Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Exploring the Potential of Natural Products as Antiparasitic Agents for Neglected Tropical Diseases

Author(s): Dayanna Orosco, Arturo René Mendoza and Carlos Mario Meléndez*

Volume 24, Issue 2, 2024

Published on: 10 October, 2023

Page: [89 - 108] Pages: 20

DOI: 10.2174/0115680266256963230921061925

Price: $65

conference banner
Abstract

Recent developments in the use of natural product-based molecules as antiparasitic agents for Malaria, leishmaniasis (LE), Chagas disease (CD), and Human African trypanosomiasis (HAT) are reviewed. The role of diverse plants in developing bioactive species is discussed in addition to analyzing the structural diversity of natural products as active agents and the diverse biological applications in CD, HAT, LE, and Malaria. This review focuses on medicinal chemistry, emphasizing the structural characteristics of natural molecules as bioactive agents against parasitic infections caused by Leishmania, Trypanosoma, and Plasmodium parasites.

Graphical Abstract

[1]
J, B.; M, B.M.; Chanda, K. An overview on the therapeutics of neglected infectious diseases-Leishmaniasis and chagas diseases. Front Chem., 2021, 9, 622286.
[http://dx.doi.org/10.3389/fchem.2021.622286] [PMID: 33777895]
[2]
Sancho, FJ; Bernal, O; Lazarus, J V Access to comprehensive chagas disease care: A global effort. In: Chagas Disease; Pinazo , D. MJ.; Gascón, J., Eds.; Springer: Cham, 2020.
[http://dx.doi.org/10.1007/978-3-030-44054-1_12]
[3]
Burkhart, C. Guidelines for rapid assessment of abdominal pain indicative of acute surgical abdomen. Nurse Pract., 1992, 17(6), 39-49.
[http://dx.doi.org/10.1097/00006205-199206000-00011] [PMID: 1608569]
[4]
World Health Organization. Control and surveillance of human African trypanosomiasis. World Health Organ. Tech. Rep. Ser., 2013, (984), 1-237.
[PMID: 24552089]
[5]
Moya, A. Simbiosis y parasitismo. Arbor, 1997, 158((623-624)), 333-343.
[http://dx.doi.org/10.3989/arbor.1997.i623-624.1797]
[6]
Scarim, C.B.; Jornada, D.H.; Machado, M.G.M.; Ferreira, C.M.R.; dos Santos, J.L.; Chung, M.C. Thiazole, thio and semicarbazone derivatives against tropical infective diseases: Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. Eur. J. Med. Chem., 2019, 162, 378-395.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.013] [PMID: 30453246]
[7]
Boniface, P.K.; Ferreira, E.I. Flavonoids as efficient scaffolds: Recent trends for malaria, leishmaniasis, Chagas disease, and dengue. Phytother. Res., 2019, 33(10), 2473-2517.
[http://dx.doi.org/10.1002/ptr.6383] [PMID: 31441148]
[8]
Lejon, V.; Bentivoglio, M.; Franco, J.R. Human African trypanosomiasis. In: Handbook of Clinical Neurology; Elsevier, 2013; pp. 169-181.
[http://dx.doi.org/10.1016/B978-0-444-53490-3.00011-X]
[9]
Krishna, S.; Kleine, C.; Stich, A. Hunter’s Tropical Medicine and Emerging Infectious Disease; Elsevier, 2020.
[10]
Sangenito, L.S.; da Silva Santos, V.; d’Avila-Levy, C.M.; Branquinha, M.H.; Souza dos Santos, A.L.; de Oliveira, S.S.C. Leishmaniasis and chagas disease - Neglected tropical diseases: treatment updates. Curr. Top. Med. Chem., 2019, 19(3), 174-177.
[http://dx.doi.org/10.2174/156802661903190328155136] [PMID: 30950334]
[11]
Njogu, P.M.; Guantai, E.M.; Pavadai, E.; Chibale, K. Computer-aided drug discovery approaches against the tropical infectious diseases malaria, tuberculosis, trypanosomiasis, and leishmaniasis. ACS Infect. Dis., 2016, 2(1), 8-31.
[http://dx.doi.org/10.1021/acsinfecdis.5b00093] [PMID: 27622945]
[12]
Dickie, E.A.; Ronin, C.; Sá, M.; Ciesielski, F.; Trouche, N.; Tavares, J.; Santarem, N.; Major, L.L.; Pemberton, I.K.; MacDougall, J.; Smith, T.K.; Cordeiro-da-Silva, A.; Ciapetti, P. Toward chemical validation of Leishmania infantum ribose 5-phosphate isomerase as a drug target. Antimicrob. Agents Chemother., 2021, 65(7), e01892-20.
[http://dx.doi.org/10.1128/AAC.01892-20] [PMID: 33875438]
[13]
Gutierrez Guarnizo, S.A.; Karamysheva, Z.N.; Galeano, E.; Muskus, C.E. Metabolite biomarkers of leishmania antimony resistance. Cells, 2021, 10(5), 1063.
[http://dx.doi.org/10.3390/cells10051063] [PMID: 33946139]
[14]
Freitas-Mesquita, A.L.; Dos-Santos, A.L.A.; Meyer-Fernandes, J.R. Involvement of leishmania phosphatases in parasite biology and pathogeny. Front. Cell. Infect. Microbiol., 2021, 11, 633146.
[http://dx.doi.org/10.3389/fcimb.2021.633146] [PMID: 33968798]
[15]
Bennett, J.E.; Dolin, R.; Blaser, M.J. Principles and Practice of Infectious Diseases, 8th ed.; Elsevier, 2014, Vol. 2, pp. 3091-3107.
[16]
Rassi, A.J.; Marin-Neto, J.A. Neglected Tropical Diseases - Latin America and the Caribbean; Springer, 2015, pp. 114-124.
[17]
Kouznetsov, V.V.; Melendez, C.M.; Valencia, J.L.; Vargas, L. Natural and synthetic quinoline molecules against tropical parasitic pathologies: An analysis of activity and structural evolution for developing new quinoline-based antiprotozoal agents. In: Discovery and Development of Therapeutics from Natural Products Against Neglected Tropical Diseases; Elsevier, 2019; pp. 87-164.
[18]
Falk, N.; Berenstein, A.J.; Moscatelli, G.; Moroni, S.; González, N.; Ballering, G.; Freilij, H.; Altcheh, J. Effectiveness of nifurtimox in the treatment of chagas disease: A long-term retrospective cohort study in children and adults. Antimicrob. Agents Chemother., 2022, 66(5), e02021-21.
[http://dx.doi.org/10.1128/aac.02021-21] [PMID: 35416710]
[19]
Schmunis, G.A.; Yadon, Z.E. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop., 2010, 115(1-2), 14-21.
[http://dx.doi.org/10.1016/j.actatropica.2009.11.003] [PMID: 19932071]
[20]
Martina, A; Sharon, N Comparative phytochemical analysis of four medicinal plants traditionally used for malaria therapy in Nigeria. World J. Biol. Pharm. Heal. Sci., 2022, 10(1), 080-05.
[21]
Tajbakhsh, E; Kwenti, TE; Kheyri, P; Nezaratizade, S; Lindsay, DS; Khamesipour, F Antiplasmodial, antimalarial activities and toxicity of African medicinal plants: A systematic review of literature. Malar. J., 2021, 20(1), 349.
[http://dx.doi.org/10.1186/s12936-021-03866-0]
[22]
Zakariya, A.M.; Adamu, A.; Nuhu, A.; Kiri, I.Z. Assessment of indigenous knowledge on medicinal plants used in the management of malaria in Kafin Hausa, Northwestern Nigeria. Ethnobot. Res. Appl., 2021, 22.
[23]
Mbeunkui, F.; Grace, M.H.; Lategan, C.; Smith, P.J.; Raskin, I.; Lila, M.A. in vitro antiplasmodial activity of indole alkaloids from the stem bark of Geissospermum vellosii. J. Ethnopharmacol., 2012, 139(2), 471-477.
[http://dx.doi.org/10.1016/j.jep.2011.11.036] [PMID: 22143154]
[24]
Okpekon, T.; Yolou, S.; Gleye, C.; Roblot, F.; Loiseau, P.; Bories, C.; Grellier, P.; Frappier, F.; Laurens, A.; Hocquemiller, R. Antiparasitic activities of medicinal plants used in Ivory Coast. J. Ethnopharmacol., 2004, 90(1), 91-97.
[http://dx.doi.org/10.1016/j.jep.2003.09.029] [PMID: 14698515]
[25]
Luize, P.S.; Tiuman, T.S.; Morello, L.G.; Maza, P.K.; Ueda-Nakamura, T.; Dias Filho, B.P.; Cortez, D.A.G.; Mello, J.C.P.; Nakamura, C.V. Effects of medicinal plant extracts on growth of Leishmania (L.) amazonensis and Trypanosoma cruzi. RBCF Rev. Bras. Cienc. Farm., 2005, 41(1), 85-94.
[http://dx.doi.org/10.1590/S1516-93322005000100010]
[26]
Mesquita, M.L.; Desrivot, J.; Bories, C.; Fournet, A.; Paula, J.E.; Grellier, P.; Espindola, L.S. Antileishmanial and trypanocidal activity of brazilian cerrado plants. Mem. Inst. Oswaldo Cruz, 2005, 100(7), 783-787.
[http://dx.doi.org/10.1590/S0074-02762005000700019] [PMID: 16419337]
[27]
Costa, E.V.; Pinheiro, M.L.B.; Silva, J.R.A.; Maia, B.H.L.N.S.; Duarte, M.C.T.; Amaral, A.C.F.; Machado, G.M.C.; Leon, L.L. Antimicrobial and antileishmanial activity of essential oil from the leaves of Annona foetida (Annonaceae). Quim. Nova, 2009, 32(1), 78-81.
[http://dx.doi.org/10.1590/S0100-40422009000100015]
[28]
Da Rocha, LG; Aragão, CFS; Loiola, MIB; Bezerril, RA; Paiva, NRF; De Holanda, CMCX Evaluation of the leishmanicide action of ethanol extracts of Crotalaria retusa L. (Fabaceae). Brazilian J. Pharmacogn, 2009, 19((1 A)), 51-56.
[29]
Rosa, M.S.S.; Mendonça-Filho, R.R.; Bizzo, H.R.; Rodrigues, I.A.; Soares, R.M.A.; Souto-Padrón, T.; Alviano, C.S.; Lopes, A.H.C.S. Antileishmanial activity of a linalool-rich essential oil from Croton cajucara. Antimicrob. Agents Chemother., 2003, 47(6), 1895-1901.
[http://dx.doi.org/10.1128/AAC.47.6.1895-1901.2003] [PMID: 12760864]
[30]
Desrivot, J.; Waikedre, J.; Cabalion, P.; Herrenknecht, C.; Bories, C.; Hocquemiller, R.; Fournet, A. Antiparasitic activity of some new caledonian medicinal plants. J. Ethnopharmacol., 2007, 112(1), 7-12.
[http://dx.doi.org/10.1016/j.jep.2007.01.026] [PMID: 17329051]
[31]
Tanaka, J.C.A.; da Silva, C.C.; Ferreira, I.C.P.; Machado, G.M.C.; Leon, L.L.; de Oliveira, A.J.B. Antileishmanial activity of indole alkaloids from aspidosperma ramiflorum. Phytomedicine, 2007, 14(6), 377-380.
[http://dx.doi.org/10.1016/j.phymed.2006.09.002] [PMID: 17140782]
[32]
Ibrahim, S.R.M.; Mohamed, G.A. Naphthylisoquinoline alkaloids potential drug leads. Fitoterapia, 2015, 106, 194-225.
[http://dx.doi.org/10.1016/j.fitote.2015.09.014] [PMID: 26388556]
[33]
Bero, J.; Beaufay, C.; Hannaert, V.; Hérent, M.F.; Michels, P.A.; Quetin-Leclercq, J. Antitrypanosomal compounds from the essential oil and extracts of Keetia leucantha leaves with inhibitor activity on Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase. Phytomedicine, 2013, 20(3-4), 270-274.
[http://dx.doi.org/10.1016/j.phymed.2012.10.010] [PMID: 23312849]
[34]
Atawodi, S.; Bulus, T.; Ibrahim, S.; Ameh, D.; Nok, A.; Mamman, M. in vitro trypanocidal effect of methanolic extract of some Nigerian savannah plants. Afr. J. Biotechnol., 2004, 2(9), 317-321.
[35]
Bero, J.; Hannaert, V.; Chataigné, G.; Hérent, M.F.; Quetin-Leclercq, J. in vitro antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract. J. Ethnopharmacol., 2011, 137(2), 998-1002.
[http://dx.doi.org/10.1016/j.jep.2011.07.022] [PMID: 21782916]
[36]
Wurochekke, A.U.; Nok, A.J. in vitro anti trypanosomal activity of some medicinal plants used in the treatment of trypanosomosis in Northern Nigeria. Afr. J. Biotechnol., 2004, 3(9), 481-483.
[http://dx.doi.org/10.5897/AJB2004.000-2094]
[37]
Kamanzi Atindehou, K.; Schmid, C.; Brun, R.; Koné, M.W.; Traore, D. Antitrypanosomal and antiplasmodial activity of medicinal plants from Côte d’Ivoire. J. Ethnopharmacol., 2004, 90(2-3), 221-227.
[http://dx.doi.org/10.1016/j.jep.2003.09.032] [PMID: 15013184]
[38]
Adamu, M.; Nwosu, C.O.; Agbede, R.I.S. Anti-trypanosomal effects of aqueous extract of Ocimum gratissimum (Lamiaceae) leaf in rats infected with Trypanosoma brucei brucei. Afr. J. Tradit. Complement. Altern. Med., 2009, 6(3), 262-267.
[PMID: 20448851]
[39]
Aderbauer, B.; Clausen, P.H.; Kershaw, O.; Melzig, M.F. in vitro and in vivo trypanocidal effect of lipophilic extracts of medicinal plants from Mali and Burkina Faso. J. Ethnopharmacol., 2008, 119(2), 225-231.
[http://dx.doi.org/10.1016/j.jep.2008.06.024] [PMID: 18638537]
[40]
Abiodun, O.O.; Gbotosho, G.O.; Ajaiyeoba, E.O.; Brun, R.; Oduola, A.M. Antitrypanosomal activity of some medicinal plants from Nigerian ethnomedicine. Parasitol. Res., 2012, 110(2), 521-526.
[http://dx.doi.org/10.1007/s00436-011-2516-z] [PMID: 21789586]
[41]
Izumi, E.; Morello, L.G.; Ueda-Nakamura, T.; Yamada-Ogatta, S.F.; Filho, B.P.D.; Cortez, D.A.G.; Ferreira, I.C.P.; Morgado-Díaz, J.A.; Nakamura, C.V. Trypanosoma cruzi: Antiprotozoal activity of parthenolide obtained from Tanacetum parthenium (L.) Schultz Bip. (Asteraceae, Compositae) against epimastigote and amastigote forms. Exp. Parasitol., 2008, 118(3), 324-330.
[http://dx.doi.org/10.1016/j.exppara.2007.08.015] [PMID: 17950283]
[42]
Medina, R.P.; Schuquel, I.T.A.; Pomini, A.M.; Silva, C.C.; Oliveira, C.M.A.; Kato, L. Ixorine, a new cyclopeptide alkaloid from the branches of ixora brevifolia. J. Braz. Chem. Soc., 2016, 27(4), 753-758.
[43]
Cheuka, P.; Mayoka, G.; Mutai, P.; Chibale, K. The role of natural products in drug discovery and development against neglected tropical diseases. Molecules, 2016, 22(1), 58.
[http://dx.doi.org/10.3390/molecules22010058] [PMID: 28042865]
[44]
Fernandez, L.S.; Jobling, M.F.; Andrews, K.T.; Avery, V.M. Antimalarial activity of natural product extracts from Papua New Guinean and Australian plants against Plasmodium falciparum. Phytother. Res., 2008, 22(10), 1409-1412.
[http://dx.doi.org/10.1002/ptr.2510] [PMID: 18693292]
[45]
Fernandez, L.S.; Buchanan, M.S.; Carroll, A.R.; Feng, Y.J.; Quinn, R.J.; Avery, V.M. Flinderoles A-C: Antimalarial bis-indole alkaloids from Flindersia species. Org. Lett., 2009, 11(2), 329-332.
[http://dx.doi.org/10.1021/ol802506n] [PMID: 19090698]
[46]
Fernandez, LS; Sykes, ML; Andrews, KT; Avery, VM Antiparasitic activity of alkaloids from plant species of Papua New Guinea and Australia. Int. J. Antimicrob. Agents, 2010, 36(3), 275-279.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.05.008]
[47]
Sichaem, J.; Surapinit, S.; Siripong, P.; Khumkratok, S.; Jong-aramruang, J.; Tip-pyang, S. Two new cytotoxic isomeric indole alkaloids from the roots of Nauclea orientalis. Fitoterapia, 2010, 81(7), 830-833.
[http://dx.doi.org/10.1016/j.fitote.2010.05.004] [PMID: 20472039]
[48]
Nugroho, A.E.; Sugai, M.; Hirasawa, Y.; Hosoya, T.; Awang, K.; Hadi, A.H.A.; Ekasari, W.; Widyawaruyanti, A.; Morita, H. New antiplasmodial indole alkaloids from Hunteria zeylanica. Bioorg. Med. Chem. Lett., 2011, 21(11), 3417-3419.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.104] [PMID: 21524573]
[49]
Dolabela, M.F.; Póvoa, M.M.; Brandão, G.C.; Rocha, F.D.; Soares, L.F.; de Paula, R.C.; de Oliveira, A.B. Aspidosperma species as sources of anti-malarials: Uleine is the major anti-malarial indole alkaloid from Aspidosperma parvifolium (Apocynaceae). Malar. J., 2015, 14(1), 498.
[http://dx.doi.org/10.1186/s12936-015-0997-4] [PMID: 26655827]
[50]
Robertson, L.P.; Duffy, S.; Wang, Y.; Wang, D.; Avery, V.M.; Carroll, A.R. Pimentelamines A-C, indole alkaloids isolated from the leaves of the australian tree flindersia pimenteliana. J. Nat. Prod., 2017, 80(12), 3211-3217.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00587] [PMID: 29236492]
[51]
Bitombo, A.N.; Zintchem, A.A.A.; Atchadé, A.D.T.; Mbabi Nyemeck, N., II; Bikobo, D.S.N.; Pegnyemb, D.E.; Bochet, C.G. Antiplasmodial activities of indole alkaloids from Tabernaemontana penduliflora K. Schum (Apocynaceae). Fitoterapia, 2021, 153, 104941.
[http://dx.doi.org/10.1016/j.fitote.2021.104941] [PMID: 34029654]
[52]
Cardoso, B.M.; De Mello, T.F.P.; Lera, D.S.L.; Brenzan, M.A.; Cortez, D.A.G.; Donatti, L.; Silveira, T.G.; Lonardoni, M.V. Antileishmanial activity of a calophyllum brasiliense leaf extract. Planta Med., 2017, 83(1-02), 57-62.
[PMID: 27224267]
[53]
Ovenden, S.P.B.; Cobbe, M.; Kissell, R.; Birrell, G.W.; Chavchich, M.; Edstein, M.D. Phenolic glycosides with antimalarial activity from Grevillea “Poorinda Queen”. J. Nat. Prod., 2011, 74(1), 74-78.
[http://dx.doi.org/10.1021/np100737q] [PMID: 21155593]
[54]
Hiranrat, A.; Mahabusarakam, W.; Carroll, A.R.; Duffy, S.; Avery, V.M. Tomentosones A and B, hexacyclic phloroglucinol derivatives from the Thai shrub Rhodomyrtus tomentosa. J. Org. Chem., 2012, 77(1), 680-683.
[http://dx.doi.org/10.1021/jo201602y] [PMID: 22085112]
[55]
Desoubzdanne, D.; Marcourt, L.; Raux, R.; Chevalley, S.; Dorin, D.; Doerig, C.; Valentin, A.; Ausseil, F.; Debitus, C. Alisiaquinones and alisiaquinol, dual inhibitors of Plasmodium falciparum enzyme targets from a New Caledonian deep water sponge. J. Nat. Prod., 2008, 71(7), 1189-1192.
[http://dx.doi.org/10.1021/np8000909] [PMID: 18512987]
[56]
Afifi, N.I.; Moawad, A.S.; Zaki, M.A.; Rateb, M.E.; Rashed, M.H.; Saleh, I.G.; Hetta, M.H.; Mohammed, R.M. Four new phenolics and antiparasitic secondary metabolites from Flacourtia rukam Zoll. & Mortizi. Nat. Prod. Res., 2022, 36(14), 3626-3637.
[http://dx.doi.org/10.1080/14786419.2021.1875462] [PMID: 33899619]
[57]
Mahiou, V.; Roblot, F.; Hocquemiller, R.; Cavé, A.; Barrios, A.A.; Fournet, A.; Ducrot, P-H. Piperogalin, a new prenylated diphenol from Peperomia galioides. J. Nat. Prod., 1995, 58(2), 324-328.
[http://dx.doi.org/10.1021/np50116a031] [PMID: 7769398]
[58]
Costa-Silva, T.A.; Grecco, S.S.; de Sousa, F.S.; Lago, J.H.G.; Martins, E.G.A.; Terrazas, C.A.; Varikuti, S.; Owens, K.L.; Beverley, S.M.; Satoskar, A.R.; Tempone, A.G. Immunomodulatory and antileishmanial activity of phenylpropanoid dimers isolated from nectandra leucantha. J. Nat. Prod., 2015, 78(4), 653-657.
[http://dx.doi.org/10.1021/np500809a] [PMID: 25835647]
[59]
Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[60]
Alves, L.C.; St Hilaire, P.M.; Meldal, M.; Sanderson, S.J.; Mottram, J.C.; Coombs, G.H.; Juliano, L.; Juliano, M.A. Identification of peptides inhibitory to recombinant cysteine proteinase, CPB, of Leishmania mexicana. Mol. Biochem. Parasitol., 2001, 114(1), 81-88.
[http://dx.doi.org/10.1016/S0166-6851(01)00239-0] [PMID: 11356516]
[61]
Onishi, K.; Li, Y.; Ishii, K.; Hisaeda, H.; Tang, L.; Duan, X.; Dainichi, T.; Maekawa, Y.; Katunuma, N.; Himeno, K. Cathepsin L is crucial for a Th1-type immune response during Leishmania major infection. Microbes Infect., 2004, 6(5), 468-474.
[http://dx.doi.org/10.1016/j.micinf.2004.01.008] [PMID: 15109961]
[62]
de Sousa, L.R.F.; Wu, H.; Nebo, L.; Fernandes, J.B.; da Silva, M.F.G.F.; Kiefer, W.; Schirmeister, T.; Vieira, P.C. Natural products as inhibitors of recombinant cathepsin L of Leishmania mexicana. Exp. Parasitol., 2015, 156, 42-48.
[http://dx.doi.org/10.1016/j.exppara.2015.05.016] [PMID: 26044356]
[63]
Bezerra, J.W.A.; Coronel, C.; Gomez, M.C.V.; Rolón, M.; Nunez, C.V.; da Silva, D.R.; da Silva, L.A.; Rodrigues, F.C.; Boligon, A.A.; de Souza, M.A.; Linhares, K.V.; da Silva, M.A.P.; Morais-Braga, M.F.B. Evaluation of antiparasitary, cytotoxic and antioxidant activity and chemical analysis of Tarenaya spinosa (Jacq.) Raf. (Cleomaceae). S. Afr. J. Bot., 2019, 124, 546-555.
[http://dx.doi.org/10.1016/j.sajb.2019.05.025]
[64]
Silva-Silva, J.V.; Moragas-Tellis, C.J.; Chagas, M.S.S.; Souza, P.V.R.; Souza, C.S.F.; Hardoim, D.J.; Taniwaki, N.N.; Moreira, D.L.; Dutra Behrens, M.; Calabrese, K.S.; Almeida-Souza, F. Antileishmanial activity of flavones-rich fraction from arrabidaea chica verlot (Bignoniaceae). Front. Pharmacol., 2021, 12, 703985.
[http://dx.doi.org/10.3389/fphar.2021.703985]
[65]
Gervazoni, L.F.O.; Barcellos, G.B.; Ferreira-Paes, T.; Almeida-Amaral, E.E. Use of natural products in leishmaniasis chemotherapy: An overview. Front Chem., 2020, 8, 579891.
[http://dx.doi.org/10.3389/fchem.2020.579891] [PMID: 33330368]
[66]
Schomburg, C.; Schuehly, W.; Da Costa, F.B.; Klempnauer, K.H.; Schmidt, T.J. Natural sesquiterpene lactones as inhibitors of Myb-dependent gene expression: Structure-activity relationships. Eur. J. Med. Chem., 2013, 63, 313-320.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.018] [PMID: 23501116]
[67]
Schmidt, T.J.; Da Costa, F.B.; Lopes, N.P.; Kaiser, M.; Brun, R. in silico prediction and experimental evaluation of furanoheliangolide sesquiterpene lactones as potent agents against Trypanosoma brucei rhodesiense. Antimicrob. Agents Chemother., 2014, 58(1), 325-332.
[http://dx.doi.org/10.1128/AAC.01263-13] [PMID: 24165182]
[68]
Cota, B.B.; de Oliveira, D.M.; de Siqueira, E.P.; Souza-Fagundes, E.M.; Pimenta, A.M.C.; Santos, D.M.; Rabello, A.; Zani, C.L. New cassane diterpenes from caesalpinia echinata. Fitoterapia, 2011, 82(7), 969-975.
[http://dx.doi.org/10.1016/j.fitote.2011.05.014] [PMID: 21641971]
[69]
Loukaci, A.; Kayser, O.; Bindseil, K.U.; Siems, K.; Frevert, J.; Abreu, P.M. New trichothecenes isolated from Holarrhena floribunda. J. Nat. Prod., 2000, 63(1), 52-56.
[http://dx.doi.org/10.1021/np990332l] [PMID: 10650079]
[70]
Tan, N.; Kaloga, M.; Radtke, O.A.; Kiderlen, A.F.; Öksüz, S.; Ulubelen, A.; Kolodziej, H. Abietane diterpenoids and triterpenoic acids from Salvia cilicica and their antileishmanial activities. Phytochemistry, 2002, 61(8), 881-884.
[http://dx.doi.org/10.1016/S0031-9422(02)00361-8] [PMID: 12453510]
[71]
Bou, D.D.; Tempone, A.G.; Pinto, É.G.; Lago, J.H.G.; Sartorelli, P. Antiparasitic activity and effect of casearins isolated from Casearia sylvestris on leishmania and trypanosoma cruzi plasma membrane. Phytomedicine, 2014, 21(5), 676-681.
[http://dx.doi.org/10.1016/j.phymed.2014.01.004] [PMID: 24560122]
[72]
Al Musayeib, N.M.; Mothana, R.A.; Mohamed, G.A.; Ibrahim, S.R.M.; Maes, L. Hypoestenonols A and B, new fusicoccane diterpenes from hypoestes forskalei. Phytochem. Lett., 2014, 10(1), 23-27.
[http://dx.doi.org/10.1016/j.phytol.2014.06.020]
[73]
Fournet, A.; Muñoz, V.; Roblot, F.; Hocquemiller, R.; Cavé, A.; Gantier, J.C. Antiprotozoal activity of dehydrozaluzanin C, a sesquiterpene lactone isolated fromMunnozia maronii (asteraceae). Phytother. Res., 1993, 7(2), 111-115.
[http://dx.doi.org/10.1002/ptr.2650070203]
[74]
Armah, F.A.; Amponsah, I.K.; Mensah, A.Y.; Dickson, R.A.; Steenkamp, P.A.; Madala, N.E.; Adokoh, C.K. Leishmanicidal activity of the root bark of Erythrophleum Ivorense (Fabaceae) and identification of some of its compounds by ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS/MS). J. Ethnopharmacol., 2018, 211, 207-216.
[http://dx.doi.org/10.1016/j.jep.2017.09.030] [PMID: 28970156]
[75]
Sosa, A.M.; Amaya, S.; Salamanca Capusiri, E.; Gilabert, M.; Bardón, A.; Giménez, A.; Vera, N.R.; Borkosky, S.A. Active sesquiterpene lactones against leishmania amazonensis and leishmania braziliensis. Nat. Prod. Res., 2016, 30(22), 2611-2615.
[http://dx.doi.org/10.1080/14786419.2015.1126260] [PMID: 26755152]
[76]
Cai, S.; Risinger, A.L.; Nair, S.; Peng, J.; Anderson, T.J.C.; Du, L.; Powell, D.R.; Mooberry, S.L.; Cichewicz, R.H. Identification of compounds with efficacy against malaria parasites from common north american plants. J. Nat. Prod., 2016, 79(3), 490-498.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00874] [PMID: 26722868]
[77]
Omole, R.A.; Moshi, M.J.; Heydenreich, M.; Malebo, H.M.; Gathirwa, J.W.; Ochieng’, S.A.; Omosa, L.K.; Midiwo, J.O. Two lignans derivatives and two fusicoccane diterpenoids from the whole plant of Hypoestes verticillaris (L.F.) Sol. Ex roem. & schult. Phytochem. Lett., 2019, 30, 194-200.
[http://dx.doi.org/10.1016/j.phytol.2019.02.019]
[78]
Van de Walle, T.; Cools, L.; Mangelinckx, S.; D’hooghe, M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur. J. Med. Chem., 2021, 226, 113865.
[http://dx.doi.org/10.1016/j.ejmech.2021.113865] [PMID: 34655985]
[79]
Wansi, J.D.; Hussain, H.; Tcho, A.T.; Kouam, S.F.; Specht, S.; Sarite, S.R.; Hoerauf, A.; Krohn, K. Antiplasmodial activities of furoquinoline alkaloids from Teclea afzelii. Phytother. Res., 2010, 24(5), 775-777.
[PMID: 19496062]
[80]
Lacroix, D.; Prado, S.; Kamoga, D.; Kasenene, J.; Bodo, B. Absolute configuration of 2′(R)-acetylmontrifoline and 2′(R)-montrifoline, furoquinolines from the fruits of Teclea nobilis. Phytochem. Lett., 2012, 5(1), 22-25.
[http://dx.doi.org/10.1016/j.phytol.2011.08.012]
[81]
Wangchuk, P.; Keller, P.A.; Pyne, S.G.; Willis, A.C.; Kamchonwongpaisan, S. Antimalarial alkaloids from a bhutanese traditional medicinal plant corydalis dubia. J. Ethnopharmacol., 2012, 143(1), 310-313.
[http://dx.doi.org/10.1016/j.jep.2012.06.037] [PMID: 22796506]
[82]
Zahari, A.; Cheah, F.; Mohamad, J.; Sulaiman, S.; Litaudon, M.; Leong, K.; Awang, K. Antiplasmodial and antioxidant isoquinoline alkaloids from Dehaasia longipedicellata. Planta Med., 2014, 80(7), 599-603.
[http://dx.doi.org/10.1055/s-0034-1368349] [PMID: 24723007]
[83]
Bringmann, G.; Lombe, B.K.; Steinert, C.; Ioset, K.N.; Brun, R.; Turini, F.; Heubl, G.; Mudogo, V. Mbandakamines A and B, unsymmetrically coupled dimeric naphthylisoquinoline alkaloids, from a congolese ancistrocladus species. Org. Lett., 2013, 15(11), 2590-2593.
[http://dx.doi.org/10.1021/ol4005883] [PMID: 23672531]
[84]
Zahari, A.; Ablat, A.; Sivasothy, Y.; Mohamad, J.; Choudhary, M.I.; Awang, K. in vitro antiplasmodial and antioxidant activities of bisbenzylisoquinoline alkaloids from Alseodaphne corneri Kosterm. Asian Pac. J. Trop. Med., 2016, 9(4), 328-332.
[http://dx.doi.org/10.1016/j.apjtm.2016.03.008] [PMID: 27086149]
[85]
Tshitenge, D.T.; Feineis, D.; Mudogo, V.; Kaiser, M.; Brun, R.; Seo, E.J.; Efferth, T.; Bringmann, G. Mbandakamine-type naphthylisoquinoline dimers and related alkaloids from the central african liana ancistrocladus ealaensis with antiparasitic and antileukemic activities. J. Nat. Prod., 2018, 81(4), 918-933.
[http://dx.doi.org/10.1021/acs.jnatprod.7b01041] [PMID: 29560715]
[86]
Mahmoud, A.B.; Danton, O.; Kaiser, M.; Khalid, S.; Hamburger, M.; Mäser, P. HPLC-based activity profiling for antiprotozoal compounds in croton gratissimus and cuscuta hyalina. Front. Pharmacol., 2020, 11, 1246.
[http://dx.doi.org/10.3389/fphar.2020.01246] [PMID: 32922290]
[87]
Valdés, A.F.C. Acridine and acridinones: Old and new structures with antimalarial activity. Open Med. Chem. J., 2011, 5, 11-20.
[http://dx.doi.org/10.2174/1874104501105010011] [PMID: 21673977]
[88]
Muriithi, MW; Abraham, W; Addae-kyereme, J Isolation and in vitro antiplasmodial activities of alkaloids from Teclea trichocarpa: in vivo antimalarial activity and X-ray crystal structure of normelicopicine. J. Nat. Prod., 2002, 65(7), 956-959.
[89]
Yang, X.; Wang, C.; Wan, J.; Mei, Z. Acridone alkaloids with cytotoxic and antimalarial activities from Zanthoxylum simullans Hance. Pharmacogn. Mag., 2014, 10(37), 73-76.
[http://dx.doi.org/10.4103/0973-1296.126669] [PMID: 24696549]
[90]
Xiang, M.L.; Hu, B.Y.; Qi, Z.H.; Wang, X.N.; Xie, T.Z.; Wang, Z.J.; Ma, D.Y.; Zeng, Q.; Luo, X.D. Chemistry and bioactivities of natural steroidal alkaloids. Nat. Prod. Bioprospect., 2022, 12(1), 23.
[http://dx.doi.org/10.1007/s13659-022-00345-0] [PMID: 35701630]
[91]
Dua, V.K.; Verma, G.; Singh, B.; Rajan, A.; Bagai, U.; Agarwal, D.D.; Gupta, N.C.; Kumar, S.; Rastogi, A. Anti-malarial property of steroidal alkaloid conessine isolated from the bark of Holarrhena antidysenterica. Malar. J., 2013, 12(1), 194.
[http://dx.doi.org/10.1186/1475-2875-12-194] [PMID: 23758861]
[92]
Cheenpracha, S.; Boapun, P.; Limtharakul Nee Ritthiwigrom, T.; Laphookhieo, S.; Pyne, S.G. Antimalarial and cytotoxic activities of pregnene-type steroidal alkaloids from Holarrhena pubescens roots. Nat. Prod. Res., 2017, 33(6), 1-7.
[PMID: 29172699]
[93]
Nnadi, C.; Ebiloma, G.; Black, J.; Nwodo, N.; Lemgruber, L.; Schmidt, T.; de Koning, H. Potent antitrypanosomal activities of 3-aminosteroids against African trypanosomes: Investigation of cellular effects and of cross-resistance with existing drugs. Molecules, 2019, 24(2), 268.
[http://dx.doi.org/10.3390/molecules24020268] [PMID: 30642032]
[94]
Flittner, D.; Kaiser, M.; Mäser, P.; Lopes, N.P.; Schmidt, T.J. The alkaloid-enriched fraction of pachysandra terminalis (Buxaceae) shows prominent activity against trypanosoma brucei rhodesiense. Molecules, 2021, 26(3), 591.
[http://dx.doi.org/10.3390/molecules26030591] [PMID: 33498621]
[95]
Dai, J.; Dan, W.; Schneider, U.; Wang, J. β-Carboline alkaloid monomers and dimers: Occurrence, structural diversity, and biological activities. Eur. J. Med. Chem., 2018, 157, 622-656.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.027] [PMID: 30125723]
[96]
Huang, H.; Yao, Y.; He, Z.; Yang, T.; Ma, J.; Tian, X.; Li, Y.; Huang, C.; Chen, X.; Li, W.; Zhang, S.; Zhang, C.; Ju, J. Antimalarial β-carboline and indolactam alkaloids from marinactinospora thermotolerans, a deep sea isolate. J. Nat. Prod., 2011, 74(10), 2122-2127.
[http://dx.doi.org/10.1021/np200399t] [PMID: 21977916]
[97]
Khan, F.A.; Maalik, A.; Iqbal, Z.; Malik, I. Recent pharmacological developments in β-carboline alkaloid “harmaline”. Eur. J. Pharmacol., 2013, 721(1-3), 391-394.
[http://dx.doi.org/10.1016/j.ejphar.2013.05.003] [PMID: 23707188]
[98]
Gabriel, R.S.; Amaral, A.C.F.; Lima, I.C.; Cruz, J.D.; Garcia, A.R.; Souza, H.A.S.; Adade, C.M.; Vermelho, A.B.; Alviano, C.S.; Alviano, D.S.; Rodrigues, I.A. β-Carboline-1-propionic acid alkaloid: Antileishmanial and cytotoxic effects. Rev. Bras. Farmacogn., 2019, 29(6), 755-762.
[http://dx.doi.org/10.1016/j.bjp.2019.08.002]
[99]
Barreto, I.M.; Moreira, P.O.L.; de Macedo, G.E.L.; Maia, D.N.B.; de Almeida Alves, T.M.; de Oliveira, D.M.; Cota, B.B. β-carboline glucoalkaloids from psychotria cupularis and evaluation of their antileishmanial activity. Rev. Bras. Farmacogn., 2021, 31(5), 709-714.
[http://dx.doi.org/10.1007/s43450-021-00197-8]
[100]
Dube, A.; Singh, N.; Saxena, A.; Lakshmi, V. Antileishmanial potential of a marine sponge, Haliclona exigua (Kirkpatrick) against experimental visceral leishmaniasis. Parasitol. Res., 2007, 101(2), 317-324.
[http://dx.doi.org/10.1007/s00436-007-0469-z] [PMID: 17294216]
[101]
Thompson, M.N.; Gallimore, W. Antileishmanial, antimalarial and antimicrobial activity of the jamaican “Touch-me-not” sponge neofibularia nolitangere. J. Appl. Pharm. Sci., 2013, 3(8), 80-83.
[102]
Orhan, I.; Şener, B.; Kaiser, M.; Brun, R.; Tasdemir, D. Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar. Drugs, 2010, 8(1), 47-58.
[http://dx.doi.org/10.3390/md8010047] [PMID: 20161970]
[103]
Mayer, A.M.S.; Guerrero, A.J.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Nakamura, F.; Fusetani, N. Marine pharmacology in 2016–2017: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs, 2021, 19(2), 49.
[http://dx.doi.org/10.3390/md19020049] [PMID: 33494402]
[104]
Nweze, J.A.; Mbaoji, F.N.; Li, Y.M.; Yang, L.Y.; Huang, S.S.; Chigor, V.N.; Eze, E.A.; Pan, L.X.; Zhang, T.; Yang, D.F. Potentials of marine natural products against malaria, leishmaniasis, and trypanosomiasis parasites: A review of recent articles. Infect. Dis. Poverty, 2021, 10(1), 9.
[http://dx.doi.org/10.1186/s40249-021-00796-6] [PMID: 33482912]
[105]
Ashok, P.; Faheem; Kumar, B.K.; Chander, S.; Chandra Sekhar, K.V.G.; Sankaranarayanan, M. Anti-infective potential of manzamine alkaloids - A review. Med. Chem., 2022, 18(6), 629-654.
[http://dx.doi.org/10.2174/1573406417666210803101740] [PMID: 34344295]
[106]
Regalado, E.L.; Tasdemir, D.; Kaiser, M.; Cachet, N.; Amade, P.; Thomas, O.P. Antiprotozoal steroidal saponins from the marine sponge Pandaros acanthifolium. J. Nat. Prod., 2010, 73(8), 1404-1410.
[http://dx.doi.org/10.1021/np100348x] [PMID: 20614907]
[107]
Regalado, E.L.; Jiménez-Romero, C.; Genta-Jouve, G.; Tasdemir, D.; Amade, P.; Nogueiras, C.; Thomas, O.P. Acanthifoliosides, minor steroidal saponins from the Caribbean sponge Pandaros acanthifolium. Tetrahedron, 2011, 67(5), 1011-1018.
[http://dx.doi.org/10.1016/j.tet.2010.11.103]
[108]
von Salm, J.L.; Wilson, N.G.; Vesely, B.A.; Kyle, D.E.; Cuce, J.; Baker, B.J. Shagenes A and B, new tricyclic sesquiterpenes produced by an undescribed Antarctic octocoral. Org. Lett., 2014, 16(10), 2630-2633.
[http://dx.doi.org/10.1021/ol500792x] [PMID: 24779517]
[109]
Thao, N.; Luyen, B.; Brun, R.; Kaiser, M.; Van Kiem, P.; Van Minh, C.; Schmidt, T.; Kang, J.; Kim, Y. Anti-protozoal activities of cembrane-type diterpenes from vietnamese soft corals. Molecules, 2015, 20(7), 12459-12468.
[http://dx.doi.org/10.3390/molecules200712459] [PMID: 26184133]
[110]
Soares, D.; Szlachta, M.; Teixeira, V.; Soares, A.; Saraiva, E. The brown alga stypopodium zonale (Dictyotaceae): A potential source of anti-leishmania drugs. Mar. Drugs, 2016, 14(9), 163.
[http://dx.doi.org/10.3390/md14090163] [PMID: 27618071]
[111]
Bruno de Sousa, C.; Gangadhar, K.N.; Morais, T.R.; Conserva, G.A.A.; Vizetto-Duarte, C.; Pereira, H.; Laurenti, M.D.; Campino, L.; Levy, D.; Uemi, M.; Barreira, L.; Custódio, L.; Passero, L.F.D.; Lago, J.H.G.; Varela, J. Antileishmanial activity of meroditerpenoids from the macroalgae Cystoseira baccata. Exp. Parasitol., 2017, 174, 1-9.
[http://dx.doi.org/10.1016/j.exppara.2017.01.002] [PMID: 28126391]
[112]
Chianese, G.; Silber, J.; Luciano, P.; Merten, C.; Erpenbeck, D.; Topaloglu, B.; Kaiser, M.; Tasdemir, D. Antiprotozoal linear furanosesterterpenoids from the marine sponge ircinia oros. J. Nat. Prod., 2017, 80(9), 2566-2571.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00543] [PMID: 28840725]
[113]
Díaz-Marrero, A.R.; López-Arencibia, A.; Bethencout-Estrella, C.J.; Cen-Pacheco, F.; Sifaoui, I.; Hernández Creus, A.; Duque-Ramírez, M.C.; Souto, M.L.; Hernández Daranas, A.; Lorenzo-Morales, J.; Piñero, J.E.; Fernández, J.J. Antiprotozoal activities of marine polyether triterpenoids. Bioorg. Chem., 2019, 92, 103276.
[http://dx.doi.org/10.1016/j.bioorg.2019.103276] [PMID: 31539745]
[114]
Bethencourt-Estrella, C.J.; Nocchi, N.; López-Arencibia, A.; San Nicolás-Hernández, D.; Souto, M.L.; Suárez-Gómez, B.; Díaz-Marrero, A.R.; Fernández, J.J.; Lorenzo-Morales, J.; Piñero, J.E. Antikinetoplastid activity of sesquiterpenes isolated from the zoanthid palythoa aff. clavata. Pharmaceuticals, 2021, 14(11), 1095.
[http://dx.doi.org/10.3390/ph14111095] [PMID: 34832876]
[115]
Chiboub, O.; Sifaoui, I.; Abderrabba, M.; Mejri, M.; Fernández, J.J.; Díaz-Marrero, A.R.; Lorenzo-Morales, J.; Piñero, J.E. Apoptosis-like cell death upon kinetoplastid induction by compounds isolated from the brown algae Dictyota spiralis. Parasit. Vectors, 2021, 14(1), 198.
[http://dx.doi.org/10.1186/s13071-021-04693-7] [PMID: 33845894]
[116]
Majer, T.; Bhattarai, K.; Straetener, J.; Pohlmann, J.; Cahill, P.; Zimmermann, M.O.; Hübner, M.P.; Kaiser, M.; Svenson, J.; Schindler, M.; Brötz-Oesterhelt, H.; Boeckler, F.M.; Gross, H. Discovery of ircinianin lactones B and C-Two new cyclic sesterterpenes from the marine sponge ircinia wistarii. Mar. Drugs, 2022, 20(8), 532.
[http://dx.doi.org/10.3390/md20080532] [PMID: 36005535]
[117]
Nakao, Y.; Shiroiwa, T.; Murayama, S.; Matsunaga, S.; Goto, Y.; Matsumoto, Y.; Fusetani, N. identification of renieramycin A as an antileishmanial substance in a marine sponge Neopetrosia sp. Mar. Drugs, 2004, 2(2), 55-62.
[http://dx.doi.org/10.3390/md202055]
[118]
Vik, A.; Proszenyák, Á.; Vermeersch, M.; Cos, P.; Maes, L.; Gundersen, L.L. Screening of agelasine D and analogs for inhibitory activity against pathogenic protozoa; identification of hits for visceral leishmaniasis and Chagas disease. Molecules, 2009, 14(1), 279-288.
[http://dx.doi.org/10.3390/molecules14010279] [PMID: 19136916]
[119]
Wright, A.E.; Killday, K.B.; Chakrabarti, D.; Guzmán, E.A.; Harmody, D.; McCarthy, P.J. Dragmacidin G, a bioactive bis-indole alkaloid from a deep-water sponge of the genus spongosorites. Mar. Drugs, 2017, 15(1), 16.
[120]
Santos, M.F.C.; Harper, P.M.; Williams, D.E.; Mesquita, J.T.; Pinto, É.G.; da Costa-Silva, T.A.; Hajdu, E.; Ferreira, A.G.; Santos, R.A.; Murphy, P.J.; Andersen, R.J.; Tempone, A.G.; Berlinck, R.G.S. Anti-parasitic guanidine and pyrimidine alkaloids from the marine sponge monanchora arbuscula. J. Nat. Prod., 2015, 78(5), 1101-1112.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00070] [PMID: 25924111]
[121]
Erdoğan, İ.; Şener, B.; Higa, T. Tryptophol, a plant auxin isolated from the marine sponge Ircinia spinulosa. Biochem. Syst. Ecol., 2000, 28(8), 793-794.
[http://dx.doi.org/10.1016/S0305-1978(99)00111-8] [PMID: 10856636]
[122]
Martínez-Luis, S.; Gómez, J.F.; Spadafora, C.; Guzmán, H.M.; Gutiérrez, M. Antitrypanosomal alkaloids from the marine bacterium Bacillus pumilus. Molecules, 2012, 17(9), 11146-11155.
[http://dx.doi.org/10.3390/molecules170911146] [PMID: 22990456]
[123]
Ashok, P.; Ganguly, S.; Murugesan, S. Manzamine alkaloids: Isolation, cytotoxicity, antimalarial activity and SAR studies. Drug Discov. Today, 2014, 19(11), 1781-1791.
[http://dx.doi.org/10.1016/j.drudis.2014.06.010] [PMID: 24953707]
[124]
Loaëc, N.; Attanasio, E.; Villiers, B.; Durieu, E.; Tahtouh, T.; Cam, M.; Davis, R.; Alencar, A.; Roué, M.; Bourguet-Kondracki, M.L.; Proksch, P.; Limanton, E.; Guiheneuf, S.; Carreaux, F.; Bazureau, J.P.; Klautau, M.; Meijer, L. Marine-Derived 2-Aminoimidazolone Alkaloids. Leucettamine B-Related Polyandrocarpamines Inhibit Mammalian and Protozoan DYRK & CLK Kinases. Mar. Drugs, 2017, 15(10), 316.
[http://dx.doi.org/10.3390/md15100316] [PMID: 29039762]
[125]
Martínez-Luis, S.; Cherigo, L.; Spadafora, C.; Gutiérrez, M. Antiparasitic compounds from the panamanian marine bacterium pseudomonas aeruginosa. Nat. Prod. Commun., 2019, 14(1), 1934578X1901400.
[http://dx.doi.org/10.1177/1934578X1901400109]
[126]
Prebble, DW; Holland, DC; Robertson, LP; Avery, VM; Carroll, AR Citronamine A, an antiplasmodial isoquinoline alkaloid from the australian marine sponge citronia astra. Org. Lett., 2022, 22(24), 9574-9579.
[127]
Kleks, G.; Duffy, S.; Lucantoni, L.; Avery, V.M.; Carroll, A.R. Orthoscuticellines A-E, β-carboline alkaloids from the bryozoan orthoscuticella ventricosa collected in australia. J. Nat. Prod., 2020, 83(2), 422-428.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00933] [PMID: 31961680]
[128]
Oluwabusola, E.T.; Tabudravu, J.N.; Al Maqbali, K.S.; Annang, F.; Pérez-Moreno, G.; Reyes, F.; Jaspars, M. Antiparasitic activity of bromotyrosine alkaloids and new analogues isolated from the fijian marine sponge aplysinella rhax. Chem. Biodivers., 2020, 17(10), e2000335.
[http://dx.doi.org/10.1002/cbdv.202000335] [PMID: 32697400]
[129]
Parra, LLL; Bertonha, AF; Severo, IRM; Aguiar, ACC; Costa, R; Souza, GE; De Isolation, derivative synthesis, and structure - activity relationships of antiparasitic bromopyrrole alkaloids from the marine sponge tedania brasiliensis. J. Nat. Prod., 2018, 81(1), 188-202.
[130]
Sala, S.; Fromont, J.; Gomez, O.; Vuong, D.; Lacey, E.; Flematti, G.R. Albanitriles A-G: Antiprotozoal polyacetylene nitriles from a mycale marine sponge. J. Nat. Prod., 2019, 82(12), 3450-3455.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00840] [PMID: 31833368]
[131]
Kang, H.K.; Seo, C.; Park, Y. The effects of marine carbohydrates and glycosylated compounds on human health. Int. J. Mol. Sci., 2015, 16(12), 6018-6056.
[http://dx.doi.org/10.3390/ijms16036018] [PMID: 25785562]
[132]
Vieira, C.; Gaubert, J.; De Clerck, O.; Payri, C.; Culioli, G.; Thomas, O.P. Biological activities associated to the chemodiversity of the brown algae belonging to genus lobophora (Dictyotales, Phaeophyceae). Phytochem. Rev., 2017, 16(1), 1-17.
[http://dx.doi.org/10.1007/s11101-015-9445-x] [PMID: 29651231]
[133]
Buedenbender, L.; Robertson, L.; Lucantoni, L.; Avery, V.; Kurtböke, D.; Carroll, A. HSQC-TOCSY fingerprinting-directed discovery of antiplasmodial polyketides from the marine ascidian-derived streptomyces sp. (USC-16018). Mar. Drugs, 2018, 16(6), 189.
[http://dx.doi.org/10.3390/md16060189] [PMID: 29849004]
[134]
Braun, G.H.; Ramos, H.P.; Candido, A.C.B.B.; Pedroso, R.C.N.; Siqueira, K.A.; Soares, M.A.; Dias, G.M.; Magalhães, L.G.; Ambrósio, S.R.; Januário, A.H.; Pietro, R.C.L.R. Evaluation of antileishmanial activity of harzialactone a isolated from the marine-derived fungus Paecilomyces sp. Nat. Prod. Res., 2021, 35(10), 1644-1647.
[http://dx.doi.org/10.1080/14786419.2019.1619725] [PMID: 31140307]
[135]
Rodríguez-Expósito, R.L.; Nocchi, N.; Reyes-Batlle, M.; Sifaoui, I.; Suárez-Gómez, B.; Díaz-Marrero, A.R.; Souto, M.L.; Piñero, J.E.; Fernández, J.J.; Lorenzo-Morales, J. Antiamoebic effects of sesquiterpene lactones isolated from the zoanthid Palythoa aff. clavata. Bioorg. Chem., 2021, 108, 104682.
[http://dx.doi.org/10.1016/j.bioorg.2021.104682] [PMID: 33556696]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy