Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Lymphocyte Expression of Intracellular Cytokines and Heat Shock Proteins in Peripheral Blood of Patients with Atopic Dermatitis

Author(s): Fadia Mahmoud, David D. Haines*, Basel Ibrahim and Nermina Arifhodzic

Volume 29, Issue 29, 2023

Published on: 09 October, 2023

Page: [2345 - 2353] Pages: 9

DOI: 10.2174/1381612829666230818145709

Price: $65

Abstract

Introduction: The present study evaluates expression by activated CD4+ T helper1 (Th1) and T helper 2 (Th2) T lymphocytes of pro-inflammatory cytokines and cytoprotective heat shock proteins (HSPs) in peripheral blood of atopic dermatitis (AD) patients.

Methods: This research represents preliminary work by the authors to identify correlates between critical immune parameters with the potential to serve as guidelines for the development of pharmacological strategies for altering these factors to promote the restoration of healthy immune profiles in persons afflicted with major atopic diseases. The major experimental strategy used in this research assessed immune activation by peripheral blood mononuclear cells (PBMC) from 21 AD patients and 12 age- and gender-matched healthy control subjects cultured with phorbol myristate acetate (PMA) and ionomycin (PMA/I), which are mutagenic immune activators, to induce expression of pro-inflammatory biomarkers in CD4+ T cells differentiated to express Th1 or Th2 cytokines and heme oxygenase-1 (HO-1) intracellularly (i). Evaluations were performed using an FC500 Beckman-Coulter flow cytometer. Elevated CD4+ T cell expression of cytokines, interleukin-4 (iIL-4), interleukin- 5 (iIL-5), interleukin-10 (iIL-10), interferon-gamma (iIFN-g), tumor necrosis factor-alpha (iTNF-α), were observed.

Results: Additionally, the heat shock proteins (HSP) iHO-1 and iHSP-70 were evaluated in cells from the blood of AD patients versus the control subjects. The present study demonstrated an elevated expression of both Th1 and Th2-associated cytokines in CD4+ T cells of AD patients, with a significant direct correlation between Th1 and Th2 cell populations, thus yielding insight into the immune features of the AD-associated systemic inflammatory profile.

Conclusion: Finally, the observed increased iHO-1 and iHSP-70 expressions likely represent adaptive physiologic countermeasures to AD-associated inflammatory tissue damage, suggesting that HSP inducers are promising candidates for the management of atopic disorders.

[1]
Kim KH. Overview of atopic dermatitis. Asia Pac Allergy 2013; 3(2): 79-87.
[http://dx.doi.org/10.5415/apallergy.2013.3.2.79] [PMID: 23667830]
[2]
Egawa G, Weninger W. Pathogenesis of atopic dermatitis: A short review. Cogent Biol 2015; 1(1)1103459
[http://dx.doi.org/10.1080/23312025.2015.1103459]
[3]
Biedermann T, Skabytska Y, Kaesler S, Volz T. Regulation of T cell immunity in atopic dermatitis by microbes: The yin and yang of cutaneous inflammation. Front Immunol 2015; 6: 353.
[http://dx.doi.org/10.3389/fimmu.2015.00353] [PMID: 26217343]
[4]
Thomsen SF. Atopic dermatitis: Natural history, diagnosis, and treatment. ISRN Allergy 2014; 2014: 1-7.
[http://dx.doi.org/10.1155/2014/354250] [PMID: 25006501]
[5]
Kalhan TA, Loo EX, Kalhan AC, et al. Atopic dermatitis and early childhood caries: Results of the GUSTO study. J Allergy Clin Immunol 2017; 139(6): 2000-3.
[6]
Ji H, Li XK. Oxidative stress in atopic dermatitis. Oxid Med Cell Longev 2016; 2016: 1-8.
[http://dx.doi.org/10.1155/2016/2721469] [PMID: 27006746]
[7]
Brandt EB, Sivaprasad U. Th2 cytokines and atopic dermatitis. J Clin Cell Immunol 2011; 2(3): 110.
[http://dx.doi.org/10.4172/2155-9899.1000110] [PMID: 21994899]
[8]
Nedoszytko B, Sokołowska-Wojdyło M, Ruckemann- Dziurdzińska K, Roszkiewicz J, Nowicki RJ. Chemokines and cytokines network in the pathogenesis of the inflammatory skin diseases: Atopic dermatitis, psoriasis and skin mastocytosis. Postepy Dermatol Alergol 2014; 2(2): 84-91.
[http://dx.doi.org/10.5114/pdia.2014.40920] [PMID: 25097473]
[9]
Matsumoto H, Ishikawa K, Itabe H, Maruyama Y. Carbon monoxide and bilirubin from heme oxygenase-1 suppresses reactive oxygen species generation and plasminogen activator inhibitor-1 induction. Mol Cell Biochem 2006; 291(1-2): 21-8.
[http://dx.doi.org/10.1007/s11010-006-9190-y] [PMID: 16625420]
[10]
Barañano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: A major physiologic cytoprotectant. Proc Natl Acad Sci USA 2002; 99(25): 16093-8.
[http://dx.doi.org/10.1073/pnas.252626999] [PMID: 12456881]
[11]
Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 2010; 50(1): 323-54.
[http://dx.doi.org/10.1146/annurev.pharmtox.010909.105600] [PMID: 20055707]
[12]
Kirino M, Kirino Y, Takeno M, et al. Heme oxygenase 1 attenuates the development of atopic dermatitis-like lesions in mice: Implications for human disease. J Allergy Clin Immunol 2008; 122(2): 290-297.e8, 297.e1-297.e8.
[http://dx.doi.org/10.1016/j.jaci.2008.05.031] [PMID: 18582925]
[13]
Schipper HM. Heme oxygenase-1: Role in brain aging and neurodegeneration. Exp Gerontol 2000; 35(6-7): 821-30.
[http://dx.doi.org/10.1016/S0531-5565(00)00148-0] [PMID: 11053673]
[14]
Akram M, Shin I, Kim KA, et al. A newly synthesized macakurzin C-derivative attenuates acute and chronic skin inflammation: The Nrf2/heme oxygenase signaling as a potential target. Toxicol Appl Pharmacol 2016; 307: 62-71.
[http://dx.doi.org/10.1016/j.taap.2016.07.013] [PMID: 27450019]
[15]
Kim H, Youn GS, An SY, Kwon HY, Choi SY, Park J. 2,3-Dimethoxy-2'-hydroxychalcone ameliorates TNF-α-induced ICAM-1 expression and subsequent monocyte adhesiveness via NF-kappaB inhibition and HO-1 induction in HaCaT cells. BMB Rep 2016; 49(1): 57-62.
[http://dx.doi.org/10.5483/BMBRep.2016.49.1.141] [PMID: 26277982]
[16]
Choi JH, Jin SW, Han EH, et al. Platycodon grandiflorum root-derived saponins attenuate atopic dermatitis-like skin lesions via suppression of NF-κB and STAT1 and activation of Nrf2/ARE-mediated heme oxygenase-1. Phytomedicine 2014; 21(8-9): 1053-61.
[http://dx.doi.org/10.1016/j.phymed.2014.04.011] [PMID: 24854572]
[17]
Win-Shwe TT, Yanagisawa R, Koike E, Nitta H, Takano H. Expression levels of neuroimmune biomarkers in hypothalamus of allergic mice after phthalate exposure. J Appl Toxicol 2013; 33(10): 1070-8.
[http://dx.doi.org/10.1002/jat.2835] [PMID: 23148021]
[18]
Han EH, Hwang YP, Choi JH, et al. Psidium guajava extract inhibits thymus and activation-regulated chemokine (TARC/CCL17) production in human keratinocytes by inducing heme oxygenase-1 and blocking NF-κB and STAT1 activation. Environ Toxicol Pharmacol 2011; 32(2): 136-45.
[http://dx.doi.org/10.1016/j.etap.2011.04.004]
[19]
Mahmoud F, Haines D, Al-Awadhi R, et al. Sour cherry (Prunus cerasus) seed extract increases heme oxygenase-1 expression and decreases proinflammatory signaling in peripheral blood human leukocytes from rheumatoid arthritis patients. Int Immunopharmacol 2014; 20(1): 188-96.
[http://dx.doi.org/10.1016/j.intimp.2014.02.031] [PMID: 24631368]
[20]
Mahmoud FF, Al-Awadhi AM, Haines DD. Amelioration of human osteoarthritis symptoms with topical ‘biotherapeutics’: A phase I human trial. 2014. Available From: http://www.saphw.ch/en/pharmalunch
[21]
Mahmoud F, Al-Ozairi E, Haines D, et al. Effect of Diabetea tea™ consumption on inflammatory cytokines and metabolic biomarkers in type 2 diabetes patients. J Ethnopharmacol 2016; 194: 1069-77.
[http://dx.doi.org/10.1016/j.jep.2016.10.073] [PMID: 27989874]
[22]
Mahmoud F, Haines D, Al-Ozairi E, Dashti A. Effect of black tea consumption on intracellular cytokines, regulatory T cells and metabolic biomarkers in type 2 diabetes patients. Phytother Res 2016; 30(3): 454-62.
[http://dx.doi.org/10.1002/ptr.5548] [PMID: 26692322]
[23]
Mahmoud FF, Al-Awadhi R, Haines DD, et al. Sour cherry seed kernel extract increases heme oxygenase-1 expression and decreases representation of CD3+ TNF-α+ and CD3+IL-8+ subpopulations in peripheral blood leukocyte cultures from type 2 diabetes patients. Phytother Res 2013; 27(5): 767-74.
[http://dx.doi.org/10.1002/ptr.4783] [PMID: 22848037]
[24]
Charman C, Williams H. Outcome measures of disease severity in atopic eczema. Arch Dermatol 2000; 136(6): 763-9.
[http://dx.doi.org/10.1001/archderm.136.6.763] [PMID: 10871941]
[25]
Charman C, Chambers C, Williams H. Measuring atopic dermatitis severity in randomized controlled clinical trials: What exactly are we measuring? J Invest Dermatol 2003; 120(6): 932-41.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12251.x] [PMID: 12787117]
[26]
National Institute for Health (NIH) and Clinical Excellence. Atopic eczema in under 12s: diagnosis and management 2007. Available From: https://www.nice.org.uk/guidance/cg57
[27]
Sawada E, Yoshida N, Sugiura A, Imokawa G. Th1 cytokines accentuate but Th2 cytokines attenuate ceramide production in the stratum corneum of human epidermal equivalents: An implication for the disrupted barrier mechanism in atopic dermatitis. J Dermatol Sci 2012; 68(1): 25-35.
[http://dx.doi.org/10.1016/j.jdermsci.2012.07.004] [PMID: 22884781]
[28]
Kawamoto M, Matsui E, Kaneko H, et al. IL-10 plays an important role as an immune-modulator in the pathogenesis of atopic diseases. Mol Med Rep 2008; 1(6): 837-42.
[http://dx.doi.org/10.3892/mmr_00000037] [PMID: 21479493]
[29]
Lee TS, Chau LY. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med 2002; 8(3): 240-6.
[http://dx.doi.org/10.1038/nm0302-240] [PMID: 11875494]
[30]
Haines DD, Tosaki A. Heme degradation in pathophysiology of and countermeasures to inflammation-associated disease. Int J Mol Sci 2020; 21(24): 9698.
[http://dx.doi.org/10.3390/ijms21249698] [PMID: 33353225]
[31]
Ricchetti GA, Williams LM, Foxwell BMJ. Heme oxygenase 1 expression induced by IL-10 requires STAT-3 and phosphoinositol-3 kinase and is inhibited by lipopolysaccharide. J Leukoc Biol 2004; 76(3): 719-26.
[http://dx.doi.org/10.1189/jlb.0104046] [PMID: 15240748]
[32]
Newsom M, Bashyam AM, Balogh EA, Feldman SR, Strowd LC. New and emerging systemic treatments for atopic dermatitis. Drugs 2020; 80(11): 1041-52.
[http://dx.doi.org/10.1007/s40265-020-01335-7] [PMID: 32519223]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy