Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Gamma Secretase as an Important Drug Target for Management of Alzheimer’s Disease: A Comprehensive Review

Author(s): Fady Tadros Hakem, Youstina Farid Fouad and Reem K. Arafa*

Volume 24, Issue 2, 2024

Published on: 10 October, 2023

Page: [109 - 127] Pages: 19

DOI: 10.2174/0115680266259174231006070637

Price: $65

Abstract

Alzheimer’s disease (AD) is a neurological disease that affects the memory. AD has been attributed to the aggregations of amyloid-β (Aβ) peptides which result in the formation of plaques that block the neuron-transferring process done by the brain memory cells. These plaques are formed upon cleavage of Amyloid Precursor Protein (APP) by Gamma-Secretase (GS). GS protein has around 141 substrates, the important two are APP and Notch. Considering one of the hot spots in AD research, we focused on GS and its relation to AD. Moreover, a lot of research was done on beta-secretase and drugs were developed to target it however, few drugs are established for GS. GS contains four subunits: Presenilin (PS), PEN-2, Nicastrin, and APH-1. The catalytic subunit is PS, which contains the active site for substrate binding, as well as the allosteric and docking sites. Both PEN-2 and APH-1 are regulators for the stability and activity of GS. Nicastrin, helps the substrates bind to the PS. Additionally, the role of the immuno-protein named “IFITM3” and how it affects the immune system and its relation to AD is presented. GS is one of the most studied proteins with many developed candidates as inhibitors (GSI) and modulators (GSM). Examples of GSI are Semagacestat and Avagacestat while GSM includes E2012; which inhibits the cleavage activity of GS. In this report, each of the four subunits of GS is described in detail, along with the interactions between GS and its inhibitors or modulators. In addition, the FDA-approved drugs are enlisted.

Next »
Graphical Abstract

[1]
Jalbert, J.J.; Daiello, L.A.; Lapane, K.L. Dementia of the alzheimer type. Epidemiol. Rev., 2008, 30(1), 15-34.
[http://dx.doi.org/10.1093/epirev/mxn008]
[2]
Kumar, D.; Ganeshpurkar, A.; Kumar, D.; Modi, G.; Gupta, S.K.; Singh, S.K. Secretase inhibitors for the treatment of Alzheimer’s disease: Long road ahead. Eur. J. Med. Chem., 2018, 148, 436-452.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.035] [PMID: 29477076]
[3]
Kumar, D.K.V.; Eimer, W.A.; Tanzi, R.E.; Moir, R.D. Alzheimer’s disease: The potential therapeutic role of the natural antibiotic amyloid-β peptide. Neurodegener. Dis. Manag., 2016, 6(5), 345-348.
[http://dx.doi.org/10.2217/nmt-2016-0035] [PMID: 27599536]
[4]
Porsteinsson, A.P.; Isaacson, R.S.; Knox, S.; Sabbagh, M.N.; Rubino, I. Diagnosis of early alzheimer’s disease: Clinical practice in 2021. J. Prev. Alzheimers Dis., 2021, 8(3), 1-16.
[http://dx.doi.org/10.14283/jpad.2021.23] [PMID: 34101796]
[5]
Hur, J.Y. γ-Secretase in Alzheimer’s disease. Exp. Mol. Med., 2022, 54(4), 433-446.
[http://dx.doi.org/10.1038/s12276-022-00754-8] [PMID: 35396575]
[6]
Güner, G.; Lichtenthaler, S.F. The substrate repertoire of γ-secretase/presenilin. In: Seminars in cell & developmental biology; Academic Press, 2020; 105, pp. 27-42.
[http://dx.doi.org/10.1016/j.semcdb.2020.05.019]
[7]
Struhl, G.; Adachi, A. Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol. Cell, 2000, 6(3), 625-636.
[http://dx.doi.org/10.1016/S1097-2765(00)00061-7] [PMID: 11030342]
[8]
Kopan, R.; Ilagan, M.X.G.; Xenia, G. γ-Secretase: Proteasome of the membrane? Nat. Rev. Mol. Cell Biol., 2004, 5(6), 499-504.
[http://dx.doi.org/10.1038/nrm1406] [PMID: 15173829]
[9]
Grassi, S.; Giussani, P.; Mauri, L.; Prioni, S.; Sonnino, S.; Prinetti, A. Lipid rafts and neurodegeneration: Structural and functional roles in physiologic aging and neurodegenerative diseases. J. Lipid Res., 2020, 61(5), 636-654.
[http://dx.doi.org/10.1194/jlr.TR119000427] [PMID: 31871065]
[10]
Hur, J.Y.; Welander, H.; Behbahani, H.; Aoki, M.; Frånberg, J.; Winblad, B.; Frykman, S.; Tjernberg, L.O. Active γ-secretase is localized to detergent-resistant membranes in human brain. FEBS J., 2008, 275(6), 1174-1187.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06278.x] [PMID: 18266764]
[11]
Vetrivel, K.S.; Cheng, H.; Kim, S.H.; Chen, Y.; Barnes, N.Y.; Parent, A.T.; Sisodia, S.S.; Thinakaran, G. Spatial segregation of γ-secretase and substrates in distinct membrane domains. J. Biol. Chem., 2005, 280(27), 25892-25900.
[http://dx.doi.org/10.1074/jbc.M503570200] [PMID: 15886206]
[12]
Osenkowski, P.; Ye, W.; Wang, R.; Wolfe, M.S.; Selkoe, D.J. Direct and potent regulation of γ-secretase by its lipid microenvironment. J. Biol. Chem., 2008, 283(33), 22529-22540.
[http://dx.doi.org/10.1074/jbc.M801925200] [PMID: 18539594]
[13]
Selkoe, D.J. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev., 2001, 81(2), 741-766.
[http://dx.doi.org/10.1152/physrev.2001.81.2.741] [PMID: 11274343]
[14]
Scheltens, P.; Twisk, J.W.R.; Blesa, R.; Scarpini, E.; von Arnim, C.A.F.; Bongers, A.; Harrison, J.; Swinkels, S.H.N.; Stam, C.J.; de Waal, H.; Wurtman, R.J.; Wieggers, R.L.; Vellas, B.; Kamphuis, P.J.G.H. Efficacy of Souvenaid in mild Alzheimer’s disease: Results from a randomized, controlled trial. J. Alzheimers Dis., 2012, 31(1), 225-236.
[http://dx.doi.org/10.3233/JAD-2012-121189] [PMID: 22766770]
[15]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[16]
Hébert, S.S.; Serneels, L.; Dejaegere, T.; Horré, K.; Dabrowski, M.; Baert, V.; Annaert, W.; Hartmann, D.; De Strooper, B. Coordinated and widespread expression of γ-secretase in vivo: Evidence for size and molecular heterogeneity. Neurobiol. Dis., 2004, 17(2), 260-272.
[http://dx.doi.org/10.1016/j.nbd.2004.08.002] [PMID: 15474363]
[17]
Schedin-Weiss, S.; Winblad, B.; Tjernberg, L.O. The role of protein glycosylation in Alzheimer disease. FEBS J., 2014, 281(1), 46-62.
[http://dx.doi.org/10.1111/febs.12590] [PMID: 24279329]
[18]
Yu, G.; Nishimura, M.; Arawaka, S.; Levitan, D.; Zhang, L.; Tandon, A.; Song, Y.Q.; Rogaeva, E.; Chen, F.; Kawarai, T.; Supala, A.; Levesque, L.; Yu, H.; Yang, D.S.; Holmes, E.; Milman, P.; Liang, Y.; Zhang, D.M.; Xu, D.H.; Sato, C.; Rogaev, E.; Smith, M.; Janus, C.; Zhang, Y.; Aebersold, R.; Farrer, L.; Sorbi, S.; Bruni, A.; Fraser, P.; St George-Hyslop, P. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature, 2000, 407(6800), 48-54.
[http://dx.doi.org/10.1038/35024009] [PMID: 10993067]
[19]
Heneka, M.T.; Golenbock, D.T.; Latz, E. Innate immunity in Alzheimer’s disease. Nat. Immunol., 2015, 16(3), 229-236.
[http://dx.doi.org/10.1038/ni.3102] [PMID: 25689443]
[20]
Martoglio, B.; Golde, T.E. Intramembrane-cleaving aspartic proteases and disease: Presenilins, signal peptide peptidase and their homologs. Hum. Mol. Genet., 2003, 12(Spec No 2), R201-R206.
[http://dx.doi.org/10.1093/hmg/ddg303] [PMID: 12966028]
[21]
Gertsik, N.; Chiu, D.; Li, Y.M. Complex regulation of γ-secretase: From obligatory to modulatory subunits. Front. Aging Neurosci., 2015, 6, 342.
[http://dx.doi.org/10.3389/fnagi.2014.00342] [PMID: 25610395]
[22]
Wolfe, M.S. When loss is gain: Reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep., 2007, 8(2), 136-140.
[http://dx.doi.org/10.1038/sj.embor.7400896] [PMID: 17268504]
[23]
Li, Y.; Bohm, C.; Dodd, R.; Chen, F.; Qamar, S.; Schmitt-Ulms, G.; Fraser, P.E.; St George-Hyslop, P.H. Structural biology of presenilin 1 complexes. Mol. Neurodegener., 2014, 9(1), 59.
[http://dx.doi.org/10.1186/1750-1326-9-59] [PMID: 25523933]
[24]
Oh, Y.S.; Turner, R.J. Topology of the C-terminal fragment of human presenilin 1. Biochemistry, 2005, 44(35), 11821-11828.
[http://dx.doi.org/10.1021/bi0509494] [PMID: 16128583]
[25]
Li, X.; Dang, S.; Yan, C.; Gong, X.; Wang, J.; Shi, Y. Structure of a presenilin family intramembrane aspartate protease. Nature, 2013, 493(7430), 56-61.
[http://dx.doi.org/10.1038/nature11801] [PMID: 23254940]
[26]
Watanabe, N.; Takagi, S.; Tominaga, A.; Tomita, T.; Iwatsubo, T.; Image Image, I.; Tomita, T.; Image Image, I.I.; Iwatsubo, T.; Image Image, I. Functional analysis of the transmembrane domains of presenilin 1: Participation of transmembrane domains 2 and 6 in the formation of initial substrate-binding site of γ-secretase. J. Biol. Chem., 2010, 285(26), 19738-19746.
[http://dx.doi.org/10.1074/jbc.M110.101287] [PMID: 20418378]
[27]
Yang, G.; Zhou, R.; Guo, X.; Yan, C.; Lei, J.; Shi, Y. Structural basis of γ-secretase inhibition and modulation by small molecule drugs. Cell, 2021, 184(2), 521-533.e14.
[http://dx.doi.org/10.1016/j.cell.2020.11.049] [PMID: 33373587]
[28]
Serneels, L.; Van Biervliet, J.; Craessaerts, K.; Dejaegere, T.; Horré, K.; Van Houtvin, T.; Esselmann, H.; Paul, S.; Schäfer, M.K.; Berezovska, O.; Hyman, B.T.; Sprangers, B.; Sciot, R.; Moons, L.; Jucker, M.; Yang, Z.; May, P.C.; Karran, E.; Wiltfang, J.; D’Hooge, R.; De Strooper, B. γ-Secretase heterogeneity in the Aph1 subunit: Relevance for Alzheimer’s disease. Science, 2009, 324(5927), 639-642.
[http://dx.doi.org/10.1126/science.1171176] [PMID: 19299585]
[29]
Lee, S.F.; Shah, S.; Yu, C.; Wigley, W.C.; Li, H.; Lim, M.; Pedersen, K.; Han, W.; Thomas, P.; Lundkvist, J.; Hao, Y.H.; Yu, G. A conserved GXXXG motif in APH-1 is critical for assembly and activity of the γ-secretase complex. J. Biol. Chem., 2004, 279(6), 4144-4152.
[http://dx.doi.org/10.1074/jbc.M309745200] [PMID: 14627705]
[30]
Francis, R.; McGrath, G.; Zhang, J.; Ruddy, D.A.; Sym, M.; Apfeld, J.; Nicoll, M.; Maxwell, M.; Hai, B.; Ellis, M.C.; Parks, A.L.; Xu, W.; Li, J.; Gurney, M.; Myers, R.L.; Himes, C.S.; Hiebsch, R.; Ruble, C.; Nye, J.S.; Curtis, D. aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev. Cell, 2002, 3(1), 85-97.
[http://dx.doi.org/10.1016/S1534-5807(02)00189-2] [PMID: 12110170]
[31]
Park, Y.H.; Pyun, J.M.; Hodges, A.; Jang, J.W.; Bice, P.J.; Kim, S.; Saykin, A.J.; Nho, K. Dysregulated expression levels of APH1B in peripheral blood are associated with brain atrophy and amyloid-β deposition in Alzheimer’s disease. Alzheimers Res. Ther., 2021, 13(1), 183.
[http://dx.doi.org/10.1186/s13195-021-00919-z] [PMID: 34732252]
[32]
Holmes, O.; Paturi, S.; Selkoe, D.J.; Wolfe, M.S. Pen-2 is essential for γ-secretase complex stability and trafficking but partially dispensable for endoproteolysis. Biochemistry, 2014, 53(27), 4393-4406.
[http://dx.doi.org/10.1021/bi500489j] [PMID: 24941111]
[33]
Kim, S.H.; Sisodia, S.S. A sequence within the first transmembrane domain of PEN-2 is critical for PEN-2-mediated endoproteolysis of presenilin 1. J. Biol. Chem., 2005, 280(3), 1992-2001.
[http://dx.doi.org/10.1074/jbc.M412404200] [PMID: 15537629]
[34]
Andreoli, V.; Trecroci, F.; La Russa, A.; Cittadella, R.; Liguori, M.; Spadafora, P.; Caracciolo, M.; Di Palma, G.; Colica, C.; Gambardella, A.; Quattrone, A. Presenilin enhancer-2 gene: Identification of a novel promoter mutation in a patient with early-onset familial Alzheimer’s disease. Alzheimers Dement., 2011, 7(6), 574-578.
[http://dx.doi.org/10.1016/j.jalz.2011.02.010] [PMID: 22055974]
[35]
Desai, T.M.; Marin, M.; Chin, C.R.; Savidis, G.; Brass, A.L.; Melikyan, G.B. IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion. PLoS Pathog., 2014, 10(4), e1004048.
[http://dx.doi.org/10.1371/journal.ppat.1004048] [PMID: 24699674]
[36]
Fleisher, A.S.; Raman, R.; Siemers, E.R.; Becerra, L.; Clark, C.M.; Dean, R.A.; Farlow, M.R.; Galvin, J.E.; Peskind, E.R.; Quinn, J.F.; Sherzai, A.; Sowell, B.B.; Aisen, P.S.; Thal, L.J. Phase 2 safety trial targeting amyloid β production with a γ-secretase inhibitor in Alzheimer disease. Arch. Neurol., 2008, 65(8), 1031-1038.
[http://dx.doi.org/10.1001/archneur.65.8.1031] [PMID: 18695053]
[37]
Xie, T.; Yan, C.; Zhou, R.; Zhao, Y.; Sun, L.; Yang, G.; Shi, Y. Crystal structure of the γ-secretase component nicastrin Proc. Natl. Acad. Sci., 2014, 111(37), 13349-13354.
[http://dx.doi.org/10.1073/pnas.1414837111]
[38]
Shah, S.; Lee, S.F.; Tabuchi, K.; Hao, Y.H.; Yu, C.; LaPlant, Q.; Ball, H.; Dann, C.E., III; Südhof, T.; Yu, G. Nicastrin functions as a γ-secretase-substrate receptor. Cell, 2005, 122(3), 435-447.
[http://dx.doi.org/10.1016/j.cell.2005.05.022] [PMID: 16096062]
[39]
Bolduc, D.M.; Montagna, D.R.; Seghers, M.C.; Wolfe, M.S.; Selkoe, D.J. The amyloid-beta forming tripeptide cleavage mechanism of γ-secretase. eLife, 2016, 5, e17578.
[http://dx.doi.org/10.7554/eLife.17578] [PMID: 27580372]
[40]
Zhang, Y.; Luo, W.; Wang, H.; Lin, P.; Vetrivel, K.S.; Liao, F.; Li, F.; Wong, P.C.; Farquhar, M.G.; Thinakaran, G.; Xu, H. Nicastrin is critical for stability and trafficking but not association of other presenilin/γ-secretase components. J. Biol. Chem., 2005, 280(17), 17020-17026.
[http://dx.doi.org/10.1074/jbc.M409467200] [PMID: 15711015]
[41]
Yao, A.Y.; Yan, R. Activity of Alzheimer’s γ-secretase is linked to changes of interferon-induced transmembrane proteins (IFITM) in innate immunity. Mol. Neurodegener., 2020, 15(1), 69.
[http://dx.doi.org/10.1186/s13024-020-00417-0] [PMID: 33183335]
[42]
John, S.P.; Chin, C.R.; Perreira, J.M.; Feeley, E.M.; Aker, A.M.; Savidis, G.; Smith, S.E.; Elia, A.E.H.; Everitt, A.R.; Vora, M.; Pertel, T.; Elledge, S.J.; Kellam, P.; Brass, A.L. The CD225 domain of IFITM3 is required for both IFITM protein association and inhibition of influenza A virus and dengue virus replication. J. Virol., 2013, 87(14), 7837-7852.
[http://dx.doi.org/10.1128/JVI.00481-13] [PMID: 23658454]
[43]
Hur, J.Y.; Frost, G.R.; Wu, X.; Crump, C.; Pan, S.J.; Wong, E.; Barros, M.; Li, T.; Nie, P.; Zhai, Y.; Wang, J.C.; Tcw, J.; Guo, L.; McKenzie, A.; Ming, C.; Zhou, X.; Wang, M.; Sagi, Y.; Renton, A.E.; Esposito, B.T.; Kim, Y.; Sadleir, K.R.; Trinh, I.; Rissman, R.A.; Vassar, R.; Zhang, B.; Johnson, D.S.; Masliah, E.; Greengard, P.; Goate, A.; Li, Y.M. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer’s disease. Nature, 2020, 586(7831), 735-740.
[http://dx.doi.org/10.1038/s41586-020-2681-2] [PMID: 32879487]
[44]
Wang, X. A bridge between the innate immunity system and amyloid-β production in alzheimer’s disease. Neurosci. Bull., 2021, 37(6), 898-901.
[http://dx.doi.org/10.1007/s12264-021-00691-y]
[45]
Wolfe, M. γ-secretase inhibition and modulation for Alzheimer’s disease. Curr. Alzheimer Res., 2008, 5(2), 158-164.
[http://dx.doi.org/10.2174/156720508783954767] [PMID: 18393800]
[46]
Das, C.; Berezovska, O.; Diehl, T.S.; Genet, C.; Buldyrev, I.; Tsai, J.Y.; Hyman, B.T.; Wolfe, M.S. Designed helical peptides inhibit an intramembrane protease. J. Am. Chem. Soc., 2003, 125(39), 11794-11795.
[http://dx.doi.org/10.1021/ja037131v] [PMID: 14505382]
[47]
Lai, M.T.; Chen, E.; Crouthamel, M.C.; DiMuzio-Mower, J.; Xu, M.; Huang, Q.; Price, E.; Register, R.B.; Shi, X.P.; Donoviel, D.B.; Bernstein, A.; Hazuda, D.; Gardell, S.J.; Li, Y.M. Presenilin-1 and presenilin-2 exhibit distinct yet overlapping γ-secretase activities. J. Biol. Chem., 2003, 278(25), 22475-22481.
[http://dx.doi.org/10.1074/jbc.M300974200] [PMID: 12684521]
[48]
Lanz, T.A.; Karmilowicz, M.J.; Wood, K.M.; Pozdnyakov, N.; Du, P.; Piotrowski, M.A.; Brown, T.M.; Nolan, C.E.; Richter, K.E.G.; Finley, J.E.; Fei, Q.; Ebbinghaus, C.F.; Chen, Y.L.; Spracklin, D.K.; Tate, B.; Geoghegan, K.F.; Lau, L.F.; Auperin, D.D.; Schachter, J.B. Concentration-dependent modulation of amyloid-β in vivo and in vitro using the γ-secretase inhibitor, LY-450139. J. Pharmacol. Exp. Ther., 2006, 319(2), 924-933.
[http://dx.doi.org/10.1124/jpet.106.110700] [PMID: 16920992]
[49]
Lanz, T.A.; Hosley, J.D.; Adams, W.J.; Merchant, K.M. Studies of Abeta pharmacodynamics in the brain, cerebrospinal fluid, and plasma in young (plaque-free) Tg2576 mice using the γ-secretase inhibitor N2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide (LY-411575). J. Pharmacol. Exp. Ther., 2004, 309(1), 49-55.
[http://dx.doi.org/10.1124/jpet.103.060715] [PMID: 14718585]
[50]
Nie, P.; Kalidindi, T.; Nagle, V.L.; Wu, X.; Li, T.; Liao, G.P.; Frost, G.; Henry, K.E.; Punzalan, B.; Carter, L.M.; Lewis, J.S.; Pillarsetty, N.V.K.; Li, Y.M. Imaging of cancer γ-secretase activity using an inhibitor-based PET probe. Clin. Cancer Res., 2021, 27(22), 6145-6155.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0940] [PMID: 34475100]
[51]
Luo, J.E.; Li, Y.M. Turning the tide on Alzheimer’s disease: Modulation of γ-secretase. Cell Biosci., 2022, 12(1), 2.
[http://dx.doi.org/10.1186/s13578-021-00738-7] [PMID: 34983641]
[52]
Walker, D.; Lue, L.F.; Paul, G.; Patel, A.; Sabbagh, M.N. Receptor for advanced glycation endproduct modulators: A new therapeutic target in Alzheimer’s disease. Expert Opin. Investig. Drugs, 2015, 24(3), 393-399.
[http://dx.doi.org/10.1517/13543784.2015.1001490] [PMID: 25586103]
[53]
Esler, W.P.; Kimberly, W.T.; Ostaszewski, B.L.; Diehl, T.S.; Moore, C.L.; Tsai, J.Y.; Rahmati, T.; Xia, W.; Selkoe, D.J.; Wolfe, M.S. Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nat. Cell Biol., 2000, 2(7), 428-434.
[http://dx.doi.org/10.1038/35017062] [PMID: 10878808]
[54]
Kornilova, A.Y.; Bihel, F.; Das, C.; Wolfe, M.S. The initial substrate-binding site of γ-secretase is located on presenilin near the active site. Proc. Natl. Acad. Sci., 2005, 102(9), 3230-3235.
[http://dx.doi.org/10.1073/pnas.0407640102] [PMID: 15722417]
[55]
Doody, R.S.; Raman, R.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; He, F.; Sun, X.; Thomas, R.G.; Aisen, P.S.; Siemers, E.; Sethuraman, G.; Mohs, R. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N. Engl. J. Med., 2013, 369(4), 341-350.
[http://dx.doi.org/10.1056/NEJMoa1210951] [PMID: 23883379]
[56]
Mitani, Y.; Yarimizu, J.; Saita, K.; Uchino, H.; Akashiba, H.; Shitaka, Y.; Ni, K.; Matsuoka, N. Differential effects between γ-secretase inhibitors and modulators on cognitive function in amyloid precursor protein-transgenic and nontransgenic mice. J. Neurosci., 2012, 32(6), 2037-2050.
[http://dx.doi.org/10.1523/JNEUROSCI.4264-11.2012] [PMID: 22323718]
[57]
Coric, V.; van Dyck, C.H.; Salloway, S.; Andreasen, N.; Brody, M.; Richter, R.W.; Soininen, H.; Thein, S.; Shiovitz, T.; Pilcher, G.; Colby, S.; Rollin, L.; Dockens, R.; Pachai, C.; Portelius, E.; Andreasson, U.; Blennow, K.; Soares, H.; Albright, C.; Feldman, H.H.; Berman, R.M. Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch. Neurol., 2012, 69(11), 1430-1440.
[http://dx.doi.org/10.1001/archneurol.2012.2194] [PMID: 22892585]
[58]
Siemers, E.R.; Quinn, J.F.; Kaye, J.; Farlow, M.R.; Porsteinsson, A.; Tariot, P.; Zoulnouni, P.; Galvin, J.E.; Holtzman, D.M.; Knopman, D.S.; Satterwhite, J.; Gonzales, C.; Dean, R.A.; May, P.C. Effects of a -secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology, 2006, 66(4), 602-604.
[http://dx.doi.org/10.1212/01.WNL.0000198762.41312.E1] [PMID: 16505324]
[59]
Trushina, E.; Nemutlu, E.; Zhang, S.; Christensen, T.; Camp, J.; Mesa, J.; Siddiqui, A.; Tamura, Y.; Sesaki, H.; Wengenack, T.M.; Dzeja, P.P.; Poduslo, J.F. Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer’s disease. PLoS One, 2012, 7(2), e32737.
[http://dx.doi.org/10.1371/journal.pone.0032737] [PMID: 22393443]
[60]
Crump, C.J.; Castro, S.V.; Wang, F.; Pozdnyakov, N.; Ballard, T.E.; Sisodia, S.S.; Bales, K.R.; Johnson, D.S.; Li, Y.M. BMS-708,163 targets presenilin and lacks notch-sparing activity. Biochemistry, 2012, 51(37), 7209-7211.
[http://dx.doi.org/10.1021/bi301137h] [PMID: 22931393]
[61]
Gillman, K.W.; Starrett, J.E., Jr; Parker, M.F.; Xie, K.; Bronson, J.J.; Marcin, L.R.; McElhone, K.E.; Bergstrom, C.P.; Mate, R.A.; Williams, R.; Meredith, J.E., Jr; Burton, C.R.; Barten, D.M.; Toyn, J.H.; Roberts, S.B.; Lentz, K.A.; Houston, J.G.; Zaczek, R.; Albright, C.F.; Decicco, C.P.; Macor, J.E.; Olson, R.E. Discovery and evaluation of BMS-708163, a potent, selective and orally bioavailable γ-secretase inhibitor. ACS Med. Chem. Lett., 2010, 1(3), 120-124.
[http://dx.doi.org/10.1021/ml1000239] [PMID: 24900185]
[62]
Zhou, R.; Yang, G.; Guo, X.; Zhou, Q.; Lei, J.; Shi, Y. Recognition of the amyloid precursor protein by human γ-secretase. Science, 2019, 363(6428), eaaw0930.
[http://dx.doi.org/10.1126/science.aaw0930] [PMID: 30630874]
[63]
Karran, E.; Hardy, J. A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann. Neurol., 2014, 76(2), 185-205.
[http://dx.doi.org/10.1002/ana.24188] [PMID: 24853080]
[64]
Chau, D.M.; Crump, C.J.; Villa, J.C.; Scheinberg, D.A.; Li, Y.M. Familial Alzheimer disease presenilin-1 mutations alter the active site conformation of γ-secretase. J. Biol. Chem., 2012, 287(21), 17288-17296.
[http://dx.doi.org/10.1074/jbc.M111.300483] [PMID: 22461631]
[65]
Aguayo-Ortiz, R.; Guzmán-Ocampo, D.C.; Dominguez, L. Toward the characterization of DAPT interactions with γ-secretase. ChemMedChem, 2019, 14(10), 1005-1010.
[http://dx.doi.org/10.1002/cmdc.201900106] [PMID: 30925201]
[66]
Bai, XC; Rajendra, E; Yang, G; Shi, Y; Scheres, SH Sampling the conformational space of the catalytic subunit of human γ-secretase. Elife, 2015, 4, e11182.
[http://dx.doi.org/10.7554/eLife.11182]
[67]
Lee, J.Y.; Feng, Z.; Xie, X.Q.; Bahar, I. Allosteric modulation of intact γ-secretase structural dynamics. Biophys. J., 2017, 113(12), 2634-2649.
[http://dx.doi.org/10.1016/j.bpj.2017.10.012] [PMID: 29262358]
[68]
Gertsik, N.; am Ende, C.W.; Geoghegan, K.F.; Nguyen, C.; Mukherjee, P.; Mente, S.; Seneviratne, U.; Johnson, D.S.; Li, Y.M. Mapping the binding site of BMS-708163 on γ-secretase with cleavable photoprobes. Cell Chem. Biol., 2017, 24(1), 3-8.
[http://dx.doi.org/10.1016/j.chembiol.2016.12.006] [PMID: 28065657]
[69]
Postila, P.A.; Vattulainen, I.; Róg, T. Selective effect of cell membrane on synaptic neurotransmission. Sci. Rep., 2016, 6(1), 19345.
[http://dx.doi.org/10.1038/srep19345] [PMID: 26782980]
[70]
Glaaser, I.W.; Mathiharan, Y.K.; Zhao, Y.; Skiniotis, G.; Slesinger, P.A. CRYO-EM structures of the GIRK2 channel reveal mechanisms for lipid modulation. Biophys. J., 2020, 118(3), 497a-498a.
[http://dx.doi.org/10.1016/j.bpj.2019.11.2749]
[71]
Borgegard, T.; Juréus, A.; Olsson, F.; Rosqvist, S.; Sabirsh, A.; Rotticci, D.; Paulsen, K.; Klintenberg, R.; Yan, H.; Waldman, M.; Stromberg, K.; Nord, J.; Johansson, J.; Regner, A.; Parpal, S.; Malinowsky, D.; Radesater, A.C.; Li, T.; Singh, R.; Eriksson, H.; Lundkvist, J. First and second generation γ-secretase modulators (GSMs) modulate amyloid-β (Aβ) peptide production through different mechanisms. J. Biol. Chem., 2012, 287(15), 11810-11819.
[http://dx.doi.org/10.1074/jbc.M111.305227] [PMID: 22334705]
[72]
Mathiharan, Y.K.; Glaaser, I.W.; Zhao, Y.; Robertson, M.J.; Skiniotis, G.; Slesinger, P.A. Structural insights into GIRK2 channel modulation by cholesterol and PIP2. Cell Rep., 2021, 36(8), 109619.
[http://dx.doi.org/10.1016/j.celrep.2021.109619] [PMID: 34433062]
[73]
Nakano-Ito, K.; Fujikawa, Y.; Hihara, T.; Shinjo, H.; Kotani, S.; Suganuma, A.; Aoki, T.; Tsukidate, K. E2012-induced cataract and its predictive biomarkers. Toxicol. Sci., 2014, 137(1), 249-258.
[http://dx.doi.org/10.1093/toxsci/kft224] [PMID: 24085193]
[74]
Weggen, S.; Eriksen, J.L.; Das, P.; Sagi, S.A.; Wang, R.; Pietrzik, C.U.; Findlay, K.A.; Smith, T.E.; Murphy, M.P.; Bulter, T.; Kang, D.E.; Marquez-Sterling, N.; Golde, T.E.; Koo, E.H. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature, 2001, 414(6860), 212-216.
[http://dx.doi.org/10.1038/35102591] [PMID: 11700559]
[75]
Green, R.C.; Schneider, L.S.; Amato, D.A.; Beelen, A.P.; Wilcock, G.; Swabb, E.A.; Zavitz, K.H. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: A randomized controlled trial. JAMA, 2009, 302(23), 2557-2564.
[http://dx.doi.org/10.1001/jama.2009.1866] [PMID: 20009055]
[76]
Lei, X.; Yu, J.; Niu, Q.; Liu, J.; Fraering, P.C.; Wu, F. The FDA-approved natural product dihydroergocristine reduces the production of the Alzheimer’s disease amyloid-β peptides. Sci. Rep., 2015, 5(1), 16541.
[http://dx.doi.org/10.1038/srep16541] [PMID: 26567970]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy