Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

From Gut to Glucose: A Comprehensive Review on Functional Foods and Dietary Interventions for Diabetes Management

Author(s): Nirali Patel, Susha Dinesh* and Sameer Sharma

Volume 20, Issue 5, 2024

Published on: 11 October, 2023

Article ID: e111023222081 Pages: 22

DOI: 10.2174/0115733998266653231005072450

Price: $65

Abstract

Background: In the realm of diabetes research, considerable attention has been directed toward elucidating the intricate interplay between the gastrointestinal tract and glucose regulation. The gastrointestinal tract, once exclusively considered for its role in digestion and nutrient assimilation, is presently acknowledged as a multifaceted ecosystem with regulatory supremacy over metabolic homeostasis and glucose metabolism. Recent studies indicate that alterations in the composition and functionality of the gut microbiota could potentially influence the regulation of glucose levels and glucose homeostasis in the body. Dysbiosis, characterized by perturbations in the equilibrium of gut microbial constituents, has been irrevocably linked to an augmented risk of diabetes mellitus (DM). Moreover, research has revealed the potential influence of the gut microbiota on important factors, like inflammation and insulin sensitivity, which are key contributors to the onset and progression of diabetes. The key protagonists implicated in the regulation of glucose encompass the gut bacteria, gut barrier integrity, and the gut-brain axis. A viable approach to enhance glycemic control while concurrently mitigating the burden of comorbidities associated with diabetes resides in the strategic manipulation of the gut environment through adapted dietary practices.

Objective: This review aimed to provide a deep understanding of the complex relationship between gut health, glucose metabolism, and diabetes treatment.

Conclusion: This study has presented an exhaustive overview of dietary therapies and functional foods that have undergone extensive research to explore their potential advantages in the management of diabetes. It looks into the role of gut health in glucose regulation, discusses the impact of different dietary elements on the course of diabetes, and evaluates how well functional foods can help with glycemic control. Furthermore, it investigates the mechanistic aspects of these therapies, including their influence on insulin sensitivity, β-cell activity, and inflammation. It deliberates on the limitations and potential prospects associated with integrating functional foods into personalized approaches to diabetes care.

[1]
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474(11): 1823-36.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[2]
Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005; 307(5717): 1915-20.
[http://dx.doi.org/10.1126/science.1104816] [PMID: 15790844]
[3]
Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology 2009; 136(1): 65-80.
[http://dx.doi.org/10.1053/j.gastro.2008.10.080] [PMID: 19026645]
[4]
Gill SR, Pop M, DeBoy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312(5778): 1355-9.
[http://dx.doi.org/10.1126/science.1124234] [PMID: 16741115]
[5]
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14(8): e1002533.
[http://dx.doi.org/10.1371/journal.pbio.1002533] [PMID: 27541692]
[6]
Tap J, Mondot S, Levenez F, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 2009; 11(10): 2574-84.
[http://dx.doi.org/10.1111/j.1462-2920.2009.01982.x] [PMID: 19601958]
[7]
Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science 2001; 292(5519): 1115-8.
[http://dx.doi.org/10.1126/science.1058709] [PMID: 11352068]
[8]
Human Microbiome Project Consortium. A framework for human microbiome research. Nature 2012; 486(7402): 215-21.
[http://dx.doi.org/10.1038/nature11209] [PMID: 22699610]
[9]
Faith JJ, Rey FE, O’Donnell D, et al. Creating and characterizing communities of human gut microbes in gnotobiotic mice. ISME J 2010; 4(9): 1094-8.
[http://dx.doi.org/10.1038/ismej.2010.110] [PMID: 20664551]
[10]
Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 2009; 1(6): 6ra14.
[http://dx.doi.org/10.1126/scitranslmed.3000322] [PMID: 20368178]
[11]
Stedtfeld RD, Chai B, Crawford RB, et al. Modulatory influence of segmented filamentous bacteria on transcriptomic response of gnotobiotic mice exposed to TCDD. Front Microbiol 2017; 8: 1708.
[http://dx.doi.org/10.3389/fmicb.2017.01708] [PMID: 28936204]
[12]
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci 2005; 102(31): 11070-5.
[http://dx.doi.org/10.1073/pnas.0504978102] [PMID: 16033867]
[13]
Mahe S, Corthier G, Dubos F. Effect of various diets on toxin production by two strains of Clostridium difficile in gnotobiotic mice. Infect Immun 1987; 55(8): 1801-5.
[http://dx.doi.org/10.1128/iai.55.8.1801-1805.1987] [PMID: 3610315]
[14]
Silva AM, Bambirra EA, Oliveira AL, et al. Protective effect of bifidus milk on the experimental infection with Salmonella enteritidis subsp. typhimurium in conventional and gnotobiotic mice. J Appl Microbiol 1999; 86(2): 331-6.
[http://dx.doi.org/10.1046/j.1365-2672.1999.00674.x] [PMID: 10063632]
[15]
Hrncir T. Gut microbiota dysbiosis: Triggers, consequences, diagnostic and therapeutic options. Microorganisms 2022; 10(3): 578.
[http://dx.doi.org/10.3390/microorganisms10030578] [PMID: 35336153]
[16]
Rajaei E, Jalali MT, Shahrabi S, Asnafi AA, Pezeshki SMS. HLAs in autoimmune diseases: Dependable diagnostic biomarkers? Curr Rheumatol Rev 2019; 15(4): 269-76.
[http://dx.doi.org/10.2174/1573397115666190115143226] [PMID: 30644346]
[17]
Unger RH, Orci L. Paracrinology of islets and the paracrinopathy of diabetes. Proc Natl Acad Sci 2010; 107(37): 16009-12.
[http://dx.doi.org/10.1073/pnas.1006639107] [PMID: 20798346]
[18]
Sapra A, Bhandari P. Diabetes. [Updated 2023 Jun 21]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023; Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551501/
[19]
Ayadurai S, Hattingh HL, Tee LBG, Md Said SN. A Narrative review of diabetes intervention studies to explore diabetes care opportunities for pharmacists. J Diabetes Res 2016; 2016: 1-11.
[http://dx.doi.org/10.1155/2016/5897452] [PMID: 27247949]
[20]
Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci 2019; 76(3): 473-93.
[http://dx.doi.org/10.1007/s00018-018-2943-4] [PMID: 30317530]
[21]
Schloissnig S, Arumugam M, Sunagawa S, et al. Genomic variation landscape of the human gut microbiome. Nature 2013; 493(7430): 45-50.
[http://dx.doi.org/10.1038/nature11711] [PMID: 23222524]
[22]
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol 2015; 21(29): 8787-803.
[http://dx.doi.org/10.3748/wjg.v21.i29.8787] [PMID: 26269668]
[23]
O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006; 7(7): 688-93.
[http://dx.doi.org/10.1038/sj.embor.7400731] [PMID: 16819463]
[24]
Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ 2018; 361: k2179.
[http://dx.doi.org/10.1136/bmj.k2179] [PMID: 29899036]
[25]
Zhang L, Chu J, Hao W, et al. Gut microbiota and type 2 diabetes mellitus: Association, mechanism, and translational applications. Mediators Inflamm 2021; 2021: 1-12.
[http://dx.doi.org/10.1155/2021/5110276] [PMID: 34447287]
[26]
Mallone R, Martinuzzi E, Blancou P, et al. CD8+ T-cell responses identify beta-cell autoimmunity in human type 1 diabetes. Diabetes 2007; 56(3): 613-21.
[http://dx.doi.org/10.2337/db06-1419] [PMID: 17327428]
[27]
Brown CT, Davis-Richardson AG, Giongo A, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 2011; 6(10): e25792.
[http://dx.doi.org/10.1371/journal.pone.0025792] [PMID: 22043294]
[28]
Vaarala O. Leaking gut in type 1 diabetes. Curr Opin Gastroenterol 2008; 24(6): 701-6.
[http://dx.doi.org/10.1097/MOG.0b013e32830e6d98] [PMID: 19122519]
[29]
Peng L, He Z, Chen W, Holzman IR, Lin J. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr Res 2007; 61(1): 37-41.
[http://dx.doi.org/10.1203/01.pdr.0000250014.92242.f3] [PMID: 17211138]
[30]
Mariño E, Richards JL, McLeod KH, et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol 2017; 18(5): 552-62.
[http://dx.doi.org/10.1038/ni.3713] [PMID: 28346408]
[31]
Badami E, Sorini C, Coccia M, et al. Defective differentiation of regulatory FoxP3+ T cells by small-intestinal dendritic cells in patients with type 1 diabetes. Diabetes 2011; 60(8): 2120-4.
[http://dx.doi.org/10.2337/db10-1201] [PMID: 21646390]
[32]
Vatanen T, Franzosa EA, Schwager R, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 2018; 562(7728): 589-94.
[http://dx.doi.org/10.1038/s41586-018-0620-2] [PMID: 30356183]
[33]
Miranda MCG, Oliveira RP, Torres L, et al. Frontline Science: Abnormalities in the gut mucosa of non-obese diabetic mice precede the onset of type 1 diabetes. J Leukoc Biol 2019; 106(3): 513-29.
[http://dx.doi.org/10.1002/JLB.3HI0119-024RR] [PMID: 31313381]
[34]
Turley SJ, Lee JW, Dutton-Swain N, Mathis D, Benoist C. Endocrine self and gut non-self intersect in the pancreatic lymph nodes. Proc Natl Acad Sci 2005; 102(49): 17729-33.
[http://dx.doi.org/10.1073/pnas.0509006102] [PMID: 16317068]
[35]
Van den Broeck W, Derore A, Simoens P. Anatomy and nomenclature of murine lymph nodes: Descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods 2006; 312(1-2): 12-9.
[http://dx.doi.org/10.1016/j.jim.2006.01.022] [PMID: 16624319]
[36]
Wicker LS, Clark J, Fraser HI, et al. Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun 2005; 25: 29-33.
[http://dx.doi.org/10.1016/j.jaut.2005.09.009]
[37]
Mokhtari P, Metos J, Anandh Babu PV. Impact of type 1 diabetes on the composition and functional potential of gut microbiome in children and adolescents: Possible mechanisms, current knowledge, and challenges. Gut Microbes 2021; 13(1): 1926841.
[http://dx.doi.org/10.1080/19490976.2021.1926841] [PMID: 34101547]
[38]
Di Tommaso N, Gasbarrini A, Ponziani FR. Intestinal barrier in human health and disease. Int J Environ Res Public Health 2021; 18(23): 12836.
[http://dx.doi.org/10.3390/ijerph182312836] [PMID: 34886561]
[39]
Bachem A, Makhlouf C, Binger KJ, et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T Cells. Immunity 2019; 51(2): 285-297.e5.
[http://dx.doi.org/10.1016/j.immuni.2019.06.002] [PMID: 31272808]
[40]
Velloso LA, Folli F, Saad MJ. TLR4 at the crossroads of nutrients, gut microbiota, and metabolic inflammation. Endocr Rev 2015; 36(3): 245-71.
[http://dx.doi.org/10.1210/er.2014-1100] [PMID: 25811237]
[41]
Li J, Wang X, Zhang F, Yin H. Toll-like receptors as therapeutic targets for autoimmune connective tissue diseases. Pharmacol Ther 2013; 138(3): 441-51.
[http://dx.doi.org/10.1016/j.pharmthera.2013.03.003] [PMID: 23531543]
[42]
Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TTLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006; 116(11): 3015-25.
[http://dx.doi.org/10.1172/JCI28898]
[43]
Devaraj S, Dasu MR, Park SH, Jialal I. Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes. Diabetologia 2009; 52(8): 1665-8.
[http://dx.doi.org/10.1007/s00125-009-1394-8] [PMID: 19455302]
[44]
Sorini C, Cosorich I, Lo Conte M, et al. Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proc Natl Acad Sci 2019; 116(30): 15140-9.
[http://dx.doi.org/10.1073/pnas.1814558116] [PMID: 31182588]
[45]
Tai N, Peng J, Liu F, et al. Microbial antigen mimics activate diabetogenic CD8 T cells in NOD mice. J Exp Med 2016; 213(10): 2129-46.
[http://dx.doi.org/10.1084/jem.20160526] [PMID: 27621416]
[46]
Bibbò S, Dore MP, Pes GM, Delitala G, Delitala AP. Is there a role for gut microbiota in type 1 diabetes pathogenesis? Ann Med 2017; 49(1): 11-22.
[http://dx.doi.org/10.1080/07853890.2016.1222449] [PMID: 27499366]
[47]
de Goffau MC, Luopajärvi K, Knip M, et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 2013; 62(4): 1238-44.
[http://dx.doi.org/10.2337/db12-0526] [PMID: 23274889]
[48]
Maffeis C, Martina A, Corradi M, et al. Association between intestinal permeability and faecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes. Diabetes Metab Res Rev 2016; 32(7): 700-9.
[http://dx.doi.org/10.1002/dmrr.2790] [PMID: 26891226]
[49]
Davis-Richardson AG, Ardissone AN, Dias R, et al. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol 2014; 5: 678.
[http://dx.doi.org/10.3389/fmicb.2014.00678] [PMID: 25540641]
[50]
de Goffau MC, Fuentes S, van den Bogert B, et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 2014; 57(8): 1569-77.
[http://dx.doi.org/10.1007/s00125-014-3274-0] [PMID: 24930037]
[51]
Vaarala O. Human intestinal microbiota and type 1 diabetes. Curr Diab Rep 2013; 13(5): 601-7.
[http://dx.doi.org/10.1007/s11892-013-0409-5] [PMID: 23934614]
[52]
Larsen N, Vogensen FK, van den Berg FWJ, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010; 5(2): e9085.
[http://dx.doi.org/10.1371/journal.pone.0009085] [PMID: 20140211]
[53]
Zhang S, Cai Y, Meng C, et al. The role of the microbiome in diabetes mellitus. Diabetes Res Clin Pract 2021; 172(108645): 108645.
[http://dx.doi.org/10.1016/j.diabres.2020.108645] [PMID: 33359751]
[54]
Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490(7418): 55-60.
[http://dx.doi.org/10.1038/nature11450] [PMID: 23023125]
[55]
Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498(7452): 99-103.
[http://dx.doi.org/10.1038/nature12198] [PMID: 23719380]
[56]
Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528(7581): 262-6.
[http://dx.doi.org/10.1038/nature15766] [PMID: 26633628]
[57]
Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014; 63(5): 727-35.
[http://dx.doi.org/10.1136/gutjnl-2012-303839] [PMID: 23804561]
[58]
Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 2016; 22(10): 1079-89.
[http://dx.doi.org/10.1038/nm.4185] [PMID: 27711063]
[59]
Khan MT, Nieuwdorp M, Bäckhed F. Microbial modulation of insulin sensitivity. Cell Metab 2014; 20(5): 753-60.
[http://dx.doi.org/10.1016/j.cmet.2014.07.006] [PMID: 25176147]
[60]
Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015; 11(10): 577-91.
[http://dx.doi.org/10.1038/nrendo.2015.128] [PMID: 26260141]
[61]
Sahuri-Arisoylu M, Brody LP, Parkinson JR, et al. Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate. Int J Obes 2016; 40(6): 955-63.
[http://dx.doi.org/10.1038/ijo.2016.23] [PMID: 26975441]
[62]
Chambers ES, viardot A, Psichas A. et al.Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2015; 64(11): 1744-54.
[http://dx.doi.org/10.1136/gutjnl-2014-307913] [PMID: 25500202]
[63]
Zhou D, Chen YW, Zhao ZH, et al. Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression. Exp Mol Med 2018; 50(12): 1-12.
[http://dx.doi.org/10.1038/s12276-018-0183-1] [PMID: 30510243]
[64]
Stoddart LA, Smith NJ, Milligan G. International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions. Pharmacol Rev 2008; 60(4): 405-17.
[http://dx.doi.org/10.1124/pr.108.00802] [PMID: 19047536]
[65]
Priyadarshini M, Navarro G, Layden BT. Gut Microbiota: FFAR Reaching Effects on Islets. Endocrinology 2018; 159(6): 2495-505.
[http://dx.doi.org/10.1210/en.2018-00296] [PMID: 29846565]
[66]
Xiong Y, Miyamoto N, Shibata K, et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci USA 2004; 101(4): 1045-50.
[http://dx.doi.org/10.1073/pnas.2637002100] [PMID: 14722361]
[67]
Larraufie P, Martin-Gallausiaux C, Lapaque N, et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep 2018; 8(1): 74.
[http://dx.doi.org/10.1038/s41598-017-18259-0] [PMID: 29311617]
[68]
Kimura I, Inoue D, Maeda T, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci 2011; 108(19): 8030-5.
[http://dx.doi.org/10.1073/pnas.1016088108] [PMID: 21518883]
[69]
Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012; 61(2): 364-71.
[http://dx.doi.org/10.2337/db11-1019] [PMID: 22190648]
[70]
Chen F, He L, Li J, et al. Polyethylene Glycol Loxenatide injection (GLP-1) protects vascular endothelial cell function in middle-aged and elderly patients with type 2 diabetes by regulating gut microbiota. Front Mol Biosci 2022; 9: 879294.
[http://dx.doi.org/10.3389/fmolb.2022.879294] [PMID: 35782875]
[71]
Bjursell M, Admyre T, Göransson M, et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2011; 300(1): E211-20.
[http://dx.doi.org/10.1152/ajpendo.00229.2010] [PMID: 20959533]
[72]
Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 2013; 4(1): 1829.
[http://dx.doi.org/10.1038/ncomms2852] [PMID: 23652017]
[73]
Ahmad TR, Haeusler RA. Bile acids in glucose metabolism and insulin signalling: Mechanisms and research needs. Nat Rev Endocrinol 2019; 15(12): 701-12.
[http://dx.doi.org/10.1038/s41574-019-0266-7] [PMID: 31616073]
[74]
Shapiro H, Kolodziejczyk AA, Halstuch D, Elinav E. Bile acids in glucose metabolism in health and disease. J Exp Med 2018; 215(2): 383-96.
[http://dx.doi.org/10.1084/jem.20171965] [PMID: 29339445]
[75]
Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun 2005; 329(1): 386-90.
[http://dx.doi.org/10.1016/j.bbrc.2005.01.139] [PMID: 15721318]
[76]
Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009; 10(3): 167-77.
[http://dx.doi.org/10.1016/j.cmet.2009.08.001] [PMID: 19723493]
[77]
Kuhre RE, Wewer Albrechtsen NJ, Larsen O, et al. Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Mol Metab 2018; 11: 84-95.
[http://dx.doi.org/10.1016/j.molmet.2018.03.007] [PMID: 29656109]
[78]
Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci 2006; 103(4): 1006-11.
[http://dx.doi.org/10.1073/pnas.0506982103] [PMID: 16410358]
[79]
Fang S, Suh JM, Reilly SM, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 2015; 21(2): 159-65.
[http://dx.doi.org/10.1038/nm.3760] [PMID: 25559344]
[80]
Staudinger JL, Goodwin B, Jones SA, et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci 2001; 98(6): 3369-74.
[http://dx.doi.org/10.1073/pnas.051551698] [PMID: 11248085]
[81]
Pathak P, Xie C, Nichols RG, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G‐protein bile acid receptor‐1 signaling to improve metabolism. Hepatology 2018; 68(4): 1574-88.
[http://dx.doi.org/10.1002/hep.29857] [PMID: 29486523]
[82]
Ruiz-Canela M, Guasch-Ferré M, Toledo E, et al. Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial. Diabetologia 2018; 61(7): 1560-71.
[http://dx.doi.org/10.1007/s00125-018-4611-5] [PMID: 29663011]
[83]
Cummings NE, Williams EM, Kasza I, et al. Restoration of metabolic health by decreased consumption of branched-chain amino acids. J Physiol 2018; 596(4): 623-45.
[http://dx.doi.org/10.1113/JP275075] [PMID: 29266268]
[84]
Muegge BD, Kuczynski J, Knights D, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 2011; 332(6032): 970-4.
[http://dx.doi.org/10.1126/science.1198719] [PMID: 21596990]
[85]
Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334(6052): 105-8.
[http://dx.doi.org/10.1126/science.1208344] [PMID: 21885731]
[86]
Su Q, Liu Q. Factors Affecting Gut Microbiome in Daily Diet. Front Nutr 2021; 8: 644138.
[http://dx.doi.org/10.3389/fnut.2021.644138] [PMID: 34041257]
[87]
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559-63.
[http://dx.doi.org/10.1038/nature12820] [PMID: 24336217]
[88]
Glick-Bauer M, Yeh MC. The health advantage of a vegan diet: exploring the gut microbiota connection. Nutrients 2014; 6(11): 4822-38.
[http://dx.doi.org/10.3390/nu6114822] [PMID: 25365383]
[89]
Cani PD, Van Hul M. Mediterranean diet, gut microbiota and health: When age and calories do not add up! Gut 2020; 69(7): 1167-8.
[http://dx.doi.org/10.1136/gutjnl-2020-320781] [PMID: 32169906]
[90]
Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res 2013; 69(1): 52-60.
[http://dx.doi.org/10.1016/j.phrs.2012.10.020] [PMID: 23147033]
[91]
De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci 2010; 107(33): 14691-6.
[http://dx.doi.org/10.1073/pnas.1005963107] [PMID: 20679230]
[92]
Albenberg LG, Wu GD. Diet and the intestinal microbiome: Associations, functions, and implications for health and disease. Gastroenterology 2014; 146(6): 1564-72.
[http://dx.doi.org/10.1053/j.gastro.2014.01.058] [PMID: 24503132]
[93]
Uusitalo U, Liu X, Yang J, et al. Association of early exposure of probiotics and islet autoimmunity in the teddy study. JAMA Pediatr 2016; 170(1): 20-8.
[http://dx.doi.org/10.1001/jamapediatrics.2015.2757] [PMID: 26552054]
[94]
Rosenbauer J, Herzig P, Giani G. Early infant feeding and risk of type 1 diabetes mellitus—a nationwide population-based case–control study in pre-school children. Diabetes Metab Res Rev 2008; 24(3): 211-22.
[http://dx.doi.org/10.1002/dmrr.791] [PMID: 17968982]
[95]
Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018; 359(6380): 1151-6.
[http://dx.doi.org/10.1126/science.aao5774] [PMID: 29590046]
[96]
Kim MS, Hwang SS, Park EJ, Bae JW. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep 2013; 5(5): n/a.
[http://dx.doi.org/10.1111/1758-2229.12079] [PMID: 24115628]
[97]
Marietta EV, Gomez AM, Yeoman C, et al. Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome. PLoS One 2013; 8(11): e78687.
[http://dx.doi.org/10.1371/journal.pone.0078687] [PMID: 24236037]
[98]
Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500(7464): 585-8.
[http://dx.doi.org/10.1038/nature12480] [PMID: 23985875]
[99]
Bouter KE, van Raalte DH, Groen AK, Nieuwdorp M. Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology 2017; 152(7): 1671-8.
[http://dx.doi.org/10.1053/j.gastro.2016.12.048] [PMID: 28192102]
[100]
Hartstra AV, Bouter KEC, Bäckhed F, Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 2015; 38(1): 159-65.
[http://dx.doi.org/10.2337/dc14-0769] [PMID: 25538312]
[101]
Lau LHS, Wong SH. Microbiota, Obesity and NAFLD. Adv Exp Med Biol 2018; 1061: 111-25.
[http://dx.doi.org/10.1007/978-981-10-8684-7_9] [PMID: 29956210]
[102]
Pascale A, Marchesi N, Marelli C, et al. Microbiota and metabolic diseases. Endocrine 2018; 61(3): 357-71.
[http://dx.doi.org/10.1007/s12020-018-1605-5] [PMID: 29721802]
[103]
Xia T, Lai W, Han M, Han M, Ma X, Zhang L. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget 2017; 8(39): 64878-91.
[http://dx.doi.org/10.18632/oncotarget.17612] [PMID: 29029398]
[104]
Tian Y, Nichols RG, Cai J, Patterson AD, Cantorna MT, Vitamin A. Vitamin A deficiency in mice alters host and gut microbial metabolism leading to altered energy homeostasis. J Nutr Biochem 2018; 54: 28-34.
[http://dx.doi.org/10.1016/j.jnutbio.2017.10.011] [PMID: 29227833]
[105]
Tan J, Ni D, Taitz J, et al. Dietary protein increases T-cell-independent sIgA production through changes in gut microbiota-derived extracellular vesicles. Nat Commun 2022; 13(1): 4336.
[http://dx.doi.org/10.1038/s41467-022-31761-y] [PMID: 35896537]
[106]
Soedamah-Muthu SS, de Goede J. Dairy Consumption and cardiometabolic diseases: Systematic review and updated meta-analyses of prospective cohort studies. Curr Nutr Rep 2018; 7(4): 171-82.
[http://dx.doi.org/10.1007/s13668-018-0253-y] [PMID: 30406514]
[107]
Drouin-Chartier JP, Li Y, Ardisson Korat AV, et al. Changes in dairy product consumption and risk of type 2 diabetes: Results from 3 large prospective cohorts of US men and women. Am J Clin Nutr 2019; 110(5): 1201-12.
[http://dx.doi.org/10.1093/ajcn/nqz180] [PMID: 31504094]
[108]
Daniel N, Nachbar RT, Tran TTT, et al. Gut microbiota and fermentation-derived branched chain hydroxy acids mediate health benefits of yogurt consumption in obese mice. Nat Commun 2022; 13(1): 1343.
[http://dx.doi.org/10.1038/s41467-022-29005-0] [PMID: 35292630]
[109]
Wastyk HC, Fragiadakis GK, Perelman D, et al. Gut-microbiota-targeted diets modulate human immune status. Cell 2021; 184(16): 4137-4153.e14.
[http://dx.doi.org/10.1016/j.cell.2021.06.019] [PMID: 34256014]
[110]
Shi H, Ge X, Ma X, et al. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome 2021; 9(1): 223.
[http://dx.doi.org/10.1186/s40168-021-01172-0] [PMID: 34758889]
[111]
Qian F, Liu G, Hu FB, Bhupathiraju SN, Sun Q. Association between plant-based dietary patterns and risk of type 2 diabetes. JAMA Intern Med 2019; 179(10): 1335-44.
[http://dx.doi.org/10.1001/jamainternmed.2019.2195] [PMID: 31329220]
[112]
Zhuang P, Li H, Jia W, et al. Eicosapentaenoic and docosahexaenoic acids attenuate hyperglycemia through the microbiome-gut-organs axis in db/db mice. Microbiome 2021; 9(1): 185.
[http://dx.doi.org/10.1186/s40168-021-01126-6] [PMID: 34507608]
[113]
Ho FK, Gray SR, Welsh P, et al. Associations of fat and carbohydrate intake with cardiovascular disease and mortality: Prospective cohort study of UK Biobank participants. BMJ 2020; 368: m688.
[http://dx.doi.org/10.1136/bmj.m688] [PMID: 32188587]
[114]
Atzeni A, Martínez MÁ, Babio N, et al. Association between ultra-processed food consumption and gut microbiota in senior subjects with overweight/obesity and metabolic syndrome. Front Nutr 2022; 9: 976547.
[http://dx.doi.org/10.3389/fnut.2022.976547] [PMID: 36299993]
[115]
Yang J, Yang Y, Ishii M, et al. Does the gut microbiota modulate host physiology through polymicrobial biofilms? Microbes Environ 2020; 35(3): n/a.
[http://dx.doi.org/10.1264/jsme2.ME20037] [PMID: 32624527]
[116]
Zoll J, Read MN, Heywood SE, et al. Fecal microbiota transplantation from high caloric-fed donors alters glucose metabolism in recipient mice, independently of adiposity or exercise status. Am J Physiol Endocrinol Metab 2020; 319(1): E203-16.
[http://dx.doi.org/10.1152/ajpendo.00037.2020] [PMID: 32516027]
[117]
Martínez-González MA, García-Arellano A, Toledo E, et al. A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: The PREDIMED trial. PLoS One 2012; 7(8): e43134.
[http://dx.doi.org/10.1371/journal.pone.0043134] [PMID: 22905215]
[118]
Vasto S, Barera A, Rizzo C, Carlo M, Caruso C, Panotopoulos G. Mediterranean diet and longevity: An example of nutraceuticals? Curr Vasc Pharmacol 2013; 12(5): 735-8.
[http://dx.doi.org/10.2174/1570161111666131219111818] [PMID: 24350926]
[119]
Georgoulis M, Kontogianni M, Yiannakouris N. Mediterranean diet and diabetes: Prevention and treatment. Nutrients 2014; 6(4): 1406-23.
[http://dx.doi.org/10.3390/nu6041406] [PMID: 24714352]
[120]
D’Alessandro A, De Pergola G. The Mediterranean Diet: its definition and evaluation of a priori dietary indexes in primary cardiovascular prevention. Int J Food Sci Nutr 2018; 69(6): 647-59.
[http://dx.doi.org/10.1080/09637486.2017.1417978] [PMID: 29347867]
[121]
Willett WC, Sacks F, Trichopoulou A, et al. Mediterranean diet pyramid: A cultural model for healthy eating. Am J Clin Nutr 1995; 61(6) (Suppl.): 1402S-6S.
[http://dx.doi.org/10.1093/ajcn/61.6.1402S] [PMID: 7754995]
[122]
Yubero-Serrano EM, Lopez-Moreno J, Gomez-Delgado F, Lopez-Miranda J. Extra virgin olive oil: More than a healthy fat. Eur J Clin Nutr 2019; 72(S1)(1): 8-17.
[http://dx.doi.org/10.1038/s41430-018-0304-x] [PMID: 30487558]
[123]
Marcelino G, Hiane PA, Freitas KC, et al. Effects of olive oil and its minor components on cardiovascular diseases, inflammation, and gut microbiota. Nutrients 2019; 11(8): 1826.
[http://dx.doi.org/10.3390/nu11081826] [PMID: 31394805]
[124]
Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015; 163(7): 1585-95.
[http://dx.doi.org/10.1016/j.cell.2015.11.055] [PMID: 26687352]
[125]
Santini A, Tenore GC, Novellino E. Nutraceuticals: A paradigm of proactive medicine. Eur J Pharm Sci 2017; 96: 53-61.
[http://dx.doi.org/10.1016/j.ejps.2016.09.003] [PMID: 27613382]
[126]
Daliu P, Santini A, Novellino E. From pharmaceuticals to nutraceuticals: Bridging disease prevention and management. Expert Rev Clin Pharmacol 2019; 12(1): 1-7.
[http://dx.doi.org/10.1080/17512433.2019.1552135] [PMID: 30484336]
[127]
Alkhatib A, Tsang C, Tiss A, et al. Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients 2017; 9(12): 1310.
[http://dx.doi.org/10.3390/nu9121310] [PMID: 29194424]
[128]
Mirmiran P, Bahadoran Z, Azizi F. Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: A review. World J Diabetes 2014; 5(3): 267-81.
[http://dx.doi.org/10.4239/wjd.v5.i3.267] [PMID: 24936248]
[129]
Gaddam A, Galla C, Thummisetti S, Marikanty RK, Palanisamy UD, Rao PV. Role of fenugreek in the prevention of type 2 diabetes mellitus in prediabetes. J Diabetes Metab Disord 2015; 14(1): 74.
[http://dx.doi.org/10.1186/s40200-015-0208-4] [PMID: 26436069]
[130]
Joseph B, Jini D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pac J Trop Dis 2013; 3(2): 93-102.
[http://dx.doi.org/10.1016/S2222-1808(13)60052-3]
[131]
Wang J, Zhang X, Lan H, Wang W. Effect of garlic supplement in the management of type 2 diabetes mellitus (T2DM): A meta-analysis of randomized controlled trials. Food Nutr Res 2017; 61(1): 1377571.
[http://dx.doi.org/10.1080/16546628.2017.1377571] [PMID: 29056888]
[132]
Choudhary M, Kochhar A, Sangha J. Hypoglycemic and hypolipidemic effect of Aloe vera L. in non-insulin dependent diabetics. J Food Sci Technol 2014; 51(1): 90-6.
[http://dx.doi.org/10.1007/s13197-011-0459-0] [PMID: 24426052]
[133]
Zhang D, Fu M, Gao SH, Liu JL. Curcumin and diabetes: a systematic review. Evid Based Complement Alternat Med 2013; 2013: 1-16.
[http://dx.doi.org/10.1155/2013/636053] [PMID: 24348712]
[134]
Gu DT, Tung TH, Jiesisibieke ZL, Chien CW, Liu WY. Safety of Cinnamon: An umbrella review of meta-analyses and systematic reviews of randomized clinical trials. Front Pharmacol 2022; 12: 790901.
[http://dx.doi.org/10.3389/fphar.2021.790901] [PMID: 35115937]
[135]
Geethangili M, Ding ST. A Review of the phytochemistry and pharmacology of Phyllanthus urinaria L. Front Pharmacol 2018; 9: 1109.
[http://dx.doi.org/10.3389/fphar.2018.01109] [PMID: 30327602]
[136]
Hamdan A, Haji Idrus R, Mokhtar MH. Effects of Nigella Sativa on type-2 diabetes mellitus: A systematic review. Int J Environ Res Public Health 2019; 16(24): 4911.
[http://dx.doi.org/10.3390/ijerph16244911] [PMID: 31817324]
[137]
Zhan Y, An X, Wang S, Sun M, Zhou H. Basil polysaccharides: A review on extraction, bioactivities and pharmacological applications. Bioorg Med Chem 2020; 28(1): 115179.
[http://dx.doi.org/10.1016/j.bmc.2019.115179] [PMID: 31740199]
[138]
Bower A, Marquez S, de Mejia EG. The health benefits of selected culinary herbs and spices found in the traditional mediterranean diet. Crit Rev Food Sci Nutr 2016; 56(16): 2728-46.
[http://dx.doi.org/10.1080/10408398.2013.805713] [PMID: 25749238]
[139]
Saliu JA, Ademiluyi AO, Boligon AA, Oboh G, Schetinger MRC, Rocha JBT. Dietary supplementation of jute leaf (Corchorus olitorius) modulates hepatic delta‐aminolevulinic acid dehydratase (δ‐ALAD) activity and oxidative status in high‐fat fed/low streptozotocin‐induced diabetic rats. J Food Biochem 2019; 43(8): e12949.
[http://dx.doi.org/10.1111/jfbc.12949] [PMID: 31368580]
[140]
Agrawal P, Rai V, Singh RB. Randomized placebo-controlled, single blind trial of holy basil leaves in patients with noninsulin-dependent diabetes mellitus. Int J Clin Pharmacol Ther 1996; 34(9): 406-9.
[PMID: 8880292]
[141]
Imran M, Arshad MS, Butt MS, Kwon JH, Arshad MU, Sultan MT. Mangiferin: A natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis 2017; 16(1): 84.
[http://dx.doi.org/10.1186/s12944-017-0449-y] [PMID: 28464819]
[142]
Patil SM, Shirahatti PS, Ramu R. Azadirachta indica A. Juss (neem) against diabetes mellitus: A critical review on its phytochemistry, pharmacology, and toxicology. J Pharm Pharmacol 2022; 74(5): 681-710.
[http://dx.doi.org/10.1093/jpp/rgab098] [PMID: 34562010]
[143]
Iyer UM, Mani UV. Studies on the effect of curry leaves supplementation (Murraya koenigi) on lipid profile, glycated proteins and amino acids in non-insulin-dependent diabetic patients. Plant Foods Hum Nutr 1990; 40(4): 275-82.
[http://dx.doi.org/10.1007/BF02193851] [PMID: 2174154]
[144]
Zhu J, Chen H, Song Z, Wang X, Sun Z. Effects of Ginger (Zingiber officinale Roscoe) on type 2 diabetes mellitus and components of the metabolic Syndrome: A systematic review and meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med 2018; 2018: 1-11.
[http://dx.doi.org/10.1155/2018/5692962] [PMID: 29541142]
[145]
Yu J, Song P, Perry R, Penfold C, Cooper AR. The effectiveness of green tea or green tea extract on insulin resistance and glycemic control in type 2 diabetes mellitus: A meta-analysis. Diabetes Metab J 2017; 41(4): 251-62.
[http://dx.doi.org/10.4093/dmj.2017.41.4.251] [PMID: 28868822]
[146]
Sathyapalan T, Rigby A S, Bhasin S, Thatcher N J, Kilpatrick E S, Atkin S L. Effect of soy in men with type 2 diabetes mellitus and subclinical hypogonadism: A randomized controlled study. J Clin Endocrinol Metab 2016; 2016-875.
[http://dx.doi.org/10.1210/jc.2016-2875]
[147]
Zheng JS, Huang T, Yang J, Fu YQ, Li D. Marine N-3 polyunsaturated fatty acids are inversely associated with risk of type 2 diabetes in Asians: A systematic review and meta-analysis. PLoS One 2012; 7(9): e44525.
[http://dx.doi.org/10.1371/journal.pone.0044525] [PMID: 22984522]
[148]
Slavin J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 2013; 5(4): 1417-35.
[http://dx.doi.org/10.3390/nu5041417] [PMID: 23609775]
[149]
Druart C, Alligier M, Salazar N, Neyrinck AM, Delzenne NM. Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv Nutr 2014; 5(5): 624S-33S.
[http://dx.doi.org/10.3945/an.114.005835] [PMID: 25225347]
[150]
Dewulf EM, Cani PD, Claus SP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013; 62(8): 1112-21.
[http://dx.doi.org/10.1136/gutjnl-2012-303304] [PMID: 23135760]
[151]
Hill C, Guarner F, Reid G, et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014; 11(8): 506-14.
[http://dx.doi.org/10.1038/nrgastro.2014.66] [PMID: 24912386]
[152]
Ohland CL, MacNaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 2010; 298(6): G807-19.
[http://dx.doi.org/10.1152/ajpgi.00243.2009] [PMID: 20299599]
[153]
Calcinaro F, Dionisi S, Marinaro M, et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia 2005; 48(8): 1565-75.
[http://dx.doi.org/10.1007/s00125-005-1831-2] [PMID: 15986236]
[154]
Lau K, Benitez P, Ardissone A, et al. Inhibition of type 1 diabetes correlated to a Lactobacillus johnsonii N6.2-mediated Th17 bias. J Immunol 2011; 186(6): 3538-46.
[http://dx.doi.org/10.4049/jimmunol.1001864] [PMID: 21317395]
[155]
Dai Y, Quan J, Xiong L, Luo Y, Yi B. Probiotics improve renal function, glucose, lipids, inflammation and oxidative stress in diabetic kidney disease: A systematic review and meta-analysis. Ren Fail 2022; 44(1): 862-80.
[http://dx.doi.org/10.1080/0886022X.2022.2079522] [PMID: 35611435]
[156]
Salminen S, Collado MC, Endo A, et al. The International scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol 2021; 18(9): 649-67.
[http://dx.doi.org/10.1038/s41575-021-00440-6] [PMID: 33948025]
[157]
Aguilar-Toalá JE, Garcia-Varela R, Garcia HS, et al. Postbiotics: An evolving term within the functional foods field. Trends Food Sci Technol 2018; 75: 105-14.
[http://dx.doi.org/10.1016/j.tifs.2018.03.009]
[158]
Wang X, Qi Y, Zheng H. Dietary polyphenol, gut microbiota, and health benefits. Antioxidants 2022; 11(6): 1212.
[http://dx.doi.org/10.3390/antiox11061212] [PMID: 35740109]
[159]
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: Food sources and bioavailability. Am J Clin Nutr 2004; 79(5): 727-47.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[160]
Liu YJ, Zhan J, Liu XL, Wang Y, Ji J, He QQ. Dietary flavonoids intake and risk of type 2 diabetes: A meta-analysis of prospective cohort studies. Clin Nutr 2014; 33(1): 59-63.
[http://dx.doi.org/10.1016/j.clnu.2013.03.011] [PMID: 23591151]
[161]
Zheng XX, Xu YL, Li SH, Hui R, Wu YJ, Huang XH. Effects of green tea catechins with or without caffeine on glycemic control in adults: A meta-analysis of randomized controlled trials. Am J Clin Nutr 2013; 97(4): 750-62.
[http://dx.doi.org/10.3945/ajcn.111.032573] [PMID: 23426037]
[162]
Mao T, Van de Water J, Keen CL, Schmitz HH, Gershwin ME. Cocoa procyanidins and human cytokine transcription and secretion. J Nutr 2000; 130(8) (Suppl.): 2093S-9S.
[http://dx.doi.org/10.1093/jn/130.8.2093S] [PMID: 10917928]
[163]
Gebrayel P, Nicco C, Al Khodor S, et al. Microbiota medicine: Towards clinical revolution. J Transl Med 2022; 20(1): 111.
[http://dx.doi.org/10.1186/s12967-022-03296-9] [PMID: 35255932]
[164]
Craciun CI, Neag MA, Catinean A, et al. The relationships between gut microbiota and diabetes mellitus, and treatments for diabetes mellitus. Biomedicines 2022; 10(2): 308.
[http://dx.doi.org/10.3390/biomedicines10020308] [PMID: 35203519]
[165]
Zhang Q, Yu H, Xiao X, Hu L, Xin F, Yu X. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats. PeerJ 2018; 6: e4446.
[http://dx.doi.org/10.7717/peerj.4446] [PMID: 29507837]
[166]
Le TKC, Hosaka T, Nguyen TT, et al. Bifidobacterium species lower serum glucose, increase expressions of insulin signaling proteins, and improve adipokine profile in diabetic mice. Biomed Res 2015; 36(1): 63-70.
[http://dx.doi.org/10.2220/biomedres.36.63] [PMID: 25749152]
[167]
Andersson U, Bränning C, Ahrné S, et al. Probiotics lower plasma glucose in the high-fat fed C57BL/6J mouse. Benef Microbes 2010; 1(2): 189-96.
[http://dx.doi.org/10.3920/BM2009.0036] [PMID: 21840806]
[168]
Mazloom Z, Yousefinejad A, Dabbaghmanesh MH. Effect of probiotics on lipid profile, glycemic control, insulin action, oxidative stress, and inflammatory markers in patients with type 2 diabetes: A clinical trial. Iran J Med Sci 2013; 38(1): 38-43.
[PMID: 23645956]
[169]
Firouzi S, Majid HA, Ismail A, Kamaruddin NA, Barakatun-Nisak MY. Effect of multi-strain probiotics (multi-strain microbial cell preparation) on glycemic control and other diabetes-related outcomes in people with type 2 diabetes: A randomized controlled trial. Eur J Nutr 2017; 56(4): 1535-50.
[http://dx.doi.org/10.1007/s00394-016-1199-8] [PMID: 26988693]
[170]
Asemi Z, Zare Z, Shakeri H, Sabihi S, Esmaillzadeh A. Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes. Ann Nutr Metab 2013; 63(1-2): 1-9.
[http://dx.doi.org/10.1159/000349922] [PMID: 23899653]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy