[1]
Sotiropoulou G, Zingkou E, Pampalakis G. Reconstructing the epidermal proteolytic cascades in health and disease. J Pathol 2022; 257(4): 545-60.
[http://dx.doi.org/10.1002/path.5888] [PMID: 35218558]
[http://dx.doi.org/10.1002/path.5888] [PMID: 35218558]
[2]
Brännström K, Öhman A, von Pawel Rammingen U, Olofsson A, Brattsand M. Characterization of SPINK9, a KLK5-specific inhibitor expressed in palmo-plantar epidermis. Biol Chem 2012; 393(5): 369-77.
[http://dx.doi.org/10.1515/hsz-2011-0238] [PMID: 22505519]
[http://dx.doi.org/10.1515/hsz-2011-0238] [PMID: 22505519]
[3]
Briot A, Deraison C, Lacroix M, et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med 2009; 206(5): 1135-47.
[http://dx.doi.org/10.1084/jem.20082242] [PMID: 19414552]
[http://dx.doi.org/10.1084/jem.20082242] [PMID: 19414552]
[4]
Zhu Y, Underwood J, Macmillan D, et al. Persistent kallikrein 5 activation induces atopic dermatitis-like skin architecture independent of PAR2 activity. J Allergy Clin Immunol 2017; 140(5): 1310-1322.e5.
[http://dx.doi.org/10.1016/j.jaci.2017.01.025] [PMID: 28238749]
[http://dx.doi.org/10.1016/j.jaci.2017.01.025] [PMID: 28238749]
[5]
Billi AC, Ludwig JE, Fritz Y, et al. KLK6 expression in skin induces PAR1-mediated psoriasiform dermatitis and inflammatory joint disease. J Clin Invest 2020; 130(6): 3151-7.
[http://dx.doi.org/10.1172/JCI133159] [PMID: 32155135]
[http://dx.doi.org/10.1172/JCI133159] [PMID: 32155135]
[6]
Yamasaki K, Di Nardo A, Bardan A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 2007; 13(8): 975-80.
[http://dx.doi.org/10.1038/nm1616] [PMID: 17676051]
[http://dx.doi.org/10.1038/nm1616] [PMID: 17676051]
[7]
Lande R, Botti E, Jandus C, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun 2014; 5(1): 5621.
[http://dx.doi.org/10.1038/ncomms6621] [PMID: 25470744]
[http://dx.doi.org/10.1038/ncomms6621] [PMID: 25470744]
[8]
Zingkou E, Pampalakis G, Sotiropoulou G. Cathelicidin represents a new target for manipulation of skin inflammation in Netherton syndrome. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10): 165831.
[http://dx.doi.org/10.1016/j.bbadis.2020.165831] [PMID: 32442469]
[http://dx.doi.org/10.1016/j.bbadis.2020.165831] [PMID: 32442469]
[9]
Nylander-Lundqvist E, Egelrud T. Formation of active IL-1 beta from pro-IL-1 beta catalyzed by stratum corneum chymotryptic enzyme in vitro. Acta Derm Venereol 1997; 77(3): 203-6.
[http://dx.doi.org/10.2340/0001555577203206] [PMID: 9188871]
[http://dx.doi.org/10.2340/0001555577203206] [PMID: 9188871]
[10]
Chavanas S, Bodemer C, Rochat A, et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 2000; 25(2): 141-2.
[http://dx.doi.org/10.1038/75977] [PMID: 10835624]
[http://dx.doi.org/10.1038/75977] [PMID: 10835624]
[11]
Hewett DR, Simons AL, Mangan NE, et al. Lethal, neonatal ichthyosis with increased proteolytic processing of filaggrin in a mouse model of Netherton syndrome. Hum Mol Genet 2005; 14(2): 335-46.
[http://dx.doi.org/10.1093/hmg/ddi030] [PMID: 15590704]
[http://dx.doi.org/10.1093/hmg/ddi030] [PMID: 15590704]
[12]
Descargues P, Deraison C, Bonnart C, et al. Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet 2005; 37(1): 56-65.
[http://dx.doi.org/10.1038/ng1493] [PMID: 15619623]
[http://dx.doi.org/10.1038/ng1493] [PMID: 15619623]
[13]
Furio L, Pampalakis G, Michael IP, Nagy A, Sotiropoulou G, Hovnanian A. KLK5 inactivation reverses cutaneous hallmarks of Netherton syndrome. PLoS Genet 2015; 11(9): e1005389.
[http://dx.doi.org/10.1371/journal.pgen.1005389] [PMID: 26390218]
[http://dx.doi.org/10.1371/journal.pgen.1005389] [PMID: 26390218]
[14]
Furio L, de Veer S, Jaillet M, et al. Transgenic kallikrein 5 mice reproduce major cutaneous and systemic hallmarks of Netherton syndrome. J Exp Med 2014; 211(3): 499-513.
[http://dx.doi.org/10.1084/jem.20131797] [PMID: 24534191]
[http://dx.doi.org/10.1084/jem.20131797] [PMID: 24534191]
[15]
Kasparek P, Ileninova Z, Zbodakova O, et al. KLK5 and KLK7 ablation fully rescues lethality of Netherton syndrome-like phenotype. PLoS Genet 2017; 13(1): e1006566.
[http://dx.doi.org/10.1371/journal.pgen.1006566] [PMID: 28095415]
[http://dx.doi.org/10.1371/journal.pgen.1006566] [PMID: 28095415]
[16]
Zingkou E, Pampalakis G, Sotiropoulou G. Cocktails of KLK5 protease inhibitors and anti-TNFα therapeutics: An effective treatment for Netherton syndrome. J Clin Immunol 2022; 42(3): 597-605.
[http://dx.doi.org/10.1007/s10875-021-01195-0] [PMID: 35040012]
[http://dx.doi.org/10.1007/s10875-021-01195-0] [PMID: 35040012]
[17]
Koerber JT, Lee WP, Yi T, et al. Anti-KLK7 antibodies, anti-KLK5 antibodies, multispecific anti-KLK5/KLK7 antibodies, and methods of use. US Patent 0130492, 2021.
[18]
Sotiropoulou G, Zingkou E, Pampalakis G. Redirecting drug repositioning to discover innovative cosmeceuticals. Exp Dermatol 2021; 30(5): 628-44.
[http://dx.doi.org/10.1111/exd.14299] [PMID: 33544970]
[http://dx.doi.org/10.1111/exd.14299] [PMID: 33544970]
[19]
Petrova E, Hovnanian A. Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opin Orphan Drugs 2020; 8(11): 455-87.
[http://dx.doi.org/10.1080/21678707.2020.1857724]
[http://dx.doi.org/10.1080/21678707.2020.1857724]
[20]
Liddle J, Beneton V, Benson M, et al. A potent and selective kallikrein-5 inhibitor delivers high pharmacological activity in skin from patients with Netherton syndrome. J Invest Dermatol 2021; 141(9): 2272-9.
[http://dx.doi.org/10.1016/j.jid.2021.01.029] [PMID: 33744298]
[http://dx.doi.org/10.1016/j.jid.2021.01.029] [PMID: 33744298]
[21]
Bisyris E, Zingkou E, Kordopati GG, et al. A novel theranostic activity-based probe targeting kallikrein 7 for the diagnosis and treatment of skin diseases. Chem Commun 2021; 57(53): 6507-10.
[http://dx.doi.org/10.1039/D1CC01673C] [PMID: 34105530]
[http://dx.doi.org/10.1039/D1CC01673C] [PMID: 34105530]
[22]
Cai H, Tao X, Shim J, et al. Mini-PBPK-based population model and covariate analysis to assess the complex pharmacokinetics and pharmacodynamics of RO7449135, an anti-KLK5/KLK7 bispecific antibody in cynomolgus monkeys. AAPS J 2023; 25(4): 64.
[http://dx.doi.org/10.1208/s12248-023-00829-y] [PMID: 37353723]
[http://dx.doi.org/10.1208/s12248-023-00829-y] [PMID: 37353723]
[23]
Chavarria-Smith J, Chiu CPC, Jackman JK, et al. Dual antibody inhibition of KLK5 and KLK7 for Netherton syndrome and atopic dermatitis. Sci Transl Med 2022; 14(675): eabp9159.
[http://dx.doi.org/10.1126/scitranslmed.abp9159] [PMID: 36516271]
[http://dx.doi.org/10.1126/scitranslmed.abp9159] [PMID: 36516271]
[24]
Dressen A, David B, Ismaili MHA, et al. Use of KLK5 antagonists for treatment of a disease. WO Patent 2019195472, 2018.
[25]
Jackman JK, Stockwell A, Choy DF, et al. Genome-wide association study identifies kallikrein 5 in type 2 inflammation-low asthma. J Allergy Clin Immunol 2022; 150(4): 972-978.e7.
[http://dx.doi.org/10.1016/j.jaci.2022.03.033] [PMID: 35487308]
[http://dx.doi.org/10.1016/j.jaci.2022.03.033] [PMID: 35487308]
[26]
Wei J, Yang Y, Wang G, Liu M. Current landscape and future directions of bispecific antibodies in cancer immunotherapy. Front Immunol 2022; 13: 1035276.
[http://dx.doi.org/10.3389/fimmu.2022.1035276] [PMID: 36389699]
[http://dx.doi.org/10.3389/fimmu.2022.1035276] [PMID: 36389699]
[27]
Arnold DD, Yalamanoglu A, Boyman O. Systematic review of safety and efficacy of IL-1-targeted biologics in treating immune-mediated disorders. Front Immunol 2022; 13: 888392.
[http://dx.doi.org/10.3389/fimmu.2022.888392] [PMID: 35874710]
[http://dx.doi.org/10.3389/fimmu.2022.888392] [PMID: 35874710]
[28]
Azouz NP, Klingler AM, Pathre P, et al. Functional role of kallikrein 5 and proteinase-activated receptor 2 in eosinophilic esophagitis. Sci Transl Med 2020; 12(545): eaaz7773.
[http://dx.doi.org/10.1126/scitranslmed.aaz7773] [PMID: 32461336]
[http://dx.doi.org/10.1126/scitranslmed.aaz7773] [PMID: 32461336]