
Tuccori M, Filion KB, Yin H, Oriana HY, Platt RW, Azoulay L. Pioglitazone use and risk of bladder cancer: Population based cohort study. BMJ 2016; 352: i1541.
[http://dx.doi.org/10.1136/bmj.i1541]
[75]
Farce A, Renault N, Chavatte P. Structural insight into PPARgamma ligands binding. Curr Med Chem 2009; 16(14): 1768-89.
[http://dx.doi.org/10.2174/092986709788186165] [PMID: 19442144]
[76]
Nolte RT, Wisely GB, Westin S, et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 1998; 395(6698): 137-43.
[http://dx.doi.org/10.1038/25931] [PMID: 9744270]
[77]
Chandra V, Huang P, Hamuro Y, et al. Structure of the intact PPAR-γ–RXR-α nuclear receptor complex on DNA. Nature 2008; 456(7220): 350-6.
[http://dx.doi.org/10.1038/nature07413] [PMID: 19043829]
[78]
Ahmadian M, Suh JM, Hah N, et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 2013; 19(5): 557-66.
[http://dx.doi.org/10.1038/nm.3159] [PMID: 23652116]
[79]
Neumann A, Weill A, Ricordeau P, Fagot JP, Alla F, Allemand H. Pioglitazone and risk of bladder cancer among diabetic patients in France: A population-based cohort study. Diabetologia 2012; 55(7): 1953-62.
[http://dx.doi.org/10.1007/s00125-012-2538-9] [PMID: 22460763]
[80]
Azoulay L, Yin H, Filion KB, et al. The use of pioglitazone and the risk of bladder cancer in people with type 2 diabetes: nested case-control study. BMJ 2012; 344(may30 3): e3645.
[http://dx.doi.org/10.1136/bmj.e3645] [PMID: 22653981]
[81]
Wan Y, Chong LW, Evans RM. PPAR-γ regulates osteoclastogenesis in mice. Nat Med 2007; 13(12): 1496-503.
[http://dx.doi.org/10.1038/nm1672] [PMID: 18059282]
[82]
Akune T, Ohba S, Kamekura S, et al. PPAR γ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 2004; 113(6): 846-55.
[http://dx.doi.org/10.1172/JCI200419900] [PMID: 15067317]
[83]
Schoonjans K, Auwerx J. Thiazolidinediones: an update. Lancet 2000; 355(9208): 1008-10.
[http://dx.doi.org/10.1016/S0140-6736(00)90002-3] [PMID: 10768450]
[84]
Debril MB, Renaud JP, Fajas L, Auwerx J. The pleiotropic functions of peroxisome proliferator-activated receptor γ. J Mol Med (Berl) 2001; 79(1): 30-47.
[http://dx.doi.org/10.1007/s001090000145] [PMID: 11327101]
[85]
Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature 2000; 405(6785): 421-4.
[http://dx.doi.org/10.1038/35013000] [PMID: 10839530]
[86]
Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 1998; 391(6662): 79-82.
[http://dx.doi.org/10.1038/34178] [PMID: 9422508]
[87]
Cai W, Yang T, Liu H, et al. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 2018; 163-164: 27-58.
[http://dx.doi.org/10.1016/j.pneurobio.2017.10.002] [PMID: 29032144]
[88]
Zhu Y, Qi C, Korenberg JR, et al. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci USA 1995; 92(17): 7921-5.
[http://dx.doi.org/10.1073/pnas.92.17.7921] [PMID: 7644514]
[89]
Rubenstrunk A, Hanf R, Hum D, Fruchart J, Staels B. Safety issues and prospects for future generations of PPAR modulators. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771(8): 1065-81.
[http://dx.doi.org/10.1016/j.bbalip.2007.02.003] [PMID: 17428730]
[90]
Bruning JB, Chalmers MJ, Prasad S, et al. Partial agonists activate PPARgamma using a helix 12 independent mechanism. Structure 2007; 15(10): 1258-71.
[http://dx.doi.org/10.1016/j.str.2007.07.014] [PMID: 17937915]
[91]
Acton JJ III, Black RM, Jones AB, et al. Benzoyl 2-methyl indoles as selective PPARγ modulators. Bioorg Med Chem Lett 2005; 15(2): 357-62.
[http://dx.doi.org/10.1016/j.bmcl.2004.10.068] [PMID: 15603954]
[92]
Soccio RE, Chen ER, Lazar MA. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab 2014; 20(4): 573-91.
[http://dx.doi.org/10.1016/j.cmet.2014.08.005] [PMID: 25242225]
[93]
Zhang F, Lavan BE, Gregoire FM. Selective modulators of PPAR-γ activity: Molecular aspects related to obesity and side-effects. PPAR Res 2007; 2007: 32696.
[http://dx.doi.org/10.1155/2007/32696]
[94]
Larsen PJ, Lykkegaard K, Larsen LK, et al. Dissociation of antihyperglycaemic and adverse effects of partial perioxisome proliferator-activated receptor (PPAR-γ) agonist balaglitazone. Eur J Pharmacol 2008; 596(1-3): 173-9.
[http://dx.doi.org/10.1016/j.ejphar.2008.08.004] [PMID: 18761337]
[95]
Feng L, Lu S, Zheng Z, et al. Identification of an allosteric hotspot for additive activation of PPARγ in antidiabetic effects. Sci Bull (Beijing) 2021; 66(15): 1559-70.
[http://dx.doi.org/10.1016/j.scib.2021.01.023] [PMID: 36654285]
[96]
Frkic RL, Chua BS, Shin Y, et al. Structural and dynamic elucidation of a non-acid PPARγ partial agonist: SR1988. Nucl Receptor Res 2018; 5: 5.
[http://dx.doi.org/10.11131/2018/101350] [PMID: 30906767]
[97]
Jiang H, Zhou XE, Shi J, et al. Identification and structural insight of an effective PPARγ modulator with improved therapeutic index for anti-diabetic drug discovery. Chem Sci (Camb) 2020; 11(8): 2260-8.
[http://dx.doi.org/10.1039/C9SC05487A] [PMID: 32190280]
[98]
Zhang B, Shu M, Xu C, An C, Wang R, Lin Z. Virtual screening, docking, synthesis and bioactivity evaluation of thiazolidinediones as potential PPARγ partial agonists for preparation of antidiabetic agents. Lett Drug Des Discov 2019; 16(6): 608-17.
[http://dx.doi.org/10.2174/1570180815666180827123512]
[99]
Ranjan Srivastava A, Bhatia R, Chawla P. Synthesis, biological evaluation and molecular docking studies of novel 3,5-disubstituted 2,4-thiazolidinediones derivatives. Bioorg Chem 2019; 89: 102993.
[http://dx.doi.org/10.1016/j.bioorg.2019.102993] [PMID: 31129500]
[100]
Srikanth Kumar K, Lakshmana Rao A, Rao B. Design, synthesis, biological evaluation and molecular docking studies of novel 3-substituted-5-[(indol-3-yl)methylene]-thiazolidine-2,4-dione derivatives. Heliyon 2018; 4(9): e00807.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00807]
[101]
Sawant RL, Wadekar JB, Kharat SB, Makasare HS. Targeting PPAR-γ to design and synthesize antidiabetic thiazolidines. EXCLI J 2018; 17: 598-607.
[PMID: 30108464]
[102]
Naim MJ, Alam MJ, Nawaz F, et al. Synthesis, molecular docking and anti-diabetic evaluation of 2,4-thiazolidinedione based amide derivatives. Bioorg Chem 2017; 73: 24-36.
[http://dx.doi.org/10.1016/j.bioorg.2017.05.007] [PMID: 28582649]
[103]
Nazreen S, Alam MS, Hamid H, et al. Design, synthesis, in silico molecular docking and biological evaluation of novel oxadiazole based thiazolidine-2,4-diones bis-heterocycles as PPAR-γ agonists. Eur J Med Chem 2014; 87: 175-85.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.010] [PMID: 25255433]
[104]
Yasmin S, Capone F, Laghezza A, et al. Novel benzylidene thiazolidinedione derivatives as partial PPARγ agonists and their antidiabetic effects on type 2 diabetes. Sci Rep 2017; 7(1): 14453.
[http://dx.doi.org/10.1038/s41598-017-14776-0] [PMID: 28127051]
[105]
Madhavan GR, Chakrabarti R, Anantha Reddy K, et al. Dual PPAR-α and -γ activators derived from novel benzoxazinone containing thiazolidinediones having antidiabetic and hypolipidemic potential. Bioorg Med Chem 2006; 14(2): 584-91.
[http://dx.doi.org/10.1016/j.bmc.2005.08.043] [PMID: 16198573]
[106]
Bhattarai BR, Kafle B, Hwang JS, et al. Thiazolidinedione derivatives as PTP1B inhibitors with antihyperglycemic and antiobesity effects. Bioorg Med Chem Lett 2009; 19(21): 6161-5.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.020] [PMID: 19783142]
[107]
Zilliox LA, Chandrasekaran K, Russell JW. Strategies for the prevention or reversal of neuropathy. In: Diabetic Neuropathy. Elsevier 2022; pp. 259-81.
[http://dx.doi.org/10.1016/B978-0-12-820669-0.00016-5]
[108]
Petrash JM. All in the family: aldose reductase and closely related aldo-keto reductases. Cell Mol Life Sci 2004; 61(7-8): 737-49.
[http://dx.doi.org/10.1007/s00018-003-3402-3] [PMID: 15094999]
[109]
Maccari R, Ottanà R, Ciurleo R, et al. Synthesis, induced-fit docking investigations, and in vitro aldose reductase inhibitory activity of non-carboxylic acid containing 2,4-thiazolidinedione derivatives. Bioorg Med Chem 2008; 16(11): 5840-52.
[http://dx.doi.org/10.1016/j.bmc.2008.04.072] [PMID: 18492610]
[110]
Daş-Evcimen N, Bozdağ-Dündar O, Sarikaya M, Ertan R. in vitro aldose reductase inhibitory activity of some flavonyl-2,4-thiazolidinediones. J Enzyme Inhib Med Chem 2008; 23(3): 297-301.
[http://dx.doi.org/10.1080/14756360701475282] [PMID: 18569331]
[111]
Costantino L, Rastelli G, Gamberini MC, Barlocco D. Pharmacological approaches to the treatment of diabetic complications. Expert Opin Ther Pat 2000; 10(8): 1245-62.
[http://dx.doi.org/10.1517/13543776.10.8.1245]
[112]
Sever B. Altıntop MD, Demir Y, et al. A new series of 2,4-thiazolidinediones endowed with potent aldose reductase inhibitory activity. Open Chem 2021; 19(1): 347-57.
[http://dx.doi.org/10.1515/chem-2021-0032]
[113]
Zhang L, Zhang H, Zhao Y, et al. Inhibitor selectivity between aldo-keto reductase superfamily members AKR1B10 and AKR1B1: Role of Trp112 (Trp111). FEBS Lett 2013; 587(22): 3681-6.
[http://dx.doi.org/10.1016/j.febslet.2013.09.031] [PMID: 24100137]
[114]
van Gerven JMA, Tjon-A-Tsien AML. The efficacy of aldose reductase inhibitors in the management of diabetic complications. Comparison with intensive insulin treatment and pancreatic transplantation. Drugs Aging 1995; 6(1): 9-28.
[http://dx.doi.org/10.2165/00002512-199506010-00002] [PMID: 7696781]
[115]
Bruno G, Costantino L, Curinga C, et al. Synthesis and aldose reductase inhibitory activity of 5-arylidene-2,4-thiazolidinediones. Bioorg Med Chem 2002; 10(4): 1077-84.
[http://dx.doi.org/10.1016/S0968-0896(01)00366-2] [PMID: 11836118]
[116]
Mohd Siddique MU, Thakur A, Shilkar D, et al. Non-carboxylic acid inhibitors of aldose reductase based on N-substituted thiazolidinedione derivatives. Eur J Med Chem 2021; 223: 113630.
[http://dx.doi.org/10.1016/j.ejmech.2021.113630] [PMID: 34175538]
[117]
Kumar Pasala V, Gudipudi G, Sankeshi V, et al. Design, synthesis and biological evaluation of selective hybrid coumarin-thiazolidinedione aldose reductase-II inhibitors as potential antidiabetics. Bioorg Chem 2021; 114: 104970.
[http://dx.doi.org/10.1016/j.bioorg.2021.104970] [PMID: 34120026]
[118]
Khan N, Gautam G, Gupta AK. In silico protein-ligand docking studies on thiazolidinediones analogs as potential aldose reductase inhibitors. Biol Forum-. Int J 2019; 11(1): 77-83.
[119]
Das-Evcimen N. Sarıkaya M, Selen Gurkan-Alp A, Bozdag-Dundar O. Aldose reductase inhibitory potential of several Thiazolyl-thiazolidine- 2,4-Diones. Lett Drug Des Discov 2013; 10(5): 415-9.
[http://dx.doi.org/10.2174/1570180811310050008]
[120]
Reddy TN, Ravinder M, Bagul P, et al. Synthesis and biological evaluation of new epalrestat analogues as aldose reductase inhibitors (ARIs). Eur J Med Chem 2014; 71: 53-66.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.043] [PMID: 24275248]
[121]
Bozdağ-Dündar O, Evranos B, Daş-Evcimen N, Sarıkaya M, Ertan R. Synthesis and aldose reductase inhibitory activity of some new chromonyl-2,4-thiazolidinediones. Eur J Med Chem 2008; 43(11): 2412-7.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.004] [PMID: 18313804]
[122]
Prashantha Kumar BR, Santhosh Kumar S, Viral P, et al. Novel glitazones: glucose uptake and cytotoxic activities, and structure–activity relationships. Med Chem Res 2012; 21(9): 2689-701.
[http://dx.doi.org/10.1007/s00044-011-9792-0]
[123]
Kumar BRP, Nanjan MJ, Suresh B, Karvekar MD, Adhikary L. Microwave induced synthesis of the thiazolidine-2,4-dione motif and the efficient solvent free-solid phase parallel syntheses of 5-benzylidene-thiazolidine-2,4-dione and 5-benzylidene-2-thioxo-thiazolidine-4-one compounds. J Heterocycl Chem 2006; 43(4): 897-903.
[http://dx.doi.org/10.1002/jhet.5570430413]
[124]
Chadha N, Silakari O. Thiazolidine-2, 4-Dione: A Potential weapon for targeting multiple pathological conditions. In: key heterocycle cores for designing multitargeting molecules. Elsevier 2018; p. 175-209.
[http://dx.doi.org/10.1016/B978-0-08-102083-8.00005-4]
[125]
Jain VS, Vora DK, Ramaa CS. Thiazolidine-2,4-diones: Progress towards multifarious applications. Bioorg Med Chem 2013; 21(7): 1599-620.
[http://dx.doi.org/10.1016/j.bmc.2013.01.029] [PMID: 23419324]
[126]
Thangavel N, Al Bratty M, Javed SA, Ahsan W, Alhazmi HA. Targeting peroxisome proliferator-activated receptors using thiazolidinediones: strategy for design of novel antidiabetic drugs. Int J Med Chem 2017; 2017: 1069718.
[http://dx.doi.org/10.1155/2017/1069718]
[127]
Darwish KM, Salama I, Mostafa S, Gomaa MS, Helal MA. Design, synthesis, and biological evaluation of novel thiazolidinediones as PPARγ/FFAR1 dual agonists. Eur J Med Chem 2016; 109: 157-72.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.049] [PMID: 26774923]
[128]
Chhajed SS, Chaskar S, Kshirsagar SK, Haldar GMA, Kar Mahapatra D. Rational design and synthesis of some PPAR-γ agonists: Substituted benzylideneamino-benzylidene-thiazolidine-2,4-diones. Comput Biol Chem 2017; 67: 260-5.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.02.004] [PMID: 28193552]
[129]
Abdellatif KRA, Fadaly WAA, Kamel GM, Elshaier YAMM, El-Magd MA. Design, synthesis, modeling studies and biological evaluation of thiazolidine derivatives containing pyrazole core as potential anti-diabetic PPAR-γ agonists and anti-inflammatory COX-2 selective inhibitors. Bioorg Chem 2019; 82: 86-99.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.034] [PMID: 30278282]
[130]
Bansal G, Singh S, Monga V, Thanikachalam PV, Chawla P. Synthesis and biological evaluation of thiazolidine-2,4-dione-pyrazole conjugates as antidiabetic, anti-inflammatory and antioxidant agents. Bioorg Chem 2019; 92: 103271.
[http://dx.doi.org/10.1016/j.bioorg.2019.103271] [PMID: 31536952]
[131]
Yamanouchi T. Troglitazone. Jpn J Clin Med 2000; 58(2): 389-94.
[PMID: 10707563]
[132]
Stevenson RW, Hutson NJ, Krupp MN, et al. Actions of novel antidiabetic agent englitazone in hyperglycemic hyperinsulinemic ob/ob mice. Diabetes 1990; 39(10): 1218-27.
[http://dx.doi.org/10.2337/diab.39.10.1218] [PMID: 2210074]
[133]
Yang J, Wei S, Wang DS, Wang YC, Kulp SK, Chen CS. Pharmacological exploitation of the peroxisome proliferator-activated receptor γ agonist ciglitazone to develop a novel class of androgen receptor-ablative agents. J Med Chem 2008; 51(7): 2100-7.
[http://dx.doi.org/10.1021/jm701212m] [PMID: 18335975]
[134]
Riddle M, Ahmann A. Therapeutics of type 2 diabetes mellitus. In: Williams Textbook of Endocrinology. (14th ed.), Philadelphia, PA: Elsevier 2020.
[135]
Gillies PS, Dunn CJ. Pioglitazone. Drugs 2000; 60(2): 333-43.
[http://dx.doi.org/10.2165/00003495-200060020-00009] [PMID: 10983737]
[136]
Day C, Bailey C. Ciglitazone. In: Reference module in biomedical sciences . Elsevier 2016.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.97236-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy