Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Mini-Review Article

A Recent Review on Nanocrystal Manufacturing Techniques with Pharmaceutical Application

Author(s): Prachiti S. Rathod, Minal R. Narkhede* and Suraj L. Dongare

Volume 14, Issue 1, 2024

Published on: 10 October, 2023

Page: [4 - 12] Pages: 9

DOI: 10.2174/0124681873259253230921095815

Price: $65

conference banner
Abstract

This review article constitutes an introductory report on nanotechnology focusing on the various manufacturing approaches of nanocrystals. Nanocrystals are a solid form to tackle the issue identified with poor fluid solvency. Hence, it is a useful technique in improving the bioavailability of various poorly soluble drugs. On a broader way, nanocrystal technology is mainly classified as top-down technology, bottom-up technology and a combination of top-down and bottom-up technology. Top-down technology is based on the principle of breaking down a complex into small crystals. This process is executed by using high-pressure homogenization, laser ablation, media mills, ultrasound technology, vacuum dissolution, gas condensation and mechanical attrition. Bottom-up technology is based on the principle of preparation by gathering atoms/ molecules together. It is achieved by using precipitation, supercritical fluid, gel-gel technology, spray drying, hydrolysis, and condensation. Due to the diverse characteristics and properties of drugs, a combination of top-down and bottom-up techniques is best for manufacturing nanocrystals. Some of the promising technique includes nano-edge technology and smart-crystal technology. These techniques are discussed in this review.

Graphical Abstract

[1]
Subedi SK. An introduction to nanotechnology and its implications. Himalayan Phys 2015; 5: 78-81.
[http://dx.doi.org/10.3126/hj.v5i0.12877]
[2]
Tevatia S. Nanotechnology: The beginning of new era. Int J Enhanc Res Med Dent Care 2016; 3: 7-14.
[3]
Mansoori GA, Soelaiman TAF. Nanotechnology - An introduction for the standards community. J ASTM Int 2005; 2: 17-38.
[4]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[5]
Bahador A, Sodagar A, Khalil S, Kassaee MZ, Shahroudi AS, Pourakbari B. Antimicrobial properties of poly (methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria. J Orthod Sci 2016; 5(1): 7-13.
[http://dx.doi.org/10.4103/2278-0203.176652] [PMID: 26998471]
[6]
Shinde NC, Keskar NJ, Argade PD. Nanoparticles: Advances in drug delivery systems. Res J Pharm Biol Chem Sci 2012; 3: 922-9.
[7]
Zdorovets MV, Kozlovskiy AL, Shlimas DI, Borgekov DB. Phase transformations in FeCo - Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J Mater Sci Mater Electron 2021; 32(12): 16694-705.
[http://dx.doi.org/10.1007/s10854-021-06226-5]
[8]
Khan Y. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts 2022; 12: 1386.
[9]
Kozlovskiy AL, Zdorovets MV. Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 glasses. Mater Chem Phys 2021; 263: 124444M.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124444]
[10]
Junghanns J A H. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomed 2008; 3(3): 295-309.
[11]
Kadyrzhanov KK, Shlimas DI, Kozlovskiy AL, Zdorovets MV. Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications. J Mater Sci Mater Electron 2020; 31(14): 11729-40.
[http://dx.doi.org/10.1007/s10854-020-03724-w]
[12]
Bo S. Nanocrystals for the parenteral delivery of poorly water-soluble drugs. Curr Opin Solid State Mater Sci 2013; 16(6): 295-301.
[13]
Shankar1 SJ. Review article a review on the role of nanocrystals and nanosuspensions in drug delivery systems. Int J App Pharm 2020; 12(1): 10-6.
[14]
Hecq J, Deleers M, Fanara D, Vranckx H, Boulanger P. Preparation and in vitro/in vivo evaluation of nano-sized crystals for dissolution rate enhancement of ucb-35440-3, a highly dosed poorly water-soluble weak base. Eur J Pharm Biopharm 2006; 64(3): 360-8.
[15]
Hecq J, Deleers M, Fanara D, Vranckx H, Amighi K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm 2005; 299: 167-77.
[16]
Karakucuk A, Teksin ZS, Eroglu H, Celebi N. Evaluation of improved oral bioavailability of ritonavir nanosuspension. Eur J Pharm Sci 2019; 131: 153-8.
[http://dx.doi.org/10.1016/j.ejps.2019.02.028] [PMID: 30790704]
[17]
Khan MS, Vishakante GD, Bathool A. Development and characterization of pilocarpine loaded eudragit nanosuspensions for ocular drug delivery. J Biomed Nanotechnol 2013; 9(1): 124-31.
[http://dx.doi.org/10.1166/jbn.2013.1475]
[18]
Krause KP, Mu RH. Production and characterisation of highly concentrated nanosuspensions by high pressure homogenisation. Int J Pharm 2001; 214: 21-4.
[19]
Shid RL, Dhole SN, Kulkarni N, Shid SL. Nanosuspension: A review. Int J Pharm Sci Rev Res 2013; 22(1): 98-106.
[20]
Mauludin R, Müller RH, Keck CM. Development of an oral rutin nanocrystal formulation. Int J Pharm 2009; 370: 202-9.
[21]
Shegokar R, Müller RH. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 2010; 399(1-2): 129-39.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.044] [PMID: 20674732]
[22]
Liu T, Müller RH, Möschwitzer JP. Effect of drug physico-chemical properties on the efficiency of top-down process and characterization of nanosuspension. Expert Opin Drug Deliv 2015; 12(11): 1741-54.
[http://dx.doi.org/10.1517/17425247.2015.1057566] [PMID: 26098043]
[23]
Diddi N. Y S K, Pavani S K, Neelima P. Formulation and evaluation of liquid nanocrystals of sorafenib tosylate. AAPS PharmSciTech 2019; 19(2): 761-8.
[24]
Keck C, Müller R. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 2006; 62(1): 3-16.
[http://dx.doi.org/10.1016/j.ejpb.2005.05.009] [PMID: 16129588]
[25]
Raghava Srivalli KM, Mishra B. Drug nanocrystals: A way toward scale-up. Saudi Pharm J 2016; 24(4): 386-404.
[http://dx.doi.org/10.1016/j.jsps.2014.04.007] [PMID: 27330370]
[26]
Ravichandran R. Development of an oral curcumin nanocrystal formulation. J Nanotechnol Eng Med 2013; 3: 1-7.
[27]
Castañeda L. Facile method for formulation of atenolol nanocrystal drug with enhanced bioavailability. IntechOpen 2020.
[28]
Brough C, Iii ROW. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm 2013; 453(1): 157-66.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.061] [PMID: 23751341]
[29]
Zhai X, Lademann J, Keck CM, Müller RH. Dermal nanocrystals from medium soluble actives - Physical stability and stability affecting parameters. Eur J Pharm Biopharm 2014; 88(1): 85-91.
[http://dx.doi.org/10.1016/j.ejpb.2014.07.002] [PMID: 25016978]
[30]
Ali HSM, York P, Ali AMA, Blagden N. Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. J Control Release 2011; 149(2): 175-81.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.007] [PMID: 20946923]
[31]
Mori D, Sakriya E. Drug nanocrystals: A comprehensive review with current regulatory guidelines. Curr Drug Deliv 2020; 17(6): 470-82.
[http://dx.doi.org/10.2174/1567201817666200512104833]
[32]
Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm 2012; 453(1): 142-56.
[http://dx.doi.org/10.1016/j.ijpharm.2012.09.034] [PMID: 23000841]
[33]
Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: A perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev 2011; 63(6): 427-40.
[http://dx.doi.org/10.1016/j.addr.2010.12.007] [PMID: 21223990]
[34]
Liu T. Budesonide nanocrystal-loaded hyaluronic acid microparticles for inhalation: in vitro and in vivo evaluation. Carbohydr Polym 2017; 181: 1143-52.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.018] [PMID: 29253943]
[35]
Romero GB, Keck CM, Müller RH, Bou-Chacra NA. Development of cationic nanocrystals for ocular delivery. Eur J Pharm Biopharm 2016; 107: 215-22.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.005] [PMID: 27388629]
[36]
Bitterlich A, Laabs C, Krautstrunk I, et al. Process parameter dependent growth phenomena of naproxen nanosuspension manufactured by wet media milling. Eur J Pharm Biopharm 2015; 92: 171-9.
[http://dx.doi.org/10.1016/j.ejpb.2015.02.031] [PMID: 25766272]
[37]
Joshi K, Chandra A, Jain K, Talegaonkar S. Nanocrystalization: An emerging technology to enhance the bioavailability of poorly soluble drugs. Pharm Nanotechnol 2019; 7(4): 259-78.
[http://dx.doi.org/10.2174/2211738507666190405182524] [PMID: 30961518]
[38]
Sugiyama T, Asahi T, Masuhara H. Formation of 10 nm-sized oxo(phtalocyaninato)vanadium(IV) particles by femtosecond laser ablation in water. Chem Lett 2004; 33(6): 724-5.
[http://dx.doi.org/10.1246/cl.2004.724]
[39]
Ran Q. Advances of combinative nanocrystal preparation technology for improving the insoluble drug solubility and bioavailability. Crystals 2022; 1-21.
[40]
Guo Z, Zhang M, Li H, Wang J, Kougoulos E. Effect of ultrasound on anti-solvent crystallization process. J Cryst Growth 2005; 273(3-4): 555-63.
[http://dx.doi.org/10.1016/j.jcrysgro.2004.09.049]
[41]
Thorat AA, Dalvi SV. Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: Recent developments and future perspective. Chem Eng J 2012; 181-182: 1-34.
[http://dx.doi.org/10.1016/j.cej.2011.12.044]
[42]
Slepička P, Slepičková Kasálková N, Siegel J, Kolská Z, Švorčík V. Methods of gold and silver nanoparticles preparation. Materials 2019; 13(1): 1.
[http://dx.doi.org/10.3390/ma13010001] [PMID: 31861259]
[43]
Battaglia L, D’Addino I, Peira E, Trotta M, Gallarate M. Solid lipid nanoparticles prepared by coacervation method as vehicles for ocular cyclosporine. J Drug Deliv Sci Technol 2012; 22(2): 125-30.
[http://dx.doi.org/10.1016/S1773-2247(12)50016-X]
[44]
Kaveri B, Mahesh M. Methods of preparation of nanoparticles. Int J Adv Res Sci Commun Technol 2022; 7: 640-6.
[45]
Tung CY, Lin HM, Gu JM, Lee PY. Preparation of nanocrystalline Ag◻Ni particles by gas condensation method. In: Nanostruct Mater 1997; 9(1-8): 117-20.
[http://dx.doi.org/10.1016/S0965-9773(97)00032-9]
[46]
Suryanarayana C, Prabhu B. Synthesis of nanostructured materials by inert-gas condensation methods. In: Nanostructured Materials. (2nd ed.). Elsevier 2006; pp. 47-90.
[http://dx.doi.org/10.1016/B978-081551534-0.50004-X]
[47]
Jahangir MA, Imam SS, Muheem A, et al. Nanocrystals: Characterization overview, applications in drug delivery, and their toxicity concerns. J Pharm Innov 2022; 17(1): 237-48.
[http://dx.doi.org/10.1007/s12247-020-09499-1]
[48]
Bagheri H, Gheytani M, Masiha H, Aliofkhazraei M, Rouhaghdam A S. Nanocrystallization by surface mechanical attrition 2015.
[49]
El-batal A I, Elmenshawi S F, Ali A M A, Goodha E. Preparation and characterization of silymarin nanocrystals and phytosomes with investigation of their stability using gamma irradiation. Indian J Pharm Educ Res 2018; 52(4s2): S174-83.
[50]
Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives. Biomater Sci 2020; 8(17): 4653-64.
[http://dx.doi.org/10.1039/D0BM00558D] [PMID: 32672255]
[51]
Baba K. NIH Public Access 2009; 4: 289-97.
[52]
Nanjwade BK, Derkar GK, Bechra HM, Nanjwade VK, Manvi FV. Design and characterization of nanocrystals of lovastatin for solubility and dissolution enhancement. Int J Nanomedicine 2011; 2(2)
[53]
A A H S, Gopinath M. Formulation and evaluation of paliperidone nanocrystals 2013; 1: 422-39.
[54]
Gao W, Chen Y, Thompson DH, Park K, Li T. Impact of surfactant treatment of paclitaxel nanocrystals on biodistribution and tumor accumulation in tumor-bearing mice. J Control Release 2016; 237: 168-76.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.015] [PMID: 27417039]
[55]
Chan HK, Kwok PCL, Kwok L. Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev 2011; 63(6): 406-16.
[http://dx.doi.org/10.1016/j.addr.2011.03.011] [PMID: 21457742]
[56]
de Waard H, Frijlink HW, Hinrichs WLJ. Bottom-up preparation techniques for nanocrystals of lipophilic drugs. Pharm Res 2011; 28(5): 1220-3.
[http://dx.doi.org/10.1007/s11095-010-0323-3] [PMID: 21086152]
[57]
Zhao H, Wang J, Wang Q, Chen J, Yun J. Controlled liquid antisolvent precipitation of hydrophobic pharmaceutical nanoparticles in a microchannel reactor. Ind Eng Chem Res 2007; 46(24): 8229-35.
[58]
Oudah MH, Wais FMH, Al-Lam MS. Preparation and evaluation of meloxicam nanoparticles as oral thin film. Int J Drug Deliv Technol 2021; 11: 676-84.
[59]
Ozdemir S. Resveratrol nanocrystal loaded orodispersible films: Formulation development and in vitro characterization. Drug Deliv Transl Res 2021.
[60]
Dalvi A, Ravi PR, Uppuluri CT. Design and evaluation of ru fi namide nanocrystals loaded thermoresponsive nasal in situ gelling system for improved drug distribution to brain. Front Pharmacol 2022; 13: 943772.
[http://dx.doi.org/10.3389/fphar.2022.943772]
[61]
Ghurghure SM, Atkare AG, Kale SO. Formulation and characterization of carbamazepine nanocrystals by antisolvent precipitation method. EPRA Int J Multidisciplinary Res 2022; 8(5)
[http://dx.doi.org/10.36713/epra2013]
[62]
Moon RS, Marathwada RT. No Title 2018; 9: 133-9.
[63]
Shinde AJ, Sankpal MS, Salokhe SV, More HN, Chitranagari N. Design and characterisation of nitrendipine nanocrystals for solubility and dissolution enhancement. Int J Pharm Sci Rev Res 2020; 62(1): 66-72.
[64]
Mohammad K. Silver nanoparticle synthesis mediated by carboxylated cellulose nanocrystals. Green Mater 2014; 2(4): 183-92.
[65]
Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: Formulations and factors affecting particle size. Int J Pharm 2013; 453(1): 126-41.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.019] [PMID: 23333709]
[66]
Chen J. Feasibility of preparing nanodrugs by high-gravity reactive precipitation. Int J Pharm 2006; 269: 267-74.
[67]
Orita Y. RSC Advances Synthesis of surface-modi fi ed iron oxide nanocrystals using supercritical carbon dioxide as the reaction field. RSC Advances 2022; 7990-5.
[http://dx.doi.org/10.1039/D1RA08580H]
[68]
Franco P, De Marco I. Applied sciences nanoparticles and nanocrystals by supercritical CO 2 -assisted techniques for pharmaceutical applications 2021.
[69]
Zhao X. Preparation and physicochemical properties of 10-hydroxycamptothecin (HCPT) nanoparticles by supercritical antisolvent (SAS) process. Int J Mol Sci 2011; 2678-91.
[http://dx.doi.org/10.3390/ijms12042678]
[70]
Kulkarni SA, Myerson AS. Methods for nano-crystals preparation. In: Engineering Crystallography: From Molecule to Crystal to Functional Form. Dordrecht: Springer 2017.
[http://dx.doi.org/10.1007/978-94-024-1117-1_16]
[71]
Zhang J, Huang Y, Liu D, Gao Y, Qian S. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur J Pharm Sci 2013; 48(4-5): 740-7.
[http://dx.doi.org/10.1016/j.ejps.2012.12.026] [PMID: 23305994]
[72]
Yang L, Huang J, Zu Y, et al. Preparation and radical scavenging activities of polymeric procyanidins nanoparticles by a supercritical antisolvent (SAS) process. Food Chem 2011; 128(4): 1152-9.
[http://dx.doi.org/10.1016/j.foodchem.2011.04.017]
[73]
Gadhiya DT, Patel JK, Bagada AA. An impact of nanocrystals on dissolution rate of Lercanidipine: Supersaturation and crystallization by addition of solvent to antisolvent. Futur J Pharm Sci 2021; 7: 128.
[74]
Waard H. De , Hinrichs W L J, Frijlink H W. A novel bottom - up process to produce drug nanocrystals: Controlled crystallization during freeze-drying. J Control Releas 2008; 128: 179-83.
[75]
Das R, Koland M, Sindhoor SM. Design and evaluation of natamycin nanocrystals loaded in situ gel for ophthalmic administration. J Pharm Res Int 2021; 33: 307-24.
[76]
Pawar VK, Singh Y, Meher JG, Gupta S, Chourasia MK. Engineered nanocrystal technology: In-vivo fate, targeting and applications in drug delivery. J Control Release 2014; 183: 51-66.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.030] [PMID: 24667572]
[77]
Vidlářová L, Romero GB, Hanuš J, Štěpánek F, Müller RH. Nanocrystals for dermal penetration enhancement - Effect of concentration and underlying mechanisms using curcumin as model. Eur J Pharm Biopharm 2016; 104: 216-25.
[http://dx.doi.org/10.1016/j.ejpb.2016.05.004]
[78]
Awan AM. Nanocrytals-mediated oral drug delivery: Enhanced bioavailability of amiodarone. Pharmaceutics 2022; 14(6): 1300.
[79]
Hong Z, Jiexin W, Haixia Z, Zhigang S. Facile preparation of danazol nanoparticles by high-gravity anti-solvent precipitation (HGAP). Method 2009; 17: 318-23.
[80]
Ige PP, Baria RK, Gattani SG. Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability. Colloids Surf B Biointerfaces 2013; 108: 366-73.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.043] [PMID: 23602990]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy