Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Computational Analysis of Gastric Canceromics Data to Identify Putative Biomarkers

Author(s): Sagarika Saha and Renu Vyas*

Volume 24, Issue 2, 2024

Published on: 09 October, 2023

Page: [128 - 156] Pages: 29

DOI: 10.2174/0115680266259310230924190213

Price: $65

Abstract

Background: Gastric cancer develops as a malignant tumor in the mucosa of the stomach, and spreads through further layers. Early-stage diagnosis of gastric cancer is highly challenging because the patients either exhibit symptoms similar to stomach infections or show no signs at all. Biomarkers are active players in the cancer process by acting as indications of aberrant alterations due to malignancy.

Objective: Though there have been significant advancements in the biomarkers and therapeutic targets, there are still insufficient data to fully eradicate the disease in its early phases. Therefore, it is crucial to identify particular biomarkers for detecting and treating stomach cancer. This review aims to provide a thorough overview of data analysis in gastric cancer.

Methods: Text mining, network analysis, machine learning (ML), deep learning (DL), and structural bioinformatics approaches have been employed in this study.

Results: We have built a huge interaction network in the current study to forecast new biomarkers for gastric cancer. The four putatively unique and potential biomarker genes have been identified via a large association network in this study.

Conclusion: The molecular basis of the illness is well understood by computational approaches, which also provide biomarkers for targeted cancer therapy. These putative biomarkers may be useful in the early detection of disease. This study also shows that in H. pylori infection in early-stage gastric cancer, the top 10 hub genes constitute an essential component of the epithelial cell signaling pathways. These genes can further contribute to the future development of effective biomarkers.

Graphical Abstract

[2]
Maconi, G.; Manes, G.; Porro, G.B. Role of symptoms in diagnosis and outcome of gastric cancer. World J. Gastroenterol., 2008, 14(8), 1149-1155.
[http://dx.doi.org/10.3748/wjg.14.1149] [PMID: 18300338]
[3]
Hunt, R.; Quigley, E.; Abbas, Z.; Eliakim, A.; Emmanuel, A.; Goh, K.L.; Guarner, F.; Katelaris, P.; Smout, A.; Umar, M.; Whorwell, P.; Johanson, J.; Saenz, R.; Besançon, L.; Ndjeuda, E.; Horn, J.; Hungin, P.; Jones, R.; Krabshuis, J.; LeMair, A. Coping with common gastrointestinal symptoms in the community: A global perspective on heartburn, constipation, bloating, and abdominal pain/discomfort May 2013. J. Clin. Gastroenterol., 2014, 48(7), 567-578.
[http://dx.doi.org/10.1097/MCG.0000000000000141] [PMID: 25000344]
[4]
Humphrys, E.; Walter, F.M.; Rubin, G.; Emery, J.D.; Johnson, M.; Richards, A.; Fitzgerald, R.C.; Viswanath, Y.K.S.; Burt, J. Patient symptom experience prior to a diagnosis of oesophageal or gastric cancer: A multi-methods study. BJGP Open, 2020, 4(1), bjgpopen20X101001.
[http://dx.doi.org/10.3399/bjgpopen20X101001] [PMID: 31911419]
[5]
Graham, D.Y. History of Helicobacter pylori, duodenal ulcer, gastric ulcer and gastric cancer. World J. Gastroenterol., 2014, 20(18), 5191-5204.
[http://dx.doi.org/10.3748/wjg.v20.i18.5191] [PMID: 24833849]
[6]
Black, C.J.; Drossman, D.A.; Talley, N.J.; Ruddy, J.; Ford, A.C. Functional gastrointestinal disorders: Advances in understanding and management. Lancet, 2020, 396(10263), 1664-1674.
[http://dx.doi.org/10.1016/S0140-6736(20)32115-2] [PMID: 33049221]
[7]
Daniel, D.A.P.; Thangavel, K. Breathomics for gastric cancer classification using back-propagation neural network. J. Med. Signals Sens., 2016, 6(3), 172-182.
[http://dx.doi.org/10.4103/2228-7477.186879] [PMID: 27563574]
[8]
Rawla, P.; Barsouk, A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Prz Gastroenterol., 2018, 14(1), 26-38.
[http://dx.doi.org/10.5114/pg.2018.80001]
[9]
Tan, M.C.; Balakrishnan, M.; Graham, D.Y. Gastric cancer worldwide except Japan. In: Gastric Cancer: With Special Focus on Studies from Japan; Shiotani, A., Ed.; Springer: Singapore, 2019; pp. 17-28.
[http://dx.doi.org/10.1007/978-981-13-1120-8_2]
[10]
Thrift, A.P.; El-Serag, H.B. Burden of gastric cancer. Clin. Gastroenterol. Hepatol., 2020, 18(3), 534-542.
[http://dx.doi.org/10.1016/j.cgh.2019.07.045] [PMID: 31362118]
[11]
Forman, D.; Burley, V.J. Gastric cancer: Global pattern of the disease and an overview of environmental risk factors. Best Pract. Res. Clin. Gastroenterol., 2006, 20(4), 633-649.
[http://dx.doi.org/10.1016/j.bpg.2006.04.008] [PMID: 16997150]
[12]
Strong, V.E. Progress in gastric cancer. Updates Surg., 2018, 70(2), 157-159.
[http://dx.doi.org/10.1007/s13304-018-0543-3] [PMID: 29869781]
[13]
Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J., 2021, 134(7), 783-791.
[http://dx.doi.org/10.1097/CM9.0000000000001474] [PMID: 33734139]
[14]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[15]
Zhu, H.; Wang, Z.; Deng, B.; Mo, M.; Wang, H.; Chen, K.; Wu, H.; Ye, T.; Wang, B.; Ai, D.; Hao, S.; Tseng, I.; Zhao, K. Epidemiological landscape of esophageal cancer in Asia: Results from GLOBOCAN 2020. Thorac. Cancer, 2023, 14(11), 992-1003.
[http://dx.doi.org/10.1111/1759-7714.14835] [PMID: 36918204]
[16]
Mathew, A.; Gangadharan, P.; Varghese, C.; Nair, M.K. Diet and stomach cancer. Eur. J. Cancer Prev., 2000, 9(2), 89-98.
[http://dx.doi.org/10.1097/00008469-200004000-00004] [PMID: 10830575]
[17]
Sinha, R.; Anderson, D.E.; McDonald, S.S.; Greenwald, P. Cancer risk and diet in India. J. Postgrad. Med., 2003, 49(3), 222-228.
[PMID: 14597785]
[18]
Gajalakshmi, C.K.; Shanta, V. Diet and risk of stomach cancer: A case-control study in Madras, India. J. Cancer Prev., 1996, 2(3), 97-109.
[http://dx.doi.org/10.3727/108399896792195455]
[19]
Jayalekshmi, P.A.; Hassani, S.; Nandakumar, A.; Koriyama, C.; Sebastian, P.; Akiba, S. Gastric cancer risk in relation to tobacco use and alcohol drinking in Kerala, India - Karunagappally cohort study. World J. Gastroenterol., 2015, 21(44), 12676-12685.
[http://dx.doi.org/10.3748/wjg.v21.i44.12676] [PMID: 26640345]
[20]
Hebert, J.R.; Gupta, P.C.; Bhonsle, R.B.; Mehta, H.; Zheng, W.; Sanderson, M.; Teas, J. Dietary exposures and oral precancerous lesions in Srikakulam District, Andhra Pradesh, India. Public Health Nutr., 2002, 5(2), 303-312.
[http://dx.doi.org/10.1079/PHN2002249] [PMID: 12020382]
[21]
Sharma, A.; Radhakrishnan, V. Gastric cancer in India. Indian J. Med. Paediatr. Oncol., 2011, 32(1), 12-16.
[http://dx.doi.org/10.4103/0971-5851.81884] [PMID: 21731210]
[22]
Ibrahim, M.; Gilbert, K. Management of gastric cancer in Indian population. Transl. Gastroenterol. Hepatol., 2017, 2(8), 64.
[http://dx.doi.org/10.21037/tgh.2017.07.02] [PMID: 28905005]
[23]
Bhayal, A.C.; Krishnaveni, D.; Rao, K.P.R.; Kumar, A.R.; Jyothy, A.; Nallari, P.; Venkateshwari, A. Significant association of interleukin4 intron 3 VNTR Polymorphism with susceptibility to gastric cancer in a south indian population from Telangana. PLoS One, 2015, 10(9), e0138442.
[http://dx.doi.org/10.1371/journal.pone.0138442] [PMID: 26383107]
[24]
Bhaskar, S.; Kumari, P.; Sweta; Sinha, D.K. Incidence of malignancy in gastric/antral perforation. Int. Surg. J., 2019, 6(9), 3347-3352.
[http://dx.doi.org/10.18203/2349-2902.isj20194077]
[25]
Leung, W.K.; Wu, M.; Kakugawa, Y.; Kim, J.J.; Yeoh, K.; Goh, K.L.; Wu, K.; Wu, D.; Sollano, J.; Kachintorn, U.; Gotoda, T.; Lin, J.; You, W.; Ng, E.K.W.; Sung, J.J.Y. Screening for gastric cancer in Asia: current evidence and practice. Lancet Oncol., 2008, 9(3), 279-287.
[http://dx.doi.org/10.1016/S1470-2045(08)70072-X] [PMID: 18308253]
[26]
Scartozzi, M.; Galizia, E.; Freddari, F.; Berardi, R.; Cellerino, R.; Cascinu, S. Molecular biology of sporadic gastric cancer: Prognostic indicators and novel therapeutic approaches. Cancer Treat. Rev., 2004, 30(5), 451-459.
[http://dx.doi.org/10.1016/j.ctrv.2004.01.001] [PMID: 15245777]
[27]
Oliveira, C.; Seruca, R.; Carneiro, F. Hereditary gastric cancer. Best Pract. Res. Clin. Gastroenterol., 2009, 23(2), 147-157.
[http://dx.doi.org/10.1016/j.bpg.2009.02.003] [PMID: 19414142]
[28]
Dicken, B.J.; Bigam, D.L.; Cass, C.; Mackey, J.R.; Joy, A.A.; Hamilton, S.M. Gastric adenocarcinoma. Ann. Surg., 2005, 241(1), 27-39.
[http://dx.doi.org/10.1097/01.sla.0000149300.28588.23] [PMID: 15621988]
[29]
Rustgi, S.D.; McKinley, M.; McBay, B.; Zylberberg, H.M.; Gomez, S.L.; Hur, C.; Kastrinos, F.; Gupta, S.; Kim, M.K.; Itzkowitz, S.H.; Shah, S.C. Epidemiology of gastric malignancies 2000–2018 according to histology: A population-based analysis of incidence and temporal trends. Clin. Gastroenterol. Hepatol., 2023, S1542-3565(23)00104-0.
[http://dx.doi.org/10.1016/j.cgh.2023.01.037] [PMID: 36792000]
[30]
Shang, J.; Peña, A.S. Multidisciplinary approach to understand the pathogenesis of gastric cancer. World J. Gastroenterol., 2005, 11(27), 4131-4139.
[http://dx.doi.org/10.3748/wjg.v11.i27.4131] [PMID: 16015679]
[31]
Guilford, P.; Humar, B.; Blair, V. Hereditary diffuse gastric cancer: Translation of CDH1 germline mutations into clinical practice. Gastric Cancer, 2010, 13(1), 1-10.
[http://dx.doi.org/10.1007/s10120-009-0531-x] [PMID: 20373070]
[32]
van der Post, R.S.; Vogelaar, I.P.; Manders, P.; van der Kolk, L.E.; Cats, A.; van Hest, L.P.; Sijmons, R.; Aalfs, C.M.; Ausems, M.G.E.M.; Gómez García, E.B.; Wagner, A.; Hes, F.J.; Arts, N.; Mensenkamp, A.R.; van Krieken, J.H.; Hoogerbrugge, N.; Ligtenberg, M.J.L. Accuracy of hereditary diffuse gastric cancer testing criteria and outcomes in patients with a germline mutation in CDH1. Gastroenterology, 2015, 149(4), 897-906.e19.
[http://dx.doi.org/10.1053/j.gastro.2015.06.003] [PMID: 26072394]
[33]
Matsukuma, K.E.; Mullins, F.M.; Dietz, L.; Zehnder, J.L.; Ford, J.M.; Chun, N.M.; Schrijver, I. Hereditary diffuse gastric cancer due to a previously undescribed CDH1 splice site mutation. Hum. Pathol., 2010, 41(8), 1200-1203.
[http://dx.doi.org/10.1016/j.humpath.2010.01.022] [PMID: 20624523]
[34]
Frontiers | CDH1 Gene and Hereditary Diffuse Gastric Cancer Syndrome: Molecular and Histological Alterations and Implications for Diagnosis And Treatment., https://www.frontiersin.org/articles/10.3389/fphar.2018.01421/full
[35]
Funakoshi, T.; Miyamoto, S.; Kakiuchi, N.; Nikaido, M.; Setoyama, T.; Yokoyama, A.; Horimatsu, T.; Yamada, A.; Torishima, M.; Kosugi, S.; Yamada, H.; Sugimura, H.; Haga, H.; Sakai, Y.; Ogawa, S.; Seno, H.; Muto, M.; Chiba, T. Genetic analysis of a case of Helicobacter pylori-uninfected intramucosal gastric cancer in a family with hereditary diffuse gastric cancer. Gastric Cancer, 2019, 22(4), 892-898.
[http://dx.doi.org/10.1007/s10120-018-00912-w] [PMID: 30542785]
[36]
Salama, N.R.; Hartung, M.L.; Müller, A. Life in the human stomach: Persistence strategies of the bacterial pathogen Helicobacter pylori. Nat. Rev. Microbiol., 2013, 11(6), 385-399.
[http://dx.doi.org/10.1038/nrmicro3016] [PMID: 23652324]
[37]
Andersen, L.P. Colonization and infection by Helicobacter pylori in humans. Helicobacter, 2007, 12(S2), 12-15.
[http://dx.doi.org/10.1111/j.1523-5378.2007.00574.x] [PMID: 17991171]
[38]
Shibagaki, K.; Itawaki, A.; Miyaoka, Y.; Kishimoto, K.; Takahashi, Y.; Kotani, S.; Mishiro, T.; Oshima, N.; Kawashima, K.; Ishimura, N.; Onuma, H.; Nagasaki, M.; Nagase, M.; Araki, A.; Kadota, K.; Kushima, R.; Ishihara, S. Intestinal-type gastric dysplasia in Helicobacter pylori-naïve patients. Virchows Arch., 2022, 480(4), 783-792.
[http://dx.doi.org/10.1007/s00428-021-03237-9] [PMID: 34787713]
[39]
Tüzün, Y.; Keskin, S.; Kote, E. The role of Helicobacter pylori infection in skin diseases: Facts and controversies. Clin. Dermatol., 2010, 28(5), 478-482.
[http://dx.doi.org/10.1016/j.clindermatol.2010.03.002] [PMID: 20797505]
[40]
Kim, S.S.; Ruiz, V.E.; Carroll, J.D.; Moss, S.F. Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma. Cancer Lett., 2011, 305(2), 228-238.
[http://dx.doi.org/10.1016/j.canlet.2010.07.014] [PMID: 20692762]
[41]
Kuboki, Y.; Yamashita, S.; Niwa, T.; Ushijima, T.; Nagatsuma, A.; Kuwata, T.; Yoshino, T.; Doi, T.; Ochiai, A.; Ohtsu, A. Comprehensive analyses using next-generation sequencing and immunohistochemistry enable precise treatment in advanced gastric cancer. Ann. Oncol., 2016, 27(1), 127-133.
[http://dx.doi.org/10.1093/annonc/mdv508] [PMID: 26489445]
[42]
Verma, R.; Sharma, P.C. Next generation sequencing-based emerging trends in molecular biology of gastric cancer. Am. J. Cancer Res., 2018, 8(2), 207-225.
[PMID: 29511593]
[43]
Yamamoto, H.; Watanabe, Y.; Maehata, T.; Morita, R.; Yoshida, Y.; Oikawa, R.; Ishigooka, S.; Ozawa, S.; Matsuo, Y.; Hosoya, K.; Yamashita, M.; Taniguchi, H.; Nosho, K.; Suzuki, H.; Yasuda, H.; Shinomura, Y.; Itoh, F. An updated review of gastric cancer in the next-generation sequencing era: Insights from bench to bedside and vice versa. World J. Gastroenterol., 2014, 20(14), 3927-3937.
[http://dx.doi.org/10.3748/wjg.v20.i14.3927] [PMID: 24744582]
[44]
Sadikovic, B.; Al-Romaih, K.; Squire, J.; Zielenska, M. Cause and consequences of genetic and epigenetic alterations in human cancer. Curr. Genomics, 2008, 9(6), 394-408.
[http://dx.doi.org/10.2174/138920208785699580] [PMID: 19506729]
[45]
Huang, Y.W.; Huang, T.H.M.; Wang, L.S. Profiling DNA methylomes from microarray to genome-scale sequencing. Technol. Cancer Res. Treat., 2010, 9(2), 139-147.
[http://dx.doi.org/10.1177/153303461000900203] [PMID: 20218736]
[46]
Olova, N.; Krueger, F.; Andrews, S.; Oxley, D.; Berrens, R.V.; Branco, M.R.; Reik, W. Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data. Genome Biol., 2018, 19(1), 33.
[http://dx.doi.org/10.1186/s13059-018-1408-2] [PMID: 29544553]
[47]
Neidhart, M. DNA Methylation and Complex Human Disease; Academic Press, 2015.
[48]
Qu, Y.; Dang, S.; Hou, P. Gene methylation in gastric cancer. Clin. Chim. Acta, 2013, 424, 53-65.
[http://dx.doi.org/10.1016/j.cca.2013.05.002] [PMID: 23669186]
[49]
Gardiner-Garden, M.; Frommer, M. CpG Islands in vertebrate genomes. J. Mol. Biol., 1987, 196(2), 261-282.
[http://dx.doi.org/10.1016/0022-2836(87)90689-9] [PMID: 3656447]
[50]
Xin, Y.; O’Donnell, A.H.; Ge, Y.; Chanrion, B.; Milekic, M.; Rosoklija, G.; Stankov, A.; Arango, V.; Dwork, A.J.; Gingrich, J.A.; Haghighi, F.G. Role of CpG context and content in evolutionary signatures of brain DNA methylation. Epigenetics, 2011, 6(11), 1308-1318.
[http://dx.doi.org/10.4161/epi.6.11.17876] [PMID: 22048252]
[51]
Shi, J.; Zhang, G.; Yao, D.; Liu, W.; Wang, N.; Ji, M.; He, N.; Shi, B.; Hou, P. Prognostic significance of aberrant gene methylation in gastric cancer. Am. J. Cancer Res., 2012, 2(1), 116-129.
[PMID: 22206050]
[52]
Baba, H.; Shigaki, H.; Baba, Y.; Harada, K.; Yoshida, N.; Watanabe, M. Epigenetic changes in gastrointestinal cancers. J. Cancer Metastasis Treat., 2015, 1(3), 113-122.
[http://dx.doi.org/10.4103/2394-4722.166991]
[53]
Soumyakrishnan, S.; Nagesh, R.; Peela, S.; Sreepriya, M. Epigenetic biomarkers for the detection of gastrointestinal cancers. In: Novel therapeutic approaches for gastrointestinal malignancies. Diagnostics and Therapeutic Advances in GI Malignancies; Nagaraju, G.P.; Peela, S., Eds.; Springer: Singapore, 2020.
[http://dx.doi.org/10.1007/978-981-15-5471-1_5]
[54]
Manne, A.; Woods, E.; Tsung, A.; Mittra, A. Biliary tract cancers: Treatment updates and future directions in the era of precision medicine and immuno-oncology. Front. Oncol., 2021, 11, 768009.
[http://dx.doi.org/10.3389/fonc.2021.768009] [PMID: 34868996]
[55]
Baba, Y.; Ishimoto, T.; Kurashige, J.; Iwatsuki, M.; Sakamoto, Y.; Yoshida, N.; Watanabe, M.; Baba, H. Epigenetic field cancerization in gastrointestinal cancers. Cancer Lett., 2016, 375(2), 360-366.
[http://dx.doi.org/10.1016/j.canlet.2016.03.009] [PMID: 26971491]
[56]
Tahara, T.; Arisawa, T. DNA methylation as a molecular biomarker in gastric cancer. Epigenomics, 2015, 7(3), 475-486.
[http://dx.doi.org/10.2217/epi.15.4] [PMID: 26077432]
[57]
Joo, J.K.; Kim, S.H.; Kim, H.G.; Kim, D.Y.; Ryu, S.Y.; Lee, K.H.; Lee, J.H. CpG methylation of transcription factor 4 in gastric carcinoma. Ann. Surg. Oncol., 2010, 17(12), 3344-3353.
[http://dx.doi.org/10.1245/s10434-010-1131-z] [PMID: 20585880]
[58]
Hu, X.T.; He, C. Recent progress in the study of methylated tumor suppressor genes in gastric cancer. Chin. J. Cancer, 2013, 32(1), 31-41.
[http://dx.doi.org/10.5732/cjc.011.10175] [PMID: 22059906]
[59]
Yates, D.R.; Rehman, I.; Abbod, M.F.; Meuth, M.; Cross, S.S.; Linkens, D.A.; Hamdy, F.C.; Catto, J.W.F. Promoter hypermethylation identifies progression risk in bladder cancer. Clin. Cancer Res., 2007, 13(7), 2046-2053.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2476] [PMID: 17404085]
[60]
Yoshida, S.; Yamashita, S.; Niwa, T.; Mori, A.; Ito, S.; Ichinose, M.; Ushijima, T. Epigenetic inactivation of FAT4 contributes to gastric field cancerization. Gastric Cancer, 2017, 20(1), 136-145.
[http://dx.doi.org/10.1007/s10120-016-0593-5] [PMID: 26792292]
[61]
Ulazzi, L.; Sabbioni, S.; Miotto, E.; Veronese, A.; Angusti, A.; Gafà, R.; Manfredini, S.; Farinati, F.; Sasaki, T.; Lanza, G.; Negrini, M. Nidogen 1 and 2 gene promoters are aberrantly methylated in human gastrointestinal cancer. Mol. Cancer, 2007, 6(1), 17.
[http://dx.doi.org/10.1186/1476-4598-6-17] [PMID: 17328794]
[62]
Mayne, S.T.; Navarro, S.A. Diet, obesity and reflux in the etiology of adenocarcinomas of the esophagus and gastric cardia in humans. J. Nutr., 2002, 132(S11), 3467S-3470S.
[http://dx.doi.org/10.1093/jn/132.11.3467S] [PMID: 12421872]
[63]
Kim, S.R.; Kim, K.; Lee, S.A.; Kwon, S.O.; Lee, J-K.; Keum, N.; Park, S.M. Effect of red, processed, and white meat consumption on the risk of gastric cancer: An overall and dose–response meta-analysis. Nutrients, 2019, 11(4), 826.
[http://dx.doi.org/10.3390/nu11040826] [PMID: 30979076]
[64]
Lu, Y.; Chen, J.; Ding, Y.; Jin, G.; Wu, J.; Huang, H.; Deng, B.; Hua, Z.; Zhou, Y.; Shu, Y.; Liu, P.; Hu, Z.; Shen, J.; Xu, Y.; Shen, H. Genetic variation of PSCA gene is associated with the risk of both diffuse- and intestinal-type gastric cancer in a Chinese population. Int. J. Cancer, 2010, 127(9), 2183-2189.
[http://dx.doi.org/10.1002/ijc.25228] [PMID: 20131315]
[65]
Nagata, M.; Muto, S.; Horie, S. Molecular biomarkers in bladder cancer: Novel potential indicators of prognosis and treatment outcomes. Dis. Markers, 2016, 2016, 1-5.
[http://dx.doi.org/10.1155/2016/8205836] [PMID: 26924873]
[66]
Verma, M.; Manne, U. Genetic and epigenetic biomarkers in cancer diagnosis and identifying high risk populations. Crit. Rev. Oncol. Hematol., 2006, 60(1), 9-18.
[http://dx.doi.org/10.1016/j.critrevonc.2006.04.002] [PMID: 16829121]
[67]
Reyimu, A.; Chen, Y.; Song, X.; Zhou, W.; Dai, J.; Jiang, F. Identification of latent biomarkers in connection with progression and prognosis in oral cancer by comprehensive bioinformatics analysis. World J. Surg. Oncol., 2021, 19(1), 240.
[http://dx.doi.org/10.1186/s12957-021-02360-w] [PMID: 34384424]
[68]
Veera, B.P.; Rao, R.N.N. Biomarkers as the promising tools for early detection of gastrointestinal cancer. In: Recent Advancements in Biomarkers and Early Detection of Gastrointestinal Cancers; Springer, 2020; pp. 15-25.
[http://dx.doi.org/10.1007/978-981-15-4431-6_2]
[69]
Matsuoka, T.; Yashiro, M. Biomarkers of gastric cancer: Current topics and future perspective. World J. Gastroenterol., 2018, 24(26), 2818-2832.
[http://dx.doi.org/10.3748/wjg.v24.i26.2818] [PMID: 30018477]
[70]
Liu, L.; Pang, H.; He, Q.; Pan, B.; Sun, X.; Shan, J.; Wu, L.; Wu, K.; Yao, X.; Guo, Y. A novel strategy to identify candidate diagnostic and prognostic biomarkers for gastric cancer. Cancer Cell Int., 2021, 21(1), 335.
[http://dx.doi.org/10.1186/s12935-021-02007-6] [PMID: 34215253]
[71]
Zhou, C.; Zhong, X.; Song, Y.; Shi, J.; Wu, Z.; Guo, Z.; Sun, J.; Wang, Z. Prognostic biomarkers for gastric cancer: An umbrella review of the evidence. Front. Oncol., 2019, 9, 1321.
[http://dx.doi.org/10.3389/fonc.2019.01321] [PMID: 31850212]
[72]
Ye, D.; Xu, G.; Ma, W.; Li, Y.; Luo, W.; Xiao, Y.; Liu, Y.; Zhang, Z. Significant function and research progress of biomarkers in gastric cancer (Review). Oncol. Lett., 2019, 19(1), 17-29.
[http://dx.doi.org/10.3892/ol.2019.11078] [PMID: 31897111]
[73]
Herrera-Pariente, C.; Montori, S.; Llach, J.; Bofill, A.; Albeniz, E.; Moreira, L. Biomarkers for gastric cancer screening and early diagnosis. Biomedicines, 2021, 9(10), 1448.
[http://dx.doi.org/10.3390/biomedicines9101448] [PMID: 34680565]
[74]
Giordano, T.J. The cancer genome atlas research network: A sight to behold. Endocr. Pathol., 2014, 25(4), 362-365.
[http://dx.doi.org/10.1007/s12022-014-9345-4] [PMID: 25367656]
[75]
Tang, W.; Fu, K.; Sun, H.; Rong, D.; Wang, H.; Cao, H. CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Mol. Cancer, 2018, 17(1), 137.
[http://dx.doi.org/10.1186/s12943-018-0888-8] [PMID: 30236115]
[76]
Liu, J.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee, A.V.; Omberg, L.; Wolf, D.M.; Shriver, C.D.; Thorsson, V.; Hu, H.; Caesar-Johnson, S.J.; Demchok, J.A.; Felau, I.; Kasapi, M.; Ferguson, M.L.; Hutter, C.M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D.I.; Kim, J.; Lawrence, M.S.; Lin, P.; Meier, S.; Noble, M.S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B.M.; Hegde, A.M.; Ju, Z.; Kanchi, R.S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu, W.; Lu, Y.; Mills, G.B.; Ng, K-S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J.N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W.K.; de Bruijn, I.; Gao, J.; Gross, B.E.; Heins, Z.J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M.G.; Ochoa, A.; Phillips, S.M.; Reznik, E.; Sanchez-Vega, F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S.O.; Sun, Y.; Taylor, B.S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J.M.; Wong, C.K.; Yau, C.; Hayes, D.N.; Parker, J.S.; Wilkerson, M.D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S.J.M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Mungall, K.; Robertson, A.G.; Sadeghi, S.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A.C.; Beroukhim, R.; Cherniack, A.D.; Cibulskis, C.; Gabriel, S.B.; Gao, G.F.; Ha, G.; Meyerson, M.; Schumacher, S.E.; Shih, J.; Kucherlapati, M.H.; Kucherlapati, R.S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M.S.; Lai, P.H.; Maglinte, D.T.; Van Den Berg, D.J.; Weisenberger, D.J.; Auman, J.T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, C.D.; Meng, S.; Mieczkowski, P.A.; Mose, L.E.; Perou, A.H.; Perou, C.M.; Roach, J.; Shi, Y.; Simons, J.V.; Skelly, T.; Soloway, M.G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P.W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C.J.; Dinh, H.; Doddapaneni, H.V.; Donehower, L.A.; Drummond, J.; Gibbs, R.A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbro, E.; Wang, L.; Wang, M.; Wheeler, D.A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E.L.; Bailey, M.; Cordes, M.G.; Ding, L.; Fronick, C.C.; Fulton, L.A.; Fulton, R.S.; Kandoth, C.; Mardis, E.R.; McLellan, M.D.; Miller, C.A.; Schmidt, H.K.; Wilson, R.K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Gastier-Foster, J.M.; Gerken, M.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A.L.; de Carvalho, A.C.; Fregnani, J.H.; Longatto-Filho, A.; Reis, R.M.; Scapulatempo-Neto, C.; Silveira, H.C.S.; Vidal, D.O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M.L.; Castro, P.D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E.R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C.P.; Malykh, A.; Barnholtz-Sloan, J.S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q.T.; Shimmel, K.; Wolinsky, Y.; Sloan, A.E.; De Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B.Y.; Hagedorn, C.H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L.A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R.J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S.M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman-Roman, S.; Sastre, X.; Stern, M-H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D.J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J.J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D.M.; Sica, G.; Van Meir, E.G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; van Kessel, K.E.; Zwarthoff, E.C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W.J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; De Rienzo, A.; Richards, W.G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A.L.; Van Bang, N.; Hanh, P.T.; Phu, B.D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P.R.; Martignetti, J.A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K.J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A.H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J.A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J-P.; Kopp, K.; Moser, C.; Nagorney, D.; O’Brien, D.; O’Neill, B.P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R.H.; Torbenson, M.; Yang, J.D.; Zhang, L.; Brimo, F.; Ajani, J.A.; Angulo Gonzalez, A.M.; Behrens, C.; Bondaruk, J.; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A.J.; Logothetis, C.; Meric-Bernstam, F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch, J.; Synott, M.; Thompson, J.; Wilmott, J.; Al-Ahmadie, H.; Chan, T.A.; Ghossein, R.; Gopalan, A.; Levine, D.A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N.V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J-W.; Hung, N.P.; Kebebew, E.; Linehan, W.M.; Metwalli, A.R.; Pacak, K.; Pinto, P.A.; Schiffman, M.; Schmidt, L.S.; Vocke, C.D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D.M.; Rintoul, R.C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de Krijger, R.; Gimenez-Roqueplo, A-P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N.A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J.A.; Liptay, M.J.; Pool, M.; Seder, C.W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K-F.; Janssen, K-P.; Slotta-Huspenina, J.; Abdel-Rahman, M.H.; Aziz, D.; Bell, S.; Cebulla, C.M.; Davis, A.; Duell, R.; Elder, J.B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N.L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W.E.; Sexton, K.C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S.L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P.R.; Chan, J.M.; Disaia, P.; Glenn, P.; Kelley, R.K.; Landen, C.N.; Phillips, J.; Prados, M.; Simko, J.; Smith-McCune, K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Herold-Mende, C.; Jungk, C.; Unterberg, A.; von Deimling, A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A.K.; Madan, R.; Rosenthal, H.G.; Adebamowo, C.; Adebamowo, S.N.; Boussioutas, A.; Beer, D.; Giordano, T.; Mes-Masson, A-M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Mora Pinero, E.M.; Quintero-Aguilo, M.; Carlotti, C.G., Jr; Dos Santos, J.S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C.S.; Godwin, E.M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K.M.; Yang, I.; Korst, R.; Rathmell, W.K.; Fantacone-Campbell, J.L.; Hooke, J.A.; Kovatich, A.J.; Shriver, C.D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Van Tine, B.; Westervelt, P.; Rubin, M.A.; Lee, J.I.; Aredes, N.D.; Mariamidze, A. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell, 2018, 173(2), 400-416.e11.
[http://dx.doi.org/10.1016/j.cell.2018.02.052] [PMID: 29625055]
[77]
Amirmahani, F.; Ebrahimi, N.; Molaei, F.; Faghihkhorasani, F.; Jamshidi Goharrizi, K.; Mirtaghi, S.M.; Borjian-Boroujeni, M.; Hamblin, M.R. Approaches for the integration of big data in translational medicine: Single-cell and computational methods. Ann. N. Y. Acad. Sci., 2021, 1493(1), 3-28.
[http://dx.doi.org/10.1111/nyas.14544] [PMID: 33410160]
[78]
Gutman, D.A.; Cobb, J.; Somanna, D.; Park, Y.; Wang, F.; Kurc, T.; Saltz, J.H.; Brat, D.J.; Cooper, L.A.D.; Kong, J. Cancer digital slide archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. J. Am. Med. Inform. Assoc., 2013, 20(6), 1091-1098.
[http://dx.doi.org/10.1136/amiajnl-2012-001469] [PMID: 23893318]
[79]
Shaikh, N.; Bapat, S.; Karthikeyan, M.; Vyas, R. A review on computational analysis of big data in breast cancer for predicting potential biomarkers. Curr. Top. Med. Chem., 2022, 22(21), 1793-1810.
[http://dx.doi.org/10.2174/1568026622666220907121942] [PMID: 36082858]
[80]
Tamborero, D.; Lopez-Bigas, N.; Gonzalez-Perez, A. Oncodrive-CIS: A method to reveal likely driver genes based on the impact of their copy number changes on expression. PLoS One, 2013, 8(2), e55489.
[http://dx.doi.org/10.1371/journal.pone.0055489] [PMID: 23408991]
[81]
Tomczak, Katarzyna; Czerwińska, Patrycja; Wiznerowicz, Maciej The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp Oncol, 2015, 19(1A), A68-A77.
[http://dx.doi.org/10.5114/wo.2014.47136]
[82]
Wang, Z.; Jensen, M.A.; Zenklusen, J.C. A practical guide to the cancer genome atlas (TCGA). Methods Mol Biol., 2016, 1418, 111-141.
[http://dx.doi.org/10.1007/978-1-4939-3578-9_6]
[83]
Hutter, C.; Zenklusen, J.C. The cancer genome atlas: Creating lasting value beyond its data. Cell, 2018, 173(2), 283-285.
[http://dx.doi.org/10.1016/j.cell.2018.03.042] [PMID: 29625045]
[84]
Zhu, Y.; Qiu, P.; Ji, Y. TCGA-Assembler: Open-source software for retrieving and processing TCGA data. Nat. Methods, 2014, 11(6), 599-600.
[http://dx.doi.org/10.1038/nmeth.2956] [PMID: 24874569]
[85]
Pruitt, K.D.; Tatusova, T.; Maglott, D.R. NCBI reference sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res., 2005, 33(S1), D501-D504.
[http://dx.doi.org/10.1093/nar/gki025]
[86]
Geer, L.Y.; Marchler-Bauer, A.; Geer, R.C.; Han, L.; He, J.; He, S.; Liu, C.; Shi, W.; Bryant, S.H. The NCBI BioSystems database. Nucleic Acids Res., 2010, 38, D492-D496.
[http://dx.doi.org/10.1093/nar/gkp858]
[87]
Sharma, S.; Ciufo, S.; Starchenko, E.; Darji, D.; Chlumsky, L.; Karsch-Mizrachi, I.; Schoch, C.L. The NCBI biocollections database. Database., 2018, 2018, bay006.
[http://dx.doi.org/10.1093/database/bay006] [PMID: 29688360]
[88]
Federhen, S. The NCBI taxonomy database. Nucleic Acids Res., 2012, 40(D1), D136-D143.
[http://dx.doi.org/10.1093/nar/gkr1178] [PMID: 22139910]
[89]
Barrett, T.; Suzek, T.O.; Troup, D.B.; Wilhite, S.E.; Ngau, W.C.; Ledoux, P.; Rudnev, D.; Lash, A.E.; Fujibuchi, W.; Edgar, R. NCBI GEO: Mining millions of expression profiles—database and tools. Nucleic Acids Res., 2005, 33, D562-D566.
[http://dx.doi.org/10.1093/nar/gki022]
[90]
Benson, D.; Boguski, M.S.; Lipman, D.J.; Ostell, J.; Ouellette, B.F. GenBank. Nucleic Acids Res., 1998, 26(1), 1-7.
[http://dx.doi.org/10.1093/nar/26.1.1] [PMID: 9399790]
[91]
Rapp, B.A.; Wheeler, D.L. Bioinformatics resources from the National Center for Biotechnology Information: An integrated foundation for discovery. J. Am. Soc. Inf. Sci. Technol., 2005, 56(5), 538-550.
[http://dx.doi.org/10.1002/asi.20142]
[92]
Johnson, Mark; Zaretskaya, Irena; Raytselis, Yan; Merezhuk, Yuri; McGinnis, Scott; Madden, Thomas L. NCBI BLAST: A better web interface. Nucleic Acids Res., 2008, 36, W5-W9.
[http://dx.doi.org/10.1093/nar/gkn201]
[93]
Zhu, Z.; Li, L.; Xu, J.; Ye, W.; Chen, B.; Zeng, J.; Huang, Z. Comprehensive analysis reveals a metabolic ten-gene signature in hepatocellular carcinoma. PeerJ, 2020, 8, e9201.
[http://dx.doi.org/10.7717/peerj.9201] [PMID: 32518728]
[94]
Mohanty, V. The Role of Non-Oncogenic Variants in Cancers: Onco-Passengers and Germline Polymorphisms., 2018,
[95]
Survival Prediction via Partial Ordering in Feature Space and Sample Space - ProQuest. Thesis (M.S.): Bilkent University, Department of Computer Engineering, 2016.
[96]
Joly, Y.; Dove, E.S.; Knoppers, B.M.; Bobrow, M.; Chalmers, D. Data sharing in the post-genomic world: The experience of the international cancer genome consortium (ICGC) data access compliance office (DACO). PLOS Comput. Biol., 2012, 8(7), e1002549.
[http://dx.doi.org/10.1371/journal.pcbi.1002549] [PMID: 22807659]
[97]
Forbes, S.; Clements, J.; Dawson, E.; Bamford, S.; Webb, T.; Dogan, A.; Flanagan, A.; Teague, J.; Wooster, R.; Futreal, P.A.; Stratton, M.R. Cosmic 2005. Br. J. Cancer, 2006, 94(2), 318-322.
[http://dx.doi.org/10.1038/sj.bjc.6602928] [PMID: 16421597]
[98]
Edwards, N.J.; Oberti, M.; Thangudu, R.R.; Cai, S.; McGarvey, P.B.; Jacob, S.; Madhavan, S.; Ketchum, K.A. The CPTAC data portal: A resource for cancer proteomics research. J. Proteome Res., 2015, 14(6), 2707-2713.
[http://dx.doi.org/10.1021/pr501254j] [PMID: 25873244]
[99]
Cheng, W.C.; Chung, I.F.; Chen, C.Y.; Sun, H.J.; Fen, J.J.; Tang, W.C.; Chang, T.Y.; Wong, T.T.; Wang, H.W. DriverDB: An exome sequencing database for cancer driver gene identification. Nucleic Acids Res., 2014, 42(D1), D1048-D1054.
[http://dx.doi.org/10.1093/nar/gkt1025] [PMID: 24214964]
[100]
Pal, R.; Berlow, N.; Haider, S. Anticancer drug sensitivity analysis: An integrated approach applied to erlotinib sensitivity prediction in the CCLE database. Proceedings 2012 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS), , pp. 9-12.2012
[http://dx.doi.org/10.1109/GENSIPS.2012.6507714]
[101]
Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; Tarbox, L.; Prior, F. The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging, 2013, 26(6), 1045-1057.
[http://dx.doi.org/10.1007/s10278-013-9622-7] [PMID: 23884657]
[102]
Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; Hornik, K.; Hothorn, T.; Huber, W.; Iacus, S.; Irizarry, R.; Leisch, F.; Li, C.; Maechler, M.; Rossini, A.J.; Sawitzki, G.; Smith, C.; Smyth, G.; Tierney, L.; Yang, J.Y.H.; Zhang, J. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol., 2004, 5(10), R80.
[http://dx.doi.org/10.1186/gb-2004-5-10-r80] [PMID: 15461798]
[103]
Blankenberg, D.; Hillman-Jackson, J. Analysis of next-generation sequencing data using galaxy. In: Stem Cell Transcriptional Networks; , 2014; pp. 21-43.
[http://dx.doi.org/10.1007/978-1-4939-0512-6_2]
[104]
Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), pl1-pl1.
[http://dx.doi.org/10.1126/scisignal.2004088] [PMID: 23550210]
[105]
Behjati, S.; Tarpey, P.S. What is next generation sequencing? Arch. Dis. Child. Educ. Pract. Ed., 2013, 98(6), 236-238.
[http://dx.doi.org/10.1136/archdischild-2013-304340] [PMID: 23986538]
[106]
Grada, A.; Weinbrecht, K. Next-generation sequencing: Methodology and application. J. Invest. Dermatol., 2013, 133(8), 1-4.
[http://dx.doi.org/10.1038/jid.2013.248] [PMID: 23856935]
[107]
Morganti, S.; Tarantino, P.; Ferraro, E.; D’Amico, P.; Viale, G.; Trapani, D.; Duso, B.A.; Curigliano, G. Complexity of genome sequencing and reporting: Next generation sequencing (NGS) technologies and implementation of precision medicine in real life. Crit. Rev. Oncol. Hematol., 2019, 133, 171-182.
[http://dx.doi.org/10.1016/j.critrevonc.2018.11.008] [PMID: 30661654]
[108]
Cai, H.; Jing, C.; Chang, X.; Ding, D.; Han, T.; Yang, J.; Lu, Z.; Hu, X.; Liu, Z.; Wang, J.; Shang, L.; Wu, S.; Meng, P.; Lin, L.; Zhao, J.; Nie, M.; Yin, K. Mutational landscape of gastric cancer and clinical application of genomic profiling based on target next-generation sequencing. J. Transl. Med., 2019, 17(1), 189.
[http://dx.doi.org/10.1186/s12967-019-1941-0] [PMID: 31164161]
[109]
Businello, G.; Galuppini, F.; Fassan, M. The impact of recent next generation sequencing and the need for a new classification in gastric cancer. Best Pract Res Clin Gastroenterol., 2021, 50-51, 101730.
[http://dx.doi.org/10.1016/j.bpg.2021.101730]
[110]
Habibi, M.; Taheri, G. A new machine learning method for cancer mutation analysis. PLOS Comput. Biol., 2022, 18(10), e1010332.
[http://dx.doi.org/10.1371/journal.pcbi.1010332] [PMID: 36251702]
[111]
Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J., 2015, 13, 8-17.
[http://dx.doi.org/10.1016/j.csbj.2014.11.005] [PMID: 25750696]
[112]
Cruz, J.A.; Wishart, D.S. Applications of machine learning in cancer prediction and prognosis. Cancer Inform., 2006, 2
[http://dx.doi.org/10.1177/117693510600200030] [PMID: 19458758]
[113]
Ghods, A.; Cook, D.J. A survey of deep network techniques all classifiers can adopt. Data Min. Knowl. Discov., 2021, 35(1), 46-87.
[http://dx.doi.org/10.1007/s10618-020-00722-8] [PMID: 34584490]
[114]
Kadurin, A.; Aliper, A.; Kazennov, A.; Mamoshina, P.; Vanhaelen, Q.; Khrabrov, K.; Zhavoronkov, A. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget, 2017, 8(7), 10883-10890.
[http://dx.doi.org/10.18632/oncotarget.14073] [PMID: 28029644]
[115]
Gui, T.; Dong, X.; Li, R.; Li, Y.; Wang, Z. Identification of hepatocellular carcinoma-related genes with a machine learning and network analysis. J. Comput. Biol., 2015, 22(1), 63-71.
[http://dx.doi.org/10.1089/cmb.2014.0122] [PMID: 25247452]
[116]
Hirasawa, T.; Aoyama, K.; Tanimoto, T.; Ishihara, S.; Shichijo, S.; Ozawa, T.; Ohnishi, T.; Fujishiro, M.; Matsuo, K.; Fujisaki, J.; Tada, T. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer, 2018, 21(4), 653-660.
[http://dx.doi.org/10.1007/s10120-018-0793-2] [PMID: 29335825]
[117]
Yue, W.; Wang, Z.; Chen, H.; Payne, A.; Liu, X. Machine learning with applications in breast cancer diagnosis and prognosis. Designs, 2018, 2(2), 13.
[http://dx.doi.org/10.3390/designs2020013]
[118]
Razzak, M.I.; Naz, S.; Zaib, A. Deep learning for medical image processing: overview, challenges and the future. In: Classification in BioApps; , 2018; pp. 323-350.
[http://dx.doi.org/10.1007/978-3-319-65981-7_12]
[119]
Gu, J.; Bourne, P.E. Structural Bioinformatics; John Wiley & Sons, 2009.
[120]
Srivastava, P.A.; Kalra, S.; Yennamalli, R.M. Structural bioinformatics and big data analytics: A mini-review. Int. J. Comput. Biol., 2017, 6(1), 25-30.
[121]
Brown, D.K.; Bishop, O.T. Role of structural bioinformatics in drug discovery by computational snp analysis: Analyzing variation at the protein level. Glob Heart., 2017, 12(2), 151-161.
[http://dx.doi.org/10.1016/j.gheart.2017.01.009]
[122]
Ryan, B.M.; Robles, A.I.; Harris, C.C. Genetic variation in microRNA networks: The implications for cancer research. Nat. Rev. Cancer, 2010, 10(6), 389-402.
[http://dx.doi.org/10.1038/nrc2867] [PMID: 20495573]
[123]
de Oliveira, S.; Deane, C. Co-evolution techniques are reshaping the way we do structural bioinformatics. F1000 Res., 2017, 6, 1224.
[http://dx.doi.org/10.12688/f1000research.11543.1] [PMID: 28781768]
[124]
Zhang, Y. Template-based modeling and free modeling by I-TASSER in CASP7. Proteins, 2007, 69(S8)(Suppl. 8), 108-117.
[http://dx.doi.org/10.1002/prot.21702] [PMID: 17894355]
[125]
Chou, K.C. Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem., 2004, 11(16), 2105-2134.
[http://dx.doi.org/10.2174/0929867043364667] [PMID: 15279552]
[126]
Cavasotto, C.N.; Phatak, S.S. Homology modeling in drug discovery: Current trends and applications. Drug Discov. Today, 2009, 14(13-14), 676-683.
[http://dx.doi.org/10.1016/j.drudis.2009.04.006] [PMID: 19422931]
[127]
Peng, J.; Xu, J. A multiple-template approach to protein threading. Proteins, 2011, 79(6), 1930-1939.
[http://dx.doi.org/10.1002/prot.23016] [PMID: 21465564]
[128]
Al-Lazikani, B.; Jung, J.; Xiang, Z.; Honig, B. Protein structure prediction. Curr. Opin. Chem. Biol., 2001, 5(1), 51-56.
[http://dx.doi.org/10.1016/S1367-5931(00)00164-2] [PMID: 11166648]
[129]
Kuhlman, B.; Bradley, P. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol., 2019, 20(11), 681-697.
[http://dx.doi.org/10.1038/s41580-019-0163-x] [PMID: 31417196]
[130]
Roy, A.; Zhang, Y. Protein structure prediction. In: Encyclopedia of Life Sciences; Springer, 2012.
[http://dx.doi.org/10.1002/9780470015902.a0003031.pub2]
[131]
Eweas, A. Advances in molecular modeling and docking as a tool for modern drug discovery. Pharma Chem., 2014, 6, 211-228.
[132]
Shaikh, N.; Linthoi, R.K.; Swamy, K.V.; Karthikeyan, M.; Vyas, R. Comprehensive molecular docking and dynamic simulations for drug repurposing of clinical drugs against multiple cancer kinase targets. J. Biomol. Struct. Dyn., 2022, (0), 1-9.
[http://dx.doi.org/10.1080/07391102.2022.2124453] [PMID: 36134605]
[133]
Tomasiak, L.; Karch, R.; Schreiner, W. Long-term molecular dynamics simulations reveal flexibility properties of a free and TCR-bound PMHC-I system. 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), , pp. 1295-1302.2020
[http://dx.doi.org/10.1109/BIBM49941.2020.9313545]
[134]
De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem., 2016, 59(9), 4035-4061.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01684] [PMID: 26807648]
[135]
Knapp, B.; Frantal, S.; Cibena, M.; Schreiner, W.; Bauer, P. Is an intuitive convergence definition of molecular dynamics simulations solely based on the root mean square deviation possible? J. Comput. Biol., 2011, 18(8), 997-1005.
[http://dx.doi.org/10.1089/cmb.2010.0237] [PMID: 21702691]
[136]
Caves, L.S.D.; Evanseck, J.D.; Karplus, M. Locally accessible conformations of proteins: Multiple molecular dynamics simulations of crambin. Protein Sci., 1998, 7(3), 649-666.
[http://dx.doi.org/10.1002/pro.5560070314] [PMID: 9541397]
[137]
Papin, J.A.; Stelling, J.; Price, N.D.; Klamt, S.; Schuster, S.; Palsson, B.O. Comparison of network-based pathway analysis methods. Trends Biotechnol., 2004, 22(8), 400-405.
[http://dx.doi.org/10.1016/j.tibtech.2004.06.010] [PMID: 15283984]
[138]
Doncheva, N.T.; Klein, K.; Domingues, F.S.; Albrecht, M. Analyzing and visualizing residue networks of protein structures. Trends Biochem. Sci., 2011, 36(4), 179-182.
[http://dx.doi.org/10.1016/j.tibs.2011.01.002] [PMID: 21345680]
[139]
Grewal, R.; Roy, S. Modeling proteins as residue interaction networks. Protein Pept. Lett., 2015, 22(10), 923-933.
[http://dx.doi.org/10.2174/0929866522666150728115552] [PMID: 26216263]
[140]
Barthélemy, M. Betweenness centrality in large complex networks. Eur. Phys. J. B, 2004, 38(2), 163-168.
[http://dx.doi.org/10.1140/epjb/e2004-00111-4]
[141]
Sasaki, T. [New anti-cancer drugs for gastrointestinal cancers]. Gan To Kagaku Ryoho, 1997, 24(13), 1925-1931.
[PMID: 9350237]
[142]
Adhikari, A.; Mandal, D.; Rana, D.; Nath, J.; Bose, A.; Sonika; Orasugh, J.T.; De, S.; Chattopadhyay, D. COVID-19 mitigation: Nanotechnological intervention, perspective, and future scope. Materials Advances, 2023, 4(1), 52-78.
[http://dx.doi.org/10.1039/D2MA00797E]
[143]
Ina, K.; Kataoka, T.; Ando, T. The use of lentinan for treating gastric cancer. Anticancer Agents Med Chem., 2013, 13(5), 681-688.
[http://dx.doi.org/10.2174/1871520611313050002]
[144]
Xu, W.; Li, B.; Xu, M.; Yang, T.; Hao, X. Traditional Chinese medicine for precancerous lesions of gastric cancer: A review. Biomed. Pharmacother., 2022, 146, 112542.
[http://dx.doi.org/10.1016/j.biopha.2021.112542] [PMID: 34929576]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy