Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Allo-polyherbal Approaches for Managing Metabolic Syndrome: A Narrative Review

Author(s): Pratiksha Sharma, Varinder Singh and Ashish Baldi*

Volume 14, Issue 5, 2024

Published on: 12 October, 2023

Article ID: e121023222118 Pages: 27

DOI: 10.2174/0122103155272968231003030032

Price: $65

conference banner
Abstract

Metabolic syndrome (MS) represents a complex cluster of medical conditions with profound implications for global public health. This constellation of disorders substantially increases the susceptibility to type 2 diabetes, obesity, thrombosis, cardiovascular disease, and hyperlipidemia. The drugs currently prescribed for managing MS offer limited efficacy, likely due to their limited scope of action. Owing to their restricted mechanisms of action, these medications often lead to significant side effects such as weight gain, bone marrow impairment, Raynaud's phenomenon, galactorrhea, and others. Consequently, these adverse effects contribute to poor patient adherence and restrict the overall effectiveness of the treatment. Thus, developing new therapeutic strategies for managing MS is certainly required. Recent investigations have been concentrated on formulating strategies that combine conventional synthetic drugs with herbal medicines (which act via multiple targets), aiming to enhance treatment efficacy and enhance patient adherence in the management of MS. This concept of combining synthetic and herbal drugs is termed ‘Allo-polyherbal’ and has been shown to improve the efficacy of synthetic drugs and reduction of adverse effects. The present review uncovers the concept of Allo-polyherbal and reveals the potential benefits of using Allopolyherbal in managing diabetes, cardiovascular, hypertension, hyperlipidemia, obesity, and thrombosis leading to MS.

Graphical Abstract

[1]
Dandona, P.; Aljada, A.; Chaudhuri, A.; Mohanty, P.; Garg, R. Metabolic Syndrome. Circulation, 2005, 111(11), 1448-1454.
[http://dx.doi.org/10.1161/01.CIR.0000158483.13093.9D] [PMID: 15781756]
[2]
Kolovou, G.D.; Anagnostopoulou, K.K.; Salpea, K.D.; Mikhailidis, D.P. The prevalence of metabolic syndrome in various populations. Am. J. Med. Sci., 2007, 333(6), 362-371.
[http://dx.doi.org/10.1097/MAJ.0b013e318065c3a1] [PMID: 17570989]
[3]
Magliano, D.J.; Shaw, J.E.; Zimmet, P.Z. How to best define the metabolic syndrome. Ann. Med., 2006, 38(1), 34-41.
[http://dx.doi.org/10.1080/07853890500300311] [PMID: 16448987]
[4]
Bianchi, C.; Penno, G.; Romero, F.; Del Prato, S.; Miccoli, R. Treating the metabolic syndrome. Expert Rev. Cardiovasc. Ther., 2007, 5(3), 491-506.
[http://dx.doi.org/10.1586/14779072.5.3.491] [PMID: 17489673]
[5]
Newcomer, J.W. Metabolic syndrome and mental illness. Am. J. Manag. Care, 2007, 13(7)(Suppl.), S170-S177.
[PMID: 18041878]
[6]
Nyakudya, T.T.; Tshabalala, T.; Dangarembizi, R.; Erlwanger, K.H.; Ndhlala, A.R. The potential therapeutic value of medicinal plants in the management of metabolic disorders. Molecules, 2020, 25(11), 2669.
[http://dx.doi.org/10.3390/molecules25112669] [PMID: 32526850]
[7]
Behl, T.; Gupta, A.; Chigurupati, S.; Singh, S.; Sehgal, A.; Badavath, V.N.; Alhowail, A.; Mani, V.; Bhatia, S.; Al-Harrasi, A.; Bungau, S. Natural and synthetic agents targeting reactive carbonyl species against metabolic syndrome. Molecules, 2022, 27(5), 1583.
[http://dx.doi.org/10.3390/molecules27051583] [PMID: 35268685]
[8]
Flier, J.S.; Underhill, L.H.; Eisenbarth, G.S. Type I diabetes mellitus. A chronic autoimmune disease. N. Engl. J. Med., 1986, 314(21), 1360-1368.
[http://dx.doi.org/10.1056/NEJM198605223142106] [PMID: 3517648]
[9]
Kaul, K.; Tarr, J. M.; Ahmad, S. I.; Kohner, E. M.; Chibber, R. Introduction to diabetes mellitus. Diabetes an old Dis. a new insight, 2013, 1-11.
[10]
Angulo, P. Nonalcoholic fatty liver disease. N. Engl. J. Med., 2002, 346(16), 1221-1231.
[http://dx.doi.org/10.1056/NEJMra011775] [PMID: 11961152]
[11]
Russell, N.D.F.; Cooper, M.E. 50 years forward: mechanisms of hyperglycaemia-driven diabetic complications. Diabetologia, 2015, 58(8), 1708-1714.
[http://dx.doi.org/10.1007/s00125-015-3600-1] [PMID: 25906755]
[12]
Plum, L.; Belgardt, B.F.; Brüning, J.C. Central insulin action in energy and glucose homeostasis. J. Clin. Invest., 2006, 116(7), 1761-1766.
[http://dx.doi.org/10.1172/JCI29063] [PMID: 16823473]
[13]
Lifton, R. P. Molecular genetics of human blood pressure variation. Science (80-. ), 1996, 272(5262), 676-680.
[14]
Association, A.D. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 1997, 20(7), 1183-1197.
[http://dx.doi.org/10.2337/diacare.20.7.1183] [PMID: 9203460]
[15]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[16]
Lam, K.S. New aspects of natural products in drug discovery. Trends Microbiol., 2007, 15(6), 279-289.
[http://dx.doi.org/10.1016/j.tim.2007.04.001] [PMID: 17433686]
[17]
Modak, M.; Dixit, P.; Londhe, J.; Ghaskadbi, S.; Devasagayam, T.P.A. Indian herbs and herbal drugs used for the treatment of diabetes. J. Clin. Biochem. Nutr., 2007, 40(3), 163-173.
[http://dx.doi.org/10.3164/jcbn.40.163] [PMID: 18398493]
[18]
Petersen, M.C.; Shulman, G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev., 2018, 98(4), 2133-2223.
[http://dx.doi.org/10.1152/physrev.00063.2017] [PMID: 30067154]
[19]
Mazzola, N. Review of current and emerging therapies in type 2 diabetes mellitus. Am. J. Manag. Care, 2012, 18(1)(Suppl.), S17-S26.
[PMID: 22559854]
[20]
Tabatabaei-Malazy, O.; Larijani, B.; Abdollahi, M. Targeting metabolic disorders by natural products. J. Diabetes Metab. Disord., 2015, 14(1), 57.
[http://dx.doi.org/10.1186/s40200-015-0184-8] [PMID: 26157708]
[21]
Hauner, H. The mode of action of thiazolidinediones. Diabetes Metab. Res. Rev., 2002, 18(S2)(Suppl. 2), S10-S15.
[http://dx.doi.org/10.1002/dmrr.249] [PMID: 11921433]
[22]
Horton, E.S.; Whitehouse, F.; Ghazzi, M.N.; Venable, T.C.; Whitcomb, R.W.; Whitcomb, R.W. Troglitazone in combination with sulfonylurea restores glycemic control in patients with type 2 diabetes. Diabetes Care, 1998, 21(9), 1462-1469.
[http://dx.doi.org/10.2337/diacare.21.9.1462] [PMID: 9727892]
[23]
Rochette, L.; Lorin, J.; Zeller, M.; Guilland, J. C.; Lorgis, L.; Cottin, Y.; Vergel, Y.C. Nitric oxide synthase. Inhib. oxidative Stress Cardiovasc. Dis. possible Ther. targets, 2013, 239-257.
[24]
Lebovitz, H.E. alpha-Glucosidase inhibitors. Endocrinol. Metab. Clin. North Am., 1997, 26(3), 539-551.
[http://dx.doi.org/10.1016/S0889-8529(05)70266-8] [PMID: 9314014]
[25]
Richter, B.; Bandeira-Echtler, E.; Bergerhoff, K.; Lerch, C. Dipeptidyl peptidase-4 (DPP-4) inhibitors for type 2 diabetes mellitus. Cochrane Libr., 2008, 2010(1), CD006739.
[http://dx.doi.org/10.1002/14651858.CD006739.pub2] [PMID: 18425967]
[26]
Meier, J.J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2012, 8(12), 728-742.
[http://dx.doi.org/10.1038/nrendo.2012.140] [PMID: 22945360]
[27]
Abdul-Ghani, M.A.; Norton, L.; DeFronzo, R.A. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr. Rev., 2011, 32(4), 515-531.
[http://dx.doi.org/10.1210/er.2010-0029] [PMID: 21606218]
[28]
Kirchheiner, J.; Roots, I.; Goldammer, M.; Rosenkranz, B.; Brockmöller, J. Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin. Pharmacokinet., 2005, 44(12), 1209-1225.
[http://dx.doi.org/10.2165/00003088-200544120-00002] [PMID: 16372821]
[29]
Havel, R.J.; Rapaport, E. Management of primary hyperlipidemia. N. Engl. J. Med., 1995, 332(22), 1491-1498.
[http://dx.doi.org/10.1056/NEJM199506013322207] [PMID: 7739687]
[30]
Eaton, C.B. Hyperlipidemia. Prim. care Clin. Off. Pract., 2005, 32(4), 1027-1055.
[31]
Nirosha, K.; Divya, M.; Vamsi, S.; Sadiq, M. A review on hyperlipidemia. Int. J. Novel Trends Pharm. Sci., 2014, 4(5), 81-92.
[32]
Yadav, V.; Upadhyay, V.; Ravinder, D.D. Importance of Herbs in the Treatment of Hyperlipidaemia. Sch. Acad. J. Pharm., 2014, 3(3), 306-312.
[33]
Toth, P.P. Drug treatment of hyperlipidaemia: a guide to the rational use of lipid-lowering drugs. Drugs, 2010, 70(11), 1363-1379.
[http://dx.doi.org/10.2165/10898610-000000000-00000] [PMID: 20614945]
[34]
Stancu, C.; Sima, A. Statins: mechanism of action and effects. J. Cell. Mol. Med., 2001, 5(4), 378-387.
[http://dx.doi.org/10.1111/j.1582-4934.2001.tb00172.x] [PMID: 12067471]
[35]
Altmann, S. W.; Davis, H. R., Jr; Zhu, L.; Yao, X.; Hoos, L. M.; Tetzloff, G.; Iyer, S. P. N.; Maguire, M.; Golovko, A.; Zeng, M. Niemann-pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science (80-. ), 2004, 303(5661), 1201-1204.
[36]
Nutescu, E.A.; Shapiro, N.L. Ezetimibe: a selective cholesterol absorption inhibitor. Pharmacotherapy, 2003, 23(11), 1463-1474.
[http://dx.doi.org/10.1592/phco.23.14.1463.31942] [PMID: 14620392]
[37]
Ikonen, E. Mechanisms for cellular cholesterol transport: defects and human disease. Physiol. Rev., 2006, 86(4), 1237-1261.
[http://dx.doi.org/10.1152/physrev.00022.2005] [PMID: 17015489]
[38]
Ast, M.; Frishman, W.H. Bile acid sequestrants. J. Clin. Pharmacol., 1990, 30(2), 99-106.
[http://dx.doi.org/10.1002/j.1552-4604.1990.tb03447.x] [PMID: 2179278]
[39]
Staels, B.; Dallongeville, J.; Auwerx, J.; Schoonjans, K.; Leitersdorf, E.; Fruchart, J.C. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation, 1998, 98(19), 2088-2093.
[http://dx.doi.org/10.1161/01.CIR.98.19.2088] [PMID: 9808609]
[40]
Rosenson, R. Antiatherothrombotic effects of nicotinic acid. Atherosclerosis, 2003, 171(1), 87-96.
[http://dx.doi.org/10.1016/j.atherosclerosis.2003.07.003] [PMID: 14642410]
[41]
Gille, A.; Bodor, E.T.; Ahmed, K.; Offermanns, S. Nicotinic acid: pharmacological effects and mechanisms of action. Annu. Rev. Pharmacol. Toxicol., 2008, 48(1), 79-106.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094746] [PMID: 17705685]
[42]
Garg, A.; Grundy, S.M. Nicotinic acid as therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. JAMA, 1990, 264(6), 723-726.
[http://dx.doi.org/10.1001/jama.1990.03450060069031] [PMID: 2374275]
[43]
Doty, R.L.; Philip, S.; Reddy, K.; Kerr, K.L. Influences of antihypertensive and antihyperlipidemic drugs on the senses of taste and smell. J. Hypertens., 2003, 21(10), 1805-1813.
[http://dx.doi.org/10.1097/00004872-200310000-00003] [PMID: 14508182]
[44]
Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: analysis of worldwide data. Lancet, 2005, 365(9455), 217-223.
[http://dx.doi.org/10.1016/S0140-6736(05)17741-1] [PMID: 15652604]
[45]
Mayo, M. Foundation for Medical Education and Research on Secondary Hypertension; McGraw-Hill: London, UK, 2008.
[46]
Saydah, S.H.; Fradkin, J.; Cowie, C.C. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA, 2004, 291(3), 335-342.
[http://dx.doi.org/10.1001/jama.291.3.335] [PMID: 14734596]
[47]
(WHO), W. H. O. Resolution-Promotion and Development of Training and Research in Traditional Medicine. WHO Doc., 1977, 30, 49-50.
[48]
Jackson, R.E.; Bellamy, M.C. Antihypertensive Drugs. Contin. Educ. Anaesth. Crit. Care Pain, 2015, 15(6), 280-285.
[49]
Sica, D.A. Angiotensin receptor blockers: new considerations in their mechanism of action. J. Clin. Hypertens. (Greenwich), 2006, 8(5), 381-385.
[http://dx.doi.org/10.1111/j.1524-6175.2005.05141.x] [PMID: 16687949]
[50]
Hall, M.E.; Cohen, J.B.; Ard, J.D.; Egan, B.M.; Hall, J.E.; Lavie, C.J.; Ma, J.; Ndumele, C.E.; Schauer, P.R.; Shimbo, D. Weight-Loss Strategies for Prevention and Treatment of Hypertension: A Scientific Statement From the American Heart Association. Hypertension, 2021, 78(5), e38-e50.
[http://dx.doi.org/10.1161/HYP.0000000000000202] [PMID: 34538096]
[51]
Oliver, E.; Mayor, F., Jr; D’Ocon, P. Beta-blockers: Historical Perspective and Mechanisms of Action. Rev. Esp. Cardiol. (Engl. Ed.), 2019, 72(10), 853-862.
[http://dx.doi.org/10.1016/j.rec.2019.04.006] [PMID: 31178382]
[52]
Kokko, J.P. Site and mechanism of action of diuretics. Am. J. Med., 1984, 77(5), 11-17.
[http://dx.doi.org/10.1016/S0002-9343(84)80003-0] [PMID: 6496555]
[53]
Husserl, F.E.; Messerli, F.H. Adverse effects of antihypertensive drugs. Drugs, 1981, 22(3), 188-210.
[http://dx.doi.org/10.2165/00003495-198122030-00002] [PMID: 7021123]
[54]
Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; de Ferranti, S.D.; Ferguson, J.F.; Fornage, M.; Gillespie, C.; Isasi, C.R.; Jiménez, M.C.; Jordan, L.C.; Judd, S.E.; Lackland, D.; Lichtman, J.H.; Lisabeth, L.; Liu, S.; Longenecker, C.T.; Lutsey, P.L.; Mackey, J.S.; Matchar, D.B.; Matsushita, K.; Mussolino, M.E.; Nasir, K.; O’Flaherty, M.; Palaniappan, L.P.; Pandey, A.; Pandey, D.K.; Reeves, M.J.; Ritchey, M.D.; Rodriguez, C.J.; Roth, G.A.; Rosamond, W.D.; Sampson, U.K.A.; Satou, G.M.; Shah, S.H.; Spartano, N.L.; Tirschwell, D.L.; Tsao, C.W.; Voeks, J.H.; Willey, J.Z.; Wilkins, J.T.; Wu, J.H.Y.; Alger, H.M.; Wong, S.S.; Muntner, P. Heart disease and stroke statistics—2018 update: A report from the American Heart Association. Circulation, 2018, 137(12), e67-e492.
[http://dx.doi.org/10.1161/CIR.0000000000000558] [PMID: 29386200]
[55]
Furie, B.; Furie, B.C. Mechanisms of thrombus formation. N. Engl. J. Med., 2008, 359(9), 938-949.
[http://dx.doi.org/10.1056/NEJMra0801082] [PMID: 18753650]
[56]
Association, A.H. Heart and Stroke Statistical Update; American Heart Association 2000: Dallas, Texas, 2001.
[57]
Athyros, V.G.; Ganotakis, E.S.; Elisaf, M.; Mikhailidis, D.P. The prevalence of the metabolic syndrome using the National Cholesterol Educational Program and International Diabetes Federation definitions. Curr. Med. Res. Opin., 2005, 21(8), 1157-1159.
[http://dx.doi.org/10.1185/030079905X53333] [PMID: 16083523]
[58]
Vorster, H.H.; Cummings, J.H.; Veldman, F.J. Diet and haemostasis: time for nutrition science to get more involved. Br. J. Nutr., 1997, 77(5), 671-684.
[http://dx.doi.org/10.1079/BJN19970067] [PMID: 9175989]
[59]
Nader, H.; Lopes, C.; Rocha, H.; Santos, E.; Dietrich, C. Heparins and heparinoids: occurrence, structure and mechanism of antithrombotic and hemorrhagic activities. Curr. Pharm. Des., 2004, 10(9), 951-966.
[http://dx.doi.org/10.2174/1381612043452758] [PMID: 15078126]
[60]
Goto, S. Understanding the mechanism of platelet thrombus formation under blood flow conditions and the effect of new antiplatelet agents. Curr. Vasc. Pharmacol., 2004, 2(1), 23-32.
[http://dx.doi.org/10.2174/1570161043476456] [PMID: 15320830]
[61]
Collen, D. Molecular mechanism of action of newer thrombolytic agents. J. Am. Coll. Cardiol., 1987, 10(5)(Suppl. B), 11B-15B.
[http://dx.doi.org/10.1016/S0735-1097(87)80422-9] [PMID: 3117858]
[62]
Comerota, A.J.; Chouhan, V.; Harada, R.N.; Sun, L.; Hosking, J.; Veermansunemi, R.; Comerota, A.J., Jr; Schlappy, D.; Rao, A.K. The fibrinolytic effects of intermittent pneumatic compression: mechanism of enhanced fibrinolysis. Ann. Surg., 1997, 226(3), 306-314.
[http://dx.doi.org/10.1097/00000658-199709000-00010] [PMID: 9339937]
[63]
Weinberger, J. Adverse effects and drug interactions of antithrombotic agents used in prevention of ischaemic stroke. Drugs, 2005, 65(4), 461-471.
[http://dx.doi.org/10.2165/00003495-200565040-00003] [PMID: 15733010]
[64]
Szabó, K.; Wang, P.; Peles-Lemli, B.; Fang, Y.; Kollár, L.; Kunsági-Máté, S. Structure of aggregate of hydrotropic p-toluene sulfonate and hydroxyacetophenone isomers. Colloids Surf. A Physicochem. Eng. Asp., 2013, 422, 143-147.
[http://dx.doi.org/10.1016/j.colsurfa.2013.01.034]
[65]
Jukaku, S.A.; Williams, S.R.P. The cause of obesity is multifactorial but GPs can do more. BMJ, 2021, 373, n956.
[66]
Bosy-Westphal, A.; Müller, M.J. Diagnosis of obesity based on body composition‐associated health risks—Time for a change in paradigm. Obes. Rev., 2021, 22(S2)(Suppl. 2), e13190.
[http://dx.doi.org/10.1111/obr.13190] [PMID: 33480098]
[67]
Al Kibria, G.M. Prevalence and factors affecting underweight, overweight and obesity using Asian and World Health Organization cutoffs among adults in Nepal: Analysis of the Demographic and Health Survey 2016. Obes. Res. Clin. Pract., 2019, 13(2), 129-136.
[http://dx.doi.org/10.1016/j.orcp.2019.01.006] [PMID: 30718074]
[68]
Leocádio, P.C.L.; Lopes, S.C.; Dias, R.P.; Alvarez-Leite, J.I.; Guerrant, R.L.; Malva, J.O.; Oriá, R.B. The transition from undernutrition to overnutrition under adverse environments and poverty: the risk for chronic diseases. Front. Nutr., 2021, 8, 676044.
[http://dx.doi.org/10.3389/fnut.2021.676044] [PMID: 33968973]
[69]
Guerciolini, R. Mode of action of orlistat. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes., 1997, 21(Suppl. 3), S12-S23.
[PMID: 9225172]
[70]
Johnson, D. B.; Quick, J. Topiramate and phentermine. 2018.
[71]
Aronne, L.J.; Wadden, T.A.; Peterson, C.; Winslow, D.; Odeh, S.; Gadde, K.M. Evaluation of phentermine and topiramate versus phentermine/topiramate extended‐release in obese adults. Obesity (Silver Spring), 2013, 21(11), 2163-2171.
[http://dx.doi.org/10.1002/oby.20584] [PMID: 24136928]
[72]
Alfaris, N.; Minnick, A.M.; Hopkins, C.M.; Berkowitz, R.I.; Wadden, T.A. Combination phentermine and topiramate extended release in the management of obesity. Expert Opin. Pharmacother., 2015, 16(8), 1263-1274.
[http://dx.doi.org/10.1517/14656566.2015.1041505] [PMID: 25958964]
[73]
Redman, L.M.; Ravussin, E. Lorcaserin for the treatment of obesity. Drugs of Today (Barcelona, Spain: 1998), 2010, 46(12), 901.
[74]
Daneschvar, H.L.; Aronson, M.D.; Smetana, G.W. FDA-approved anti-obesity drugs in the United States. Am. J. Med., 2016, 129(8), 879.e1-879.e6.
[http://dx.doi.org/10.1016/j.amjmed.2016.02.009] [PMID: 26949003]
[75]
Ahmed, M.; Kumari, N.; Mirgani, Z.; Saeed, A.; Ramadan, A.; Ahmed, M.H.; Almobarak, A.O. Metabolic syndrome; Definition, pathogenesis, elements, and the effects of medicinal plants on it’s elements. J. Diabetes Metab. Disord., 2022, 21(1), 1011-1022.
[http://dx.doi.org/10.1007/s40200-021-00965-2] [PMID: 35673459]
[76]
Martínez-Abundis, E.; Méndez-del Villar, M.; Pérez-Rubio, K.G.; Zuñiga, L.Y.; Cortez-Navarrete, M.; Ramírez-Rodriguez, A.; González-Ortiz, M. Novel nutraceutic therapies for the treatment of metabolic syndrome. World J. Diabetes, 2016, 7(7), 142-152.
[http://dx.doi.org/10.4239/wjd.v7.i7.142] [PMID: 27076875]
[77]
Srinivasan, K. Fenugreek (Trigonella foenum-graecum): A Review of Health Beneficial Physiological Effects. Food Rev. Int., 2006, 22(2), 203-224.
[http://dx.doi.org/10.1080/87559120600586315]
[78]
Mandegary, A.; Pournamdari, M.; Sharififar, F.; Pournourmohammadi, S.; Fardiar, R.; Shooli, S. Alkaloid and flavonoid rich fractions of fenugreek seeds (Trigonella foenum-graecum L.) with antinociceptive and anti-inflammatory effects. Food Chem. Toxicol., 2012, 50(7), 2503-2507.
[http://dx.doi.org/10.1016/j.fct.2012.04.020] [PMID: 22542922]
[79]
Khosla, P.; Gupta, D.D.; Nagpal, R.K. Effect of Trigonella foenum graecum (Fenugreek) on blood glucose in normal and diabetic rats. Indian J. Physiol. Pharmacol., 1995, 39(2), 173-174.
[PMID: 7649611]
[80]
Abdel-Barry, J.A.; Abdel-Hassan, I.A.; Al-Hakiem, M.H.H. Hypoglycaemic and antihyperglycaemic effects of Trigonella foenum-graecum leaf in normal and alloxan induced diabetic rats. J. Ethnopharmacol., 1997, 58(3), 149-155.
[http://dx.doi.org/10.1016/S0378-8741(97)00101-3] [PMID: 9421250]
[81]
Ahmadiani, A.; Javan, M.; Semnanian, S.; Barat, E.; Kamalinejad, M. Anti-inflammatory and antipyretic effects of Trigonella foenum-graecum leaves extract in the rat. J. Ethnopharmacol., 2001, 75(2-3), 283-286.
[http://dx.doi.org/10.1016/S0378-8741(01)00187-8] [PMID: 11297864]
[82]
Gupta, A.; Gupta, R.; Lal, B. Effect of Trigonella foenum-graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: a double blind placebo controlled study. J. Assoc. Physicians India, 2001, 49, 1057-1061.
[PMID: 11868855]
[83]
Manimaran, P.; Saravanakumar, S.S.; Mithun, N.K.; Senthamaraikannan, P. Physicochemical properties of new cellulosic fibers from the bark of Acacia arabica. IJPAC Int. J. Polym. Anal. Charact., 2016, 21(6), 548-553.
[http://dx.doi.org/10.1080/1023666X.2016.1177699]
[84]
Hegazy, G.A.; Alnoury, A.M.; Gad, H.G. The role of Acacia Arabica extract as an antidiabetic, antihyperlipidemic, and antioxidant in streptozotocin-induced diabetic rats. Saudi Med. J., 2013, 34(7), 727-733.
[PMID: 23860893]
[85]
Singh, P.; Mishra, G.; Srivastava, S.; Jha, K.K.; Khosa, R.L. Traditional uses, phytochemistry and pharmacological properties of Capparis decidua: An overview. Pharm. Lett., 2011, 3(2), 71-82.
[86]
Das Gupta, P.; De, A. Diabetes mellitus and its herbal treatment. Int. J. Res. Pharm. Biomed. Sci., 2012, 3(2), 706-721.
[87]
Juárez-Rojop, I.E.; Díaz-Zagoya, J.C.; Ble-Castillo, J.L.; Miranda-Osorio, P.H.; Castell-Rodríguez, A.E.; Tovilla-Zárate, C.A.; Rodríguez-Hernández, A.; Aguilar-Mariscal, H.; Ramón-Frías, T.; Bermúdez-Ocaña, D.Y. Hypoglycemic effect of Carica papaya leaves in streptozotocin-induced diabetic rats. BMC Complement. Altern. Med., 2012, 12(1), 236.
[http://dx.doi.org/10.1186/1472-6882-12-236] [PMID: 23190471]
[88]
Solikhah, T.I.; Setiawan, B.; Ismukada, D.R. Antidiabetic Activity of Papaya Leaf Extract (Carica Papaya L.) Isolated with Maceration Method in Alloxan-Induces Diabetic Mice. Syst. Rev. Pharm., 2020, 11(9), 774-778.
[89]
Juárez-Rojop, I.E.; Tovilla-Zárate, C.A.; Aguilar-Domínguez, D.E.; Fuente, L.F.R.; Lobato-García, C.E.; Blé-Castillo, J.L.; López-Meraz, L.; Díaz-Zagoya, J.C.; Bermúdez-Ocaña, D.Y. Phytochemical screening and hypoglycemic activity of Carica papaya leaf in streptozotocin-induced diabetic rats. Rev. Bras. Farmacogn., 2014, 24(3), 341-347.
[http://dx.doi.org/10.1016/j.bjp.2014.07.012]
[90]
Achrekar, S.; Kaklij, G.S.; Pote, M.S.; Kelkar, S.M. Hypoglycemic activity of Eugenia jambolana and Ficus bengalensis: mechanism of action. In Vivo, 1991, 5(2), 143-147.
[PMID: 1768783]
[91]
Leung, L.; Birtwhistle, R.; Kotecha, J.; Hannah, S.; Cuthbertson, S. Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review. Br. J. Nutr., 2009, 102(12), 1703-1708.
[http://dx.doi.org/10.1017/S0007114509992054] [PMID: 19825210]
[92]
Ezzat, S.M.; Hegazy, A.K.; Amer, A.M.M.; Kamel, G.M.; El-Alfy, T.S. Isolation of biologically active constituents from Moringa peregrina (Forssk.) Fiori. (family: Moringaceae) growing in Egypt. Pharmacogn. Mag., 2011, 7(26), 109-115.
[http://dx.doi.org/10.4103/0973-1296.80667] [PMID: 21716619]
[93]
Yoshino, K.; Miyauchi, Y.; Kanetaka, T.; Takagi, Y.; Koga, K. Anti-diabetic activity of a leaf extract prepared from Salacia reticulata in mice. Biosci. Biotechnol. Biochem., 2009, 73(5), 1096-1104.
[http://dx.doi.org/10.1271/bbb.80854] [PMID: 19420711]
[94]
Shetti, A.A.; Sanakal, R.D. Antidiabetic effect of ethanolic leaf extract of phyllanthus amarus in alloxan induced diabetic mice., 2011.
[95]
Soares, L.A.L.; Bassani, V.L.; Ortega, G.G.; Petrovick, P.R. Total flavonoid determination for the quality control of aqueous extractives from Phyllanthus Niruri L. Lat. Am. J. Pharm., 2003, 22(3), 203-208.
[96]
Nugroho, A.; Warditiani, N.K.; Pramono, S.; Andrie, M.; Siswanto, E.; Lukitaningsih, E. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats. Indian J. Pharmacol., 2012, 44(3), 377-381.
[http://dx.doi.org/10.4103/0253-7613.96343] [PMID: 22701250]
[97]
Zhang, X-F.; Tan, B.K. Anti-diabetic property of ethanolic extract of Andrographis paniculata in streptozotocin-diabetic rats. Acta Pharmacol. Sin., 2000, 21(12), 1157-1164.
[PMID: 11603293]
[98]
Makhija, I.K.; Sharma, I.P.; Khamar, D. Phytochemistry and pharmacological properties of Ficus Religiosa: An overview. Ann. Biol. Res., 2010, 1(4), 171-180.
[99]
Pandit, R.; Phadke, A.; Jagtap, A. Antidiabetic effect of Ficus religiosa extract in streptozotocin-induced diabetic rats. J. Ethnopharmacol., 2010, 128(2), 462-466.
[http://dx.doi.org/10.1016/j.jep.2010.01.025] [PMID: 20080167]
[100]
Biswas, M.; Kar, B.; Bhattacharya, S.; Kumar, R.B.S.; Ghosh, A.K.; Haldar, P.K. Antihyperglycemic activity and antioxidant role of Terminalia arjuna leaf in streptozotocin-induced diabetic rats. Pharm. Biol., 2011, 49(4), 335-340.
[http://dx.doi.org/10.3109/13880209.2010.516755] [PMID: 21281245]
[101]
Sharangi, A.B. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) – A review. Food Res. Int., 2009, 42(5-6), 529-535.
[http://dx.doi.org/10.1016/j.foodres.2009.01.007]
[102]
Islam, M.S. Effects of the aqueous extract of white tea (Camellia sinensis) in a streptozotocin-induced diabetes model of rats. Phytomedicine, 2011, 19(1), 25-31.
[http://dx.doi.org/10.1016/j.phymed.2011.06.025] [PMID: 21802923]
[103]
Lasaite, L.; Spadiene, A.; Savickiene, N.; Skesters, A.; Silova, A. The effect of ginkgo biloba and camellia sinensis extracts on psychological state and glycemic control in patients with type 2 diabetes mellitus. Nat. Prod. Commun., 2014, 9(9), 1934578X1400900931.
[104]
Tolmie, M.; Bester, M.J.; Serem, J.C.; Nell, M.; Apostolides, Z. The potential antidiabetic properties of green and purple tea [Camellia sinensis (L.) O Kuntze], purple tea ellagitannins, and urolithins. J. Ethnopharmacol., 2023, 309, 116377.
[http://dx.doi.org/10.1016/j.jep.2023.116377] [PMID: 36907477]
[105]
Sanghvi, K.; Chandrasheker, K.S.; Pai, V.; N, A.R.H. Review on Curcuma longa: Ethnomedicinal uses, pharmacological activity and phytochemical constituents. Research Journal of Pharmacy and Technology, 2020, 13(8), 3983-3986.
[http://dx.doi.org/10.5958/0974-360X.2020.00704.0]
[106]
Yamala, N.Y.N.; Raghunath, V.R.V. Effect of curcuma longa extract on Candida albicans adhesion to heat cure acrylic resin denture material: An in-vitro study., 2017, 18-23.
[107]
Sharma, S.; Kulkarni, S.K.; Chopra, K. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin. Exp. Pharmacol. Physiol., 2006, 33(10), 940-945.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04468.x] [PMID: 17002671]
[108]
Sukandar, E.Y.; Permana, H.; Adnyana, I.K.; Sigit, J.I.; Ilyas, R.A.; Hasimun, P.; Mardiyah, D. Clinical Study of Turmeric (Curcuma longa L.) and Garlic (Allium sativum L.) Extracts as Antihyperglycemic and Antihyperlipidemic Agent in Type-2 Diabetes-Dyslipidemia Patients. Int. J. Pharmacol., 2010, 6(4), 456-463.
[http://dx.doi.org/10.3923/ijp.2010.456.463]
[109]
Alam, M.A.; Bin Jardan, Y.A.; Alzenaidy, B.; Raish, M.; Al-Mohizea, A.M.; Ahad, A.; Al-Jenoobi, F.I. Effect of Hibiscus sabdariffa and Zingiber officinale on pharmacokinetics and pharmacodynamics of amlodipine. J. Pharm. Pharmacol., 2021, 73(9), 1151-1160.
[http://dx.doi.org/10.1093/jpp/rgaa062] [PMID: 34383955]
[110]
Li, Y. Preventive and protective properties of zingiber officinale (Ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: A brief review. Evidence-Based Complement. Altern. Med., 2012, 2012
[111]
Khan, M.Y.; Aziz, I.; Bihari, B.; Kumar, H.; Roy, M.; Verma, V.K. A review-phytomedicines used in treatment of diabetes. Asian J. Pharm. Res., 2014, 4(3), 135-154.
[112]
Akash, M.S.H.; Rehman, K.; Tariq, M.; Chen, S. Zingiber officinale and type 2 diabetes mellitus: Evidence from experimental studies. Crit. Rev. Eukaryot. Gene Expr., 2015, 25(2), 91-112.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2015013358] [PMID: 26080605]
[113]
Sharma, B.; Salunke, R.; Balomajumder, C.; Daniel, S.; Roy, P. Anti-diabetic potential of alkaloid rich fraction from Capparis decidua on diabetic mice. J. Ethnopharmacol., 2010, 127(2), 457-462.
[http://dx.doi.org/10.1016/j.jep.2009.10.013] [PMID: 19837152]
[114]
Rathee, S.; Rathee, P.; Rathee, D.; Rathee, D.; Kumar, V. Phytochemical and pharmacological potential of kair (Capparis Decidua). Int. J. Phytomed., 2010, 2(1), 10-17.
[115]
Sharma, V.; Gautam, D.N.S.; Radu, A.F.; Behl, T.; Bungau, S.G.; Vesa, C.M. Reviewing the traditional/modern uses, phytochemistry, essential oils/extracts and pharmacology of Embelia ribes burm. Antioxidants, 2022, 11(7), 1359.
[http://dx.doi.org/10.3390/antiox11071359] [PMID: 35883850]
[116]
Bhandari, U.; Ansari, M.N.; Islam, F.; Tripathi, C.D. The effect of aqueous extract of Embelia ribes Burm on serum homocysteine, lipids and oxidative enzymes in methionine induced hyperhomocysteinemia. Indian J. Pharmacol., 2008, 40(4), 152-157.
[http://dx.doi.org/10.4103/0253-7613.43161] [PMID: 20040948]
[117]
Mirunalini, S.; Arulmozhi, V.; Krishnaveni, M.; Karthishwaran, K.; Dhamodharan, G. Antioxidant and antihyperlipidemic effect of Solanum nigrum fruit extract on the experimental model against chronic ethanol toxicity. Pharmacogn. Mag., 2010, 6(21), 42-50.
[http://dx.doi.org/10.4103/0973-1296.59965] [PMID: 20548935]
[118]
Leung, A.Y. Encyclopedia of Common Natural Ingredients Used Infood Drugs and Cosmetics; John Wiley, 1980.
[119]
Yao, Z.X.; Han, Z.; Drieu, K.; Papadopoulos, V. Ginkgo biloba extract (Egb 761) inhibits β-amyloid production by lowering free cholesterol levels. J. Nutr. Biochem., 2004, 15(12), 749-756.
[http://dx.doi.org/10.1016/j.jnutbio.2004.06.008] [PMID: 15607648]
[120]
Kausik, B.L.; Ranajet, K.B. Biological activities and medicinal plant propiertes of neem plant. Curr. Sci., 2002, 82, 1336-1345.
[121]
Al-Awar, M.S.A.; Muaqeb, A.A.A.; Salih, E.M.A. Antihyperglycemic and hypolipidemic effect of Azadirachta Indica leaves aqueous extract in alloxan-induced diabetic male rabbits. Int. J. Pharm. Biol. Arch., 2018, 9(1), 47-51.
[122]
Visavadiya, N.P.; Narasimhacharya, A.V.R.L. Ameliorative effects of herbal combinations in hyperlipidemia. Oxid. Med. Cell. Longev., 2011, 2011, 1-8.
[http://dx.doi.org/10.1155/2011/160408] [PMID: 21941605]
[123]
Kingsley, U.; Steven, O.; Agu, C.; Orji, O.; Chekwube, B.; Nwosu, T. Anti-hyperlipidemic effect of crude methanolic extracts of Glycine max (soy bean) on high cholesterol diet-fed albino rats. J. Med. Appl. Sci., 2017, 7(1), 1.
[http://dx.doi.org/10.5455/jmas.251532]
[124]
Sharmin, K.; Ahmed, R.; Momtaz, A.; Chowdhury, S.A.; Maya, N.A.; Sharmin, R.; Rahman, S.; Tabassum, H. Effect of ethanol extract of Glycine max (soy bean) on serum lipid profile of fat-fed hyperlipidemic rats. Bangladesh Journal of Medical Biochemistry, 2018, 10(1), 21-26.
[http://dx.doi.org/10.3329/bjmb.v10i1.36697]
[125]
Seal, C.J.; Mathers, J.C. Comparative gastrointestinal and plasma cholesterol responses of rats fed on cholesterol-free diets supplemented with guar gum and sodium alginate. Br. J. Nutr., 2001, 85(3), 317-324.
[http://dx.doi.org/10.1079/BJN2000250] [PMID: 11299077]
[126]
Maisonnier, S.; Gomez, J.; Brée, A.; Berri, C.; Baéza, E.; Carré, B. Effects of microflora status, dietary bile salts and guar gum on lipid digestibility, intestinal bile salts, and histomorphology in broiler chickens. Poult. Sci., 2003, 82(5), 805-814.
[http://dx.doi.org/10.1093/ps/82.5.805] [PMID: 12762404]
[127]
Kumar, G.; Murugesan, A.G. Hypolipidaemic activity of Helicteres isora L. bark extracts in streptozotocin induced diabetic rats. J. Ethnopharmacol., 2008, 116(1), 161-166.
[http://dx.doi.org/10.1016/j.jep.2007.11.020] [PMID: 18191354]
[128]
Markom, M.; Hasan, M.; Daud, W.; Singh, H.; Jahim, J. Extraction of hydrolysable tannins from Phyllanthus niruri Linn.: Effects of solvents and extraction methods. Separ. Purif. Tech., 2007, 52(3), 487-496.
[http://dx.doi.org/10.1016/j.seppur.2006.06.003]
[129]
Khanna, A.K.; Rizvi, F.; Chander, R. Lipid lowering activity of Phyllanthus niruri in hyperlipemic rats. J. Ethnopharmacol., 2002, 82(1), 19-22.
[http://dx.doi.org/10.1016/S0378-8741(02)00136-8] [PMID: 12169400]
[130]
Pari, L.; Latha, M. Effect of Cassia auriculata flowers on blood sugar levels, serum and tissue lipids in streptozotocin diabetic rats. Singapore Med. J., 2002, 43(12), 617-621.
[PMID: 12693765]
[131]
Nille, G.C.; Mishra, S.K.; Chaudhary, A.K.; Reddy, K.R.C. Ethnopharmacological, phytochemical, pharmacological, and toxicological review on Senna auriculata (L.) Roxb.: A special insight to antidiabetic property. Front. Pharmacol., 2021, 12, 647887.
[http://dx.doi.org/10.3389/fphar.2021.647887] [PMID: 34504420]
[132]
Chakrabarti, R.; Vikramadithyan, R.K.; Mullangi, R.; Sharma, V.M.; Jagadheshan, H.; Rao, Y.N.; Sairam, P.; Rajagopalan, R. Antidiabetic and hypolipidemic activity of Helicteres isora in animal models. J. Ethnopharmacol., 2002, 81(3), 343-349.
[http://dx.doi.org/10.1016/S0378-8741(02)00120-4] [PMID: 12127235]
[133]
Siddiqui, M.Z.; Mazumder, P.M. Comparative study of hypolipidemic profile of resinoids of Commiphora mukul/Commiphora wightii from different geographical locations. Indian J. Pharm. Sci., 2012, 74(5), 422-427.
[http://dx.doi.org/10.4103/0250-474X.108417] [PMID: 23716870]
[134]
Gujral, M.L.; Sareen, K.; Tangri, K.K.; AMMA, M.K.; ROY, A.K. Antiarthritic and anti-inflammatory activity of gum guggul (Balsamodendron Mukul Hook). Indian J. Physiol. Pharmacol., 1960, 4, 267-273.
[PMID: 13709695]
[135]
Singh, M. Evaluating the therapeutic efficiency and drug targeting ability of alkaloids present in Rauwolfia serpentina. Int. J. Green Pharm., 2017, 11(03), 1-11.
[136]
Freis, E.D. A method for administering the antihypertensive agents. Arch. Intern. Med., 1956, 98(4), 444-448.
[http://dx.doi.org/10.1001/archinte.1956.00250280046006] [PMID: 13361575]
[137]
Wilkins, R.W.; Judson, W.E. The use of Rauwolfia serpentina in hypertensive patients. N. Engl. J. Med., 1953, 248(2), 48-53.
[http://dx.doi.org/10.1056/NEJM195301082480202] [PMID: 13002681]
[138]
Eltayeb, E.A.; Roddick, J.G. Changes in the alkaloid content of developing fruits of tomato (Lycopersicon esculentum mill.). J. Exp. Bot., 1984, 35(2), 252-260.
[http://dx.doi.org/10.1093/jxb/35.2.252]
[139]
Paran, E.; Novack, V.; Engelhard, Y.N.; Hazan-Halevy, I. The effects of natural antioxidants from tomato extract in treated but uncontrolled hypertensive patients. Cardiovasc. Drugs Ther., 2009, 23(2), 145-151.
[http://dx.doi.org/10.1007/s10557-008-6155-2] [PMID: 19052855]
[140]
Monteiro, F.S.; Silva, A.C.L.; Martins, I.R.R.; Correia, A.C.C.; Basílio, I.J.L.D.; Agra, M.F.; Bhattacharyya, J.; Silva, B.A. Vasorelaxant action of the total alkaloid fraction obtained from Solanum paludosum Moric. (Solanaceae) involves NO/cGMP/PKG pathway and potassium channels. J. Ethnopharmacol., 2012, 141(3), 895-900.
[http://dx.doi.org/10.1016/j.jep.2012.03.032] [PMID: 22472108]
[141]
Eddouks, M.; Maghrani, M.; Zeggwagh, N.A.; Michel, J.B. Study of the hypoglycaemic activity of Lepidium sativum L. aqueous extract in normal and diabetic rats. J. Ethnopharmacol., 2005, 97(2), 391-395.
[http://dx.doi.org/10.1016/j.jep.2004.11.030] [PMID: 15707780]
[142]
Fan, Q.L.; Zhu, Y.D.; Huang, W.H.; Qi, Y.; Guo, B.L. Two new acylated flavonol glycosides from the seeds of Lepidium sativum. Molecules, 2014, 19(8), 11341-11349.
[http://dx.doi.org/10.3390/molecules190811341] [PMID: 25090122]
[143]
Gilani, A.H.; Jabeen, Q.; Ghayur, M.N.; Janbaz, K.H.; Akhtar, M.S. Studies on the antihypertensive, antispasmodic, bronchodilator and hepatoprotective activities of the Carum copticum seed extract. J. Ethnopharmacol., 2005, 98(1-2), 127-135.
[http://dx.doi.org/10.1016/j.jep.2005.01.017] [PMID: 15763373]
[144]
Kammerer, D.; Carle, R.; Schieber, A. Characterization of phenolic acids in black carrots(Daucus carota ssp.sativus var.atrorubens Alef.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom., 2004, 18(12), 1331-1340.
[http://dx.doi.org/10.1002/rcm.1496] [PMID: 15174188]
[145]
Gilani, A.H.; Shaheen, F.; Saeed, S.A.; Bibi, S.; Irfanullah; Sadiq, M.; Faizi, S. Hypotensive action of coumarin glycosides from Daucus carota. Phytomedicine, 2000, 7(5), 423-426.
[http://dx.doi.org/10.1016/S0944-7113(00)80064-1] [PMID: 11081994]
[146]
Boskabady, M.H.; Alitaneh, S.; Alavinezhad, A. Carum copticum L.: a herbal medicine with various pharmacological effects. BioMed Res. Int., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/569087] [PMID: 25089273]
[147]
Aftab, K.; Atta-Ur-Rahman; Usmanghani, K. Blood pressure lowering action of active principle from Trachyspermum ammi (L.) sprague. Phytomedicine, 1995, 2(1), 35-40.
[http://dx.doi.org/10.1016/S0944-7113(11)80046-2] [PMID: 23196098]
[148]
MacLean, D.D.; Murr, D.P.; DeEll, J.R.; Horvath, C.R. Postharvest variation in apple (Malus x domestica Borkh.) Flavonoids following harvest, storage, and 1-MCP treatment. J. Agric. Food Chem., 2006, 54(3), 870-878.
[http://dx.doi.org/10.1021/jf0525075] [PMID: 16448197]
[149]
Yi, R.; Tian, Y.; Tan, F.; Li, W.; Mu, J.; Long, X.; Pan, Y.; Zhao, X. Intervention effect of Malus pumila leaf flavonoids on senna‐induced acute diarrhea in BALB/c mice. Food Sci. Nutr., 2020, 8(5), 2535-2542.
[http://dx.doi.org/10.1002/fsn3.1549] [PMID: 32405409]
[150]
Balasuriya, N.; Rupasinghe, H.P.V. Antihypertensive properties of flavonoid-rich apple peel extract. Food Chem., 2012, 135(4), 2320-2325.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.023] [PMID: 22980808]
[151]
Navarro, M.; Moreira, I.; Arnaez, E.; Quesada, S.; Azofeifa, G.; Vargas, F.; Alvarado, D.; Chen, P. Polyphenolic characterization and antioxidant activity of Malus domestica and Prunus domestica cultivars from costa rica. Foods, 2018, 7(2), 15.
[http://dx.doi.org/10.3390/foods7020015] [PMID: 29385709]
[152]
Brankovic, S.; Radenkovic, M.; Kitic, D.; Veljkovic, S.; Ivetic, V.; Pavlovic, D.; Miladinovic, B. Comparison of the hypotensive and bradycardic activity of ginkgo, garlic, and onion extracts. Clin. Exp. Hypertens., 2011, 33(2), 95-99.
[http://dx.doi.org/10.3109/10641963.2010.531833] [PMID: 21269057]
[153]
Larson, A.; Symons, J.D.; Jalili, T. Quercetin: A treatment for hypertension?—A review of efficacy and mechanisms. Pharmaceuticals (Basel), 2010, 3(1), 237-250.
[http://dx.doi.org/10.3390/ph3010237] [PMID: 27713250]
[154]
Kamyab, R.; Namdar, H.; Torbati, M.; Ghojazadeh, M.; Araj-Khodaei, M.; Fazljou, S.M.B. Medicinal plants in the treatment of hypertension: A review. Adv. Pharm. Bull., 2020, 11(4), 601-617.
[http://dx.doi.org/10.34172/apb.2021.090] [PMID: 34888207]
[155]
Bennour, N.; Mighri, H.; Eljani, H.; Zammouri, T.; Akrout, A. Effect of solvent evaporation method on phenolic compounds and the antioxidant activity of Moringa oleifera cultivated in Southern Tunisia. S. Afr. J. Bot., 2020, 129, 181-190.
[http://dx.doi.org/10.1016/j.sajb.2019.05.005]
[156]
Faizi, S.; Siddiqui, B.; Saleem, R.; Aftab, K.; Shaheen, F.; Gilani, A.H. Hypotensive constituents from the pods of Moringa oleifera. Planta Med., 1998, 64(3), 225-228.
[http://dx.doi.org/10.1055/s-2006-957414] [PMID: 9581519]
[157]
lbarrola, D.A.; Hellión-lbarrola, M.C.; Montalbetti, Y.; Heinichen, O.; Alvarenga, N.; Figueredo, A.; Ferro, E.A. Isolation of hypotensive compounds from Solanum sisymbriifolium Lam. J. Ethnopharmacol., 2000, 70(3), 301-307.
[http://dx.doi.org/10.1016/S0378-8741(00)00191-4] [PMID: 10837991]
[158]
Iranshahy, M.; Iranshahi, M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)—A review. J. Ethnopharmacol., 2011, 134(1), 1-10.
[http://dx.doi.org/10.1016/j.jep.2010.11.067] [PMID: 21130854]
[159]
Upadhyay, P.K. Pharmacological activities and therapeutic uses of resins obtained from Ferula asafoetida linn.: A review. Int. J. Green Pharm., 2017, 11(02), 240-247.
[160]
Shafei, M.N.; Kazemi, F.; Mohebbati, R.; Niazmand, S. Antihypertensive effects of standardized asafoetida: Effect on hypertension induced by angiotensin II. Adv. Biomed. Res., 2020, 9(1), 77.
[http://dx.doi.org/10.4103/abr.abr_106_20] [PMID: 33912493]
[161]
Shakib, Z.; Shahraki, N.; Razavi, B.M.; Hosseinzadeh, H. Aloe vera as an herbal medicine in the treatment of metabolic syndrome: A review. Phytother. Res., 2019, 33(10), 2649-2660.
[http://dx.doi.org/10.1002/ptr.6465] [PMID: 31456283]
[162]
Sharrif Moghaddasi, M.; Res, M. Aloe Vera their chemicals composition and applications: A review. Int. J. Biol. Med. Res., 2011, 2(1), 466-471.
[163]
Hosseini, M.; Shafiee, S.M.; Baluchnejadmojarad, T. Garlic extract reduces serum angiotensin converting enzyme (ACE) activity in nondiabetic and streptozotocin-diabetic rats. Pathophysiology, 2007, 14(2), 109-112.
[http://dx.doi.org/10.1016/j.pathophys.2007.07.002] [PMID: 17875387]
[164]
Wu, T.T.; Tsai, C.W.; Yao, H.T.; Lii, C.K.; Chen, H.W.; Wu, Y.L.; Chen, P.Y.; Liu, K.L. Suppressive effects of extracts from the aerial part of Coriandrum sativum L. on LPS-induced inflammatory responses in murine RAW 264.7 macrophages. J. Sci. Food Agric., 2010, 90(11), 1846-1854.
[http://dx.doi.org/10.1002/jsfa.4023] [PMID: 20549653]
[165]
Lata, N.; Dubey, V. Preliminary Phytochemical Screening of Eichhornia Crassipes: The World’s Worst Aquatic Weed. J. Pharm. Res., 2010, 3(6), 1240-1242.
[166]
Chantiratikul, P.; Meechai, P. Nakbanpotec, Wjrj. Antioxidant activities and phenolic contents of extracts from Salvinia Molesta and Eichornia Crassipes. Res. J. Biol. Sci., 2009, 4(10), 1113-1117.
[167]
Naqash, S.Y.; Nazeer, R.A. Anticoagulant, antiherpetic and antibacterial activities of sulphated polysaccharide from Indian medicinal plant Tridax procumbens L. (Asteraceae). Appl. Biochem. Biotechnol., 2011, 165(3-4), 902-912.
[http://dx.doi.org/10.1007/s12010-011-9307-y] [PMID: 21671053]
[168]
Ikewuchi, J.C. Alteration of plasma biochemical, haematological and ocular oxidative indices of alloxan induced diabetic rats by aqueous extract of Tridax procumbens Linn (Asteraceae). EXCLI J., 2012, 11, 291-308.
[PMID: 27418906]
[169]
Petchi, R.; Parasuraman, S.; Vijaya, C. Antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Linn.) in streptozotocin-induced diabetic rats. J. Basic Clin. Pharm., 2013, 4(4), 88-92.
[http://dx.doi.org/10.4103/0976-0105.121655] [PMID: 24808679]
[170]
Tang, Z.; Wang, Y.; Xiao, Y.; Zhao, M.; Peng, S. Anti-thrombotic activity of PDR, a newly synthesized l-Arg derivative, on three thrombosis models in rats. Thromb. Res., 2003, 110(2-3), 127-133.
[http://dx.doi.org/10.1016/S0049-3848(03)00339-6] [PMID: 12893027]
[171]
Rahmatullah, M.; Hossain, M.; Mahmud, A.; Sultana, N.; Mizanur, S.; Mohammad, R.; Islam, R.; Khatoon, M.S.; Jahan, S.; Islam, F. Antihyperglycemic and antinociceptive activity evaluation of ‘Khoyer’ prepared from boiling the wood of Acacia catechu in water. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(4), 1-5.
[http://dx.doi.org/10.4314/ajtcam.v10i4.1] [PMID: 24146493]
[172]
Kim, T.I.; Kim, Y.J.; Kim, K. Extract of seaweed Codium fragile inhibits integrin αIIbβ3-induced outside-in signaling and arterial thrombosis. Front. Pharmacol., 2021, 12, 685948.
[http://dx.doi.org/10.3389/fphar.2021.685948] [PMID: 34276375]
[173]
Mestechkina, N.M.; Shcherbukhin, V.D.; Bannikova, G.E.; Varlamov, V.P.; Drozd, N.N.; Tolstenkov, A.S.; Makarov, V.A.; Tikhonov, V.E. Anticoagulant activity of low-molecular-weight sulfated derivatives of galactomannan from Cyamopsis tetragonoloba (L.) seeds. Prikl. Biokhim. Mikrobiol., 2008, 44(1), 111-116.
[PMID: 18491607]
[174]
Gholkar, A.A.; Nikam, Y.P.; Zambare, K.K.; Reddy, K.V.; Ghorpade, A.D. Potential anticoagulant herbal plants: A review. Asian J Res Pharm Sci, 2020, 10(1), 51-55.
[175]
Martínez, L.; Ros, G.; Nieto, G. Hydroxytyrosol: Health benefits and use as functional ingredient in meat. Medicines (Basel), 2018, 5(1), 13.
[http://dx.doi.org/10.3390/medicines5010013] [PMID: 29360770]
[176]
El, S.N.; Karakaya, S. Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr. Rev., 2009, 67(11), 632-638.
[http://dx.doi.org/10.1111/j.1753-4887.2009.00248.x] [PMID: 19906250]
[177]
González Correa, J.A.; López-Villodres, J.A.; Asensi, R.; Espartero, J.L.; Rodríguez-Gutiérez, G.; De La Cruz, J.P. Virgin olive oil polyphenol hydroxytyrosol acetate inhibits in vitro platelet aggregation in human whole blood: comparison with hydroxytyrosol and acetylsalicylic acid. Br. J. Nutr., 2009, 101(8), 1157-1164.
[http://dx.doi.org/10.1017/S0007114508061539] [PMID: 18775097]
[178]
Kudriashov, B.A.; Liapina, L.A.; Azieva, L.D. The content of a heparin-like anticoagulant in the flowers of the meadowsweet (Filipendula ulmaria). Farmakol. Toksikol., 1990, 53(4), 39-41.
[PMID: 2226759]
[179]
Wu, Y.C.; Hsieh, C.L. Pharmacological effects of Radix Angelica Sinensis (Danggui) on cerebral infarction. Chin. Med., 2011, 6(1), 32.
[http://dx.doi.org/10.1186/1749-8546-6-32] [PMID: 21867503]
[180]
Ngo, T.; Kim, K.; Bian, Y.; An, G.J.; Bae, O.N.; Lim, K.M.; Chung, J.H. Cyclocurcumin from Curcuma longa selectively inhibits shear stress-induced platelet aggregation. J. Funct. Foods, 2019, 61, 103462.
[http://dx.doi.org/10.1016/j.jff.2019.103462]
[181]
Prakash, P.; Misra, A.; Surin, W.R.; Jain, M.; Bhatta, R.S.; Pal, R.; Raj, K.; Barthwal, M.K.; Dikshit, M. Anti-platelet effects of Curcuma oil in experimental models of myocardial ischemia-reperfusion and thrombosis. Thromb. Res., 2011, 127(2), 111-118.
[http://dx.doi.org/10.1016/j.thromres.2010.11.007] [PMID: 21144557]
[182]
Manimegalai, B.; Velavan, S. Evaluation of anti-obesity activity of Gymnema sylvestre leaves extract. J. Pharmacogn. Phytochem., 2019, 8(3), 2170-2173.
[183]
Wang, L.; Ye, X.; Hua, Y.; Song, Y. Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice. Biomed. Pharmacother., 2018, 105, 121-129.
[http://dx.doi.org/10.1016/j.biopha.2018.05.110] [PMID: 29852389]
[184]
Yarmohammadi, F.; Mehri, S.; Najafi, N.; Salar Amoli, S.; Hosseinzadeh, H. The protective effect of Azadirachta indica (neem) against metabolic syndrome: A review. Iran. J. Basic Med. Sci., 2021, 24(3), 280-292.
[PMID: 33995939]
[185]
Ramadan, N.S.; El-Sayed, N.H.; El-Toumy, S.A.; Mohamed, D.A.; Aziz, Z.A.; Marzouk, M.S.; Esatbeyoglu, T.; Farag, M.A.; Shimizu, K. Anti-obesity evaluation of Averrhoa carambola L. leaves and assessment of its polyphenols as potential α-glucosidase inhibitors. Molecules, 2022, 27(16), 5159.
[http://dx.doi.org/10.3390/molecules27165159] [PMID: 36014395]
[186]
Xiong, H.; Wang, J.; Ran, Q.; Lou, G.; Peng, C.; Gan, Q.; Hu, J.; Sun, J.; Yao, R.; Huang, Q. Hesperidin: A therapeutic agent for obesity. Drug Des. Devel. Ther., 2019, 13, 3855-3866.
[http://dx.doi.org/10.2147/DDDT.S227499] [PMID: 32009777]
[187]
Zhang, X.; Zhang, B.; Zhang, C.; Sun, G.; Sun, X. Effect of Panax notoginseng Saponins and Major Anti-Obesity Components on Weight Loss. Front. Pharmacol., 2021, 11, 601751.
[http://dx.doi.org/10.3389/fphar.2020.601751] [PMID: 33841133]
[188]
Sato, S.; Mukai, Y. Modulation of chronic inflammation by quercetin: the beneficial effects on obesity. J. Inflamm. Res., 2020, 13, 421-431.
[http://dx.doi.org/10.2147/JIR.S228361] [PMID: 32848440]
[189]
de Oliveira, M.S.; Pellenz, F.M.; de Souza, B.M.; Crispim, D. Blueberry consumption and changes in obesity and diabetes mellitus outcomes: A systematic review. Metabolites, 2022, 13(1), 19.
[http://dx.doi.org/10.3390/metabo13010019] [PMID: 36676944]
[190]
Azizah, R.N.; Emelda, A.; Asmaliani, I.; Ahmad, I.; Fawwaz, M. Total phenolic, flavonoids, and carotenoids content and anti-obesity activity of purslane herb (Portulaca oleracea L.) ethanol extract. Pharmacogn. J., 2022, 14(1), 08-13.
[http://dx.doi.org/10.5530/pj.2022.14.2]
[191]
Halim, N. A. A.; Karim, C. F.; Mohammed, I. K.; Rozila, I.; Mahadi, M.; Yusuf, Z.; Shaharuddin, S.; Rahman, S. A. Anti-Obesity effect of methanolic extracts of local punica granatum in high-fat diet-induced obese rats. Malaysian J. Med. Heal. Sci., 2023, 19(2)
[192]
Ogawa, S.; Yazaki, Y. Tannins from Acacia mearnsii De Wild. Bark: Tannin determination and biological activities. Molecules, 2018, 23(4), 837.
[http://dx.doi.org/10.3390/molecules23040837] [PMID: 29621196]
[193]
Hu, M.; Yang, X.; Chang, X. Bioactive phenolic components and potential health effects of chestnut shell: A review. J. Food Biochem., 2021, 45(4), e13696.
[http://dx.doi.org/10.1111/jfbc.13696] [PMID: 33751612]
[194]
Orabi, S.H.; Al-Sabbagh, E.S.H.; Khalifa, H.K.; Mohamed, M.A.E.G.; Elhamouly, M.; Gad-Allah, S.M.; Abdel-Daim, M.M.; Eldaim, M.A.A. Commiphora myrrha resin alcoholic extract ameliorates high fat diet induced obesity via regulation of UCP1 and adiponectin proteins expression in rats. Nutrients, 2020, 12(3), 803.
[http://dx.doi.org/10.3390/nu12030803] [PMID: 32197395]
[195]
Mahdian, D.; Abbaszadeh-Goudarzi, K.; Raoofi, A.; Dadashizadeh, G.; Abroudi, M.; Zarepour, E.; Hosseinzadeh, H. Effect of Boswellia species on the metabolic syndrome: A review. Iran. J. Basic Med. Sci., 2020, 23(11), 1374-1381.
[PMID: 33235693]
[196]
Suma, D.; Raji, R.N. Gardenia Gummifera L. F: A review of its bioactive compounds and ethnomedicinal properties. Int. J. Pharmacogn. Phytochem., 2021, 13(4), 29-37.
[197]
Bhandari, P.; Kamdod, M. Emblica officinalis (Amla): A review of potential therapeutic applications. International Journal of Green Pharmacy, 2012, 6(4), 257-269.
[http://dx.doi.org/10.4103/0973-8258.108204]
[198]
Alam, M.A.; Uddin, R.; Subhan, N.; Rahman, M.M.; Jain, P.; Reza, H.M. Beneficial role of bitter melon supplementation in obesity and related complications in metabolic syndrome. J. Lipids, 2015, 2015, 1-18.
[http://dx.doi.org/10.1155/2015/496169] [PMID: 25650336]
[199]
Lalwani, S.; Dogra, T.D.; Bhardwaj, D.N.; Sharma, R.K.; Murty, O.P.; Vij, A. Study on arsenic level in ground water of Delhi using hydride generator accessory coupled with atomic absorption spectrophotometer. Indian J. Clin. Biochem., 2004, 19(2), 135-140.
[http://dx.doi.org/10.1007/BF02894273] [PMID: 23105472]
[200]
Gupta, P.; Goyal, R.; Chauhan, Y.; Sharma, P.L. Possible modulation of FAS and PTP-1B signaling in ameliorative potential of Bombax ceiba against high fat diet induced obesity. BMC Complement. Altern. Med., 2013, 13(1), 281.
[http://dx.doi.org/10.1186/1472-6882-13-281] [PMID: 24160453]
[201]
Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric ( Curcuma longa ), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[202]
Shekhawat, M.; Sisodia, S. S. A review on pharmacology of oleo-gum resin of Commiphora wightii. 2021, 10(13), 723-735.
[203]
Anwar, R.; Rabail, R.; Rakha, A.; Bryla, M.; Roszko, M.; Aadil, R.M.; Kieliszek, M. Delving the role of Caralluma fimbriata: An edible wild plant to mitigate the biomarkers of metabolic syndrome. Oxid. Med. Cell. Longev., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/5720372] [PMID: 35770046]
[204]
Klein, G.; Kim, J.; Himmeldirk, K.; Cao, Y.; Chen, X. Antidiabetes and anti-obesity activity of Lagerstroemia speciosa. Evid. Based Complement. Alternat. Med., 2007, 4(4), 401-407.
[http://dx.doi.org/10.1093/ecam/nem013] [PMID: 18227906]
[205]
Cock, I.E. The medicinal properties and phytochemistry of plants of the genus Terminalia (Combretaceae). Inflammopharmacology, 2015, 23(5), 203-229.
[http://dx.doi.org/10.1007/s10787-015-0246-z] [PMID: 26226895]
[206]
Iranshahi, M.; Alizadeh, M. Antihyperglycemic effect of asafoetida (Ferula Assafoetida Oleo-Gum-Resin) in streptozotocin-induced diabetic rats. World Appl. Sci. J., 2012, 17(2), 157-162.
[207]
Zhang, S.; Ma, Y.; Li, J.; Ma, J.; Yu, B.; Xie, X. Molecular matchmaking between the popular weight-loss herb Hoodia gordonii and GPR119, a potential drug target for metabolic disorder. Proc. Natl. Acad. Sci. USA, 2014, 111(40), 14571-14576.
[http://dx.doi.org/10.1073/pnas.1324130111] [PMID: 25246581]
[208]
Saqib, S.; Ullah, F.; Naeem, M.; Younas, M.; Ayaz, A.; Ali, S.; Zaman, W. Mentha: Nutritional and Health Attributes to Treat Various Ailments Including Cardiovascular Diseases. Molecules, 2022, 27(19), 6728.
[http://dx.doi.org/10.3390/molecules27196728] [PMID: 36235263]
[209]
Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J., 2017, 25(2), 149-164.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[210]
Peng, X.; Zhou, R.; Wang, B.; Yu, X.; Yang, X.; Liu, K.; Mi, M. Effect of green tea consumption on blood pressure: A meta-analysis of 13 randomized controlled trials. Sci. Rep., 2014, 4(1), 6251.
[http://dx.doi.org/10.1038/srep06251] [PMID: 25176280]
[211]
Rizvi, S.I.; Mishra, N. Traditional Indian medicines used for the management of diabetes mellitus. J. Diabetes Res., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/712092] [PMID: 23841105]
[212]
Akaberi, M.; Hosseinzadeh, H. Grapes (Vitis vinifera) as a Potential Candidate for the Therapy of the Metabolic Syndrome. Phytother. Res., 2016, 30(4), 540-556.
[http://dx.doi.org/10.1002/ptr.5570] [PMID: 26800498]
[213]
Hashmat, I.; Azad, H.; Ahmed, A. Neem (Azadirachta Indica A. Juss)-A Nature’s Drugstore: An Overview. Int. Res. J. Biol. Sci., 2012, 1(6), 76-79.
[214]
Oh, Y.S. Plant-derived compounds targeting pancreatic beta cells for the treatment of diabetes. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/629863] [PMID: 26587047]
[215]
Baldi, A.; Chaudhary, N.; Maru, J.; Joshi, R. Effect of pumpkin concentrate on alloxan induced diabetic rats. J. Glob. Pharma Technol., 2010, 2(10), 24-27.
[216]
Olajide, O.A.; Awe, S.O.; Makinde, J.M.; Morebise, O. Evaluation of the anti-diabetic property of Morinda lucida leaves in streptozotocin-diabetic rats. J. Pharm. Pharmacol., 2010, 51(11), 1321-1324.
[http://dx.doi.org/10.1211/0022357991776903] [PMID: 10632091]
[217]
Morita, T.; Tabata, S.; Mineshita, M.; Mizoue, T.; Moore, M.A.; Kono, S. The metabolic syndrome is associated with increased risk of colorectal adenoma development: the Self-Defense Forces health study. Asian Pac. J. Cancer Prev., 2005, 6(4), 485-489.
[PMID: 16435997]
[218]
Fogarty, S.; Hardie, D. G. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. acta (bba)-proteins proteomics, 2010, 1804(3), 581-591.
[219]
Berger, J.P.; Akiyama, T.E.; Meinke, P.T. PPARs: therapeutic targets for metabolic disease. Trends Pharmacol. Sci., 2005, 26(5), 244-251.
[http://dx.doi.org/10.1016/j.tips.2005.03.003] [PMID: 15860371]
[220]
Akbar, S.; Alorainy, M.S. The current status of beta blockers’ use in the management of hypertension. Saudi Med. J., 2014, 35(11), 1307-1317.
[PMID: 25399206]
[221]
Buchholz, T.; Melzig, M.F. Medicinal plants traditionally used for treatment of obesity and diabetes mellitus - screening for pancreatic lipase and α-amylase inhibition. Phytother. Res., 2016, 30(2), 260-266.
[http://dx.doi.org/10.1002/ptr.5525] [PMID: 26632284]
[222]
Kumar, S.; Mittal, A.; Babu, D.; Mittal, A. Herbal medicines for diabetes management and its secondary complications. Curr. Diabetes Rev., 2021, 17(4), 437-456.
[http://dx.doi.org/10.2174/18756417MTExfMTQ1z] [PMID: 33143632]
[223]
Fan, Y.; Jin, X.; Man, C.; Gong, D. Does adjuvant treatment with Ginkgo Biloba to statins have additional benefits in patients with dyslipidemia? Front. Pharmacol., 2018, 9, 659.
[http://dx.doi.org/10.3389/fphar.2018.00659] [PMID: 29988404]
[224]
Prabhakar, P.K.; Kumar, A.; Doble, M. Combination therapy: A new strategy to manage diabetes and its complications. Phytomedicine, 2014, 21(2), 123-130.
[http://dx.doi.org/10.1016/j.phymed.2013.08.020] [PMID: 24074610]
[225]
Kaur, R.; Afzal, M.; Kazmi, I.; Ahamd, I.; Ahmed, Z.; Ali, B.; Ahmad, S.; Anwar, F. Polypharmacy (herbal and synthetic drug combination): a novel approach in the treatment of type-2 diabetes and its complications in rats. J. Nat. Med., 2013, 67(3), 662-671.
[http://dx.doi.org/10.1007/s11418-012-0720-5] [PMID: 23151907]
[226]
Bahmani, M.; Rafieian-Kopaei, M.; Hassanzadazar, H.; Saki, K.; Karamati, S.A.; Delfan, B. A review on most important herbal and synthetic antihelmintic drugs. Asian Pac. J. Trop. Med., 2014, 7, S29-S33.
[http://dx.doi.org/10.1016/S1995-7645(14)60200-5] [PMID: 25312139]
[227]
Nivitabishekam, S.N.; Asad, M.; Prasad, V.S. Pharmacodynamic interaction of Momordica charantia with rosiglitazone in rats. Chem. Biol. Interact., 2009, 177(3), 247-253.
[http://dx.doi.org/10.1016/j.cbi.2008.09.034] [PMID: 18983991]
[228]
Nankar, R.; Prabhakar, P.K.; Doble, M. Hybrid drug combination: Combination of ferulic acid and metformin as anti-diabetic therapy. Phytomedicine, 2017, 37, 10-13.
[http://dx.doi.org/10.1016/j.phymed.2017.10.015] [PMID: 29126698]
[229]
Ulrich-Merzenich, G.S. Combination screening of synthetic drugs and plant derived natural products—Potential and challenges for drug development. Synergy, 2014, 1(1), 59-69.
[http://dx.doi.org/10.1016/j.synres.2014.07.011]
[230]
Zhou, X.; Ren, F.; Wei, H.; Liu, L.; Shen, T.; Xu, S.; Wei, J.; Ren, J.; Ni, H. Combination of berberine and evodiamine inhibits intestinal cholesterol absorption in high fat diet induced hyperlipidemic rats. Lipids Health Dis., 2017, 16(1), 239.
[http://dx.doi.org/10.1186/s12944-017-0628-x] [PMID: 29228954]
[231]
Asdaq, S.M.; Inamdar, M.N. Potential of garlic and its active constituent, S-allyl cysteine, as antihypertensive and cardioprotective in presence of captopril. Phytomedicine, 2010, 17(13), 1016-1026.
[http://dx.doi.org/10.1016/j.phymed.2010.07.012] [PMID: 20739164]
[232]
Astuti, K.W.; Larasanty, L.P.F. Combined effects of noni fruit extract (Morinda Citrifolia L.) and warfarin on bleeding and coagulation time of mice. Int. J. Pharm. Teach. Pract., 2013, 4(4), 1-7.
[233]
Lo, A.C.T.; Chan, K.; Yeung, J.H.K.; Woo, K.S. Danggui (Angelica sinensis) affects the pharmacodynamics but not the pharmacokinetics of warfarin in rabbits. Eur. J. Drug Metab. Pharmacokinet., 1995, 20(1), 55-60.
[http://dx.doi.org/10.1007/BF03192289] [PMID: 7588995]
[234]
Yang, S.H.; Yu, C.L.; Chen, H.Y.; Lin, Y.H. A commonly used Chinese herbal formula, Shu-Jing-Hwo-Shiee-Tang, potentiates anticoagulant activity of warfarin in a rabbit model. Molecules, 2013, 18(10), 11712-11723.
[http://dx.doi.org/10.3390/molecules181011712] [PMID: 24071980]
[235]
Satyanand, V.; Reddy, C.B.; RamaMohan, P.; Kumar, M.R.; Narayanaswamy, D.L.; Seelam, A.; Ramalingam, K.; Rao, P.S. Effects of garlic extract (Allium sativum) in combination with amlodipine in mild to moderate essential hypertensive patients: An open randomized parallel group study. J Pharmace Res Dev, 2013, 2(4), 181-188.
[236]
Cheung, D.W.S.; Koon, J.C.M.; Wong, P.H.; Yau, K.C.; Wat, E.C.L.; Chan, J.Y.W.; Lau, V.K.M.; Ko, E.C.H.; Waye, M.M.Y.; Fung, K.P. Combination of atorvastatin or hydrochlorothiazide/amlodipine with Salvia miltiorrhiza (Danshen) and Pueraria lobata (Gegen) for atherosclerosis, hyperlipidaemia, and hypertension: a preclinical in vivo study (abridged secondary publication). Hong Kong Med. J., 2021, 27(3)(Suppl. 2), 18-22.
[PMID: 34075886]
[237]
Farazandeh, M.; Mahmoudabady, M.; Asghari, A.A.; Niazmand, S. Diabetic cardiomyopathy was attenuated by cinnamon treatment through the inhibition of fibro‐inflammatory response and ventricular hypertrophy in diabetic rats. J. Food Biochem., 2022, 46(8), e14206.
[http://dx.doi.org/10.1111/jfbc.14206] [PMID: 35474577]
[238]
Mishra, B.; Pancholi, S.S. Investigation of a new antidiabetic combination based on Gymnema sylvestre and Momordica charantia along with pioglitazone in major diabetic complications. Mol. Clin. Pharmacol., 2013, 4(1), 11-25.
[239]
George, G.; S˙n˙c˙, S.; Paul, A.T. Investigation of synergistic potential of green tea polyphenols and orlistat combinations using pancreatic lipase assay-based synergy directed fractionation strategy. S. Afr. J. Bot., 2020, 135, 50-57.
[http://dx.doi.org/10.1016/j.sajb.2020.08.009]
[240]
Bukhari, H.M.; Zahran, S.E.; Bakr, E.S.H.; Sahibzadah, F.A.; Header, E.A. Comparison Study between Drugs (Orlistat and Chitocal) and Food Supplements (Green Tea and Apple Cider Vinegar) for Weight Loss and Hepatoprotection in Rats. Egypt. J. Hosp. Med., 2021, 83(1), 1218-1223.
[http://dx.doi.org/10.21608/ejhm.2021.165165]
[241]
Kong, W.J.; Wei, J.; Zuo, Z.Y.; Wang, Y.M.; Song, D.Q.; You, X.F.; Zhao, L.X.; Pan, H.N.; Jiang, J.D. Combination of simvastatin with berberine improves the lipid-lowering efficacy. Metabolism, 2008, 57(8), 1029-1037.
[http://dx.doi.org/10.1016/j.metabol.2008.01.037] [PMID: 18640378]
[242]
Alam, M.A.; Bin Jardan, Y.A.; Raish, M.; Al-Mohizea, A.M.; Ahad, A.; Al-Jenoobi, F.I. Effect of Nigella sativa and fenugreek on the pharmacokinetics and pharmacodynamics of amlodipine in hypertensive rats. Curr. Drug Metab., 2020, 21(4), 318-325.
[http://dx.doi.org/10.2174/1389200221666200514121501] [PMID: 32407268]
[243]
Williamson, E. Synergy and other interactions in phytomedicines. Phytomedicine, 2001, 8(5), 401-409.
[http://dx.doi.org/10.1078/0944-7113-00060] [PMID: 11695885]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy