Generic placeholder image

Current Signal Transduction Therapy

Editor-in-Chief

ISSN (Print): 1574-3624
ISSN (Online): 2212-389X

Research Article

Utilization of Computational Tools for the Discovery of Schiff Base-based 1, 3, 4-thiadiazole Scaffold as SGLT2 Inhibitors

Author(s): Shivani Sharma, Amit Mittal* and Navneet Khurana

Volume 18, Issue 3, 2023

Published on: 10 October, 2023

Article ID: e101023221993 Pages: 19

DOI: 10.2174/0115743624247062230926110428

Price: $65

Abstract

Background: High or abnormal blood sugar levels are the hallmark of diabetes mellitus (DM), a metabolic disorder that will be one of the major causes of mortality in 2021. SGLT2 inhibitors have recently shown beneficial effects in the treatment of diabetes by reducing hyperglycemia and glucosuria.

Objective: Molecular docking and ADMET studies of Schiff base- based 1, 3, 4-thiadiazole scaffold as SGLT2 inhibitors.

Methods: Chem draw Ultra 16.0 software was used to draw the structures of newly designed molecules of Schiff base-based 1, 3, 4-thiadiazole, which were then translated into 3D structures. For the molecular docking study, AutoDock Vina 1.5.6 software was employed. Lazar in silico and Swiss ADME predictors were used to calculate in silico ADMET characteristics.

Results: We have designed 111 novel Schiff base-based 1, 3, 4-thiadiazole derivatives as SGLT2 inhibitors. A total of 10 compounds from the thiadiazole series were found to have higher binding affinity to the SGLT2 protein than dapagliflozin. SSS 56 had the best docking scores and binding affinities, with -10.4 Kcal/mol, respectively. In silico ADMET parameters demonstrated that the best binding compounds were found to be non-carcinogenic with LogP = 2.53-4.02.

Conclusion: Novel Schiff base-based 1, 3, 4-thiadiazole were designed and binding affinity was assessed against SGLT2 protein, which resulted in a new lead molecule with a maximal binding affinity and estimated to be noncarcinogenic with an optimal partition coefficient (iLogP = 2.53- 4.02).

Graphical Abstract

[1]
Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022; 183: 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[2]
Ramachandran U, Kumar R, Mittal A. Fine tuning of PPAR ligands for type 2 diabetes and metabolic syndrome. Mini Rev Med Chem 2006; 6(5): 563-73.
[http://dx.doi.org/10.2174/138955706776876140] [PMID: 16719831]
[3]
Bharatam P, Patel D, Adane L, Mittal A, Sundriyal S. Modeling and informatics in designing anti-diabetic agents. Curr Pharm Des 2007; 13(34): 3518-30.
[http://dx.doi.org/10.2174/138161207782794239] [PMID: 18220788]
[4]
Bolen S, Feldman L, Vassy J, et al. Systematic review: Comparative effectiveness and safety of oral medications for type 2 diabetes melli-tus. Ann Intern Med 2007; 147(6): 386-99.
[http://dx.doi.org/10.7326/0003-4819-147-6-200709180-00178] [PMID: 17638715]
[5]
Kaur P, Mittal A, Nayak SK, Vyas M, Mishra V, Khatik GL. Current strategies and drug targets in the management of type 2 Diabetes Mellitus. Curr Drug Targets 2018; 19(15): 1738-66.
[http://dx.doi.org/10.2174/1389450119666180727142902] [PMID: 30051787]
[6]
Mackenzie B, Panayotova-Heiermann M, Loo DD, Lever JE, Wright EM. SAAT1 is a low affinity Na+/glucose cotransporter and not an amino acid transporter. A reinterpretation. J Biol Chem 1994; 269(36): 22488-91.
[http://dx.doi.org/10.1016/S0021-9258(17)31672-1] [PMID: 8077195]
[7]
Lee YJ, Lee YJ, Han HJ. Regulatory mechanisms of Na +/glucose cotransporters in renal proximal tubule cells. Kidney Int 2007; 72(106): S27-35.
[http://dx.doi.org/10.1038/sj.ki.5002383] [PMID: 17653207]
[8]
Wright EM, Turk E. The sodium/glucose cotransport family SLC5. Pflugers Arch 2004; 447(5): 813-5.
[http://dx.doi.org/10.1007/s00424-003-1202-0] [PMID: 12748858]
[9]
Kanai Y, Lee WS, You G, Brown D, Hediger MA. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest 1994; 93(1): 397-404.
[http://dx.doi.org/10.1172/JCI116972] [PMID: 8282810]
[10]
Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: A systematic review and meta-analysis. J Am Soc Hypertens 2014; 8(4): 262-275.e9.
[http://dx.doi.org/10.1016/j.jash.2014.01.007] [PMID: 24602971]
[11]
Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: A systematic review and meta-analysis. Ann Intern Med 2013; 159(4): 262-74.
[http://dx.doi.org/10.7326/0003-4819-159-4-201308200-00007] [PMID: 24026259]
[12]
Bołdys A, Okopień B. Inhibitors of type 2 sodium glucose co-transporters–a new strategy for diabetes treatment. Pharmacol Rep 2009; 61(5): 778-84.
[http://dx.doi.org/10.1016/S1734-1140(09)70133-1] [PMID: 19904000]
[13]
Sarnoski-Brocavich S, Hilas O. Canagliflozin (invokana), a novel oral agent for type-2 diabetes. P&T 2013; 38(11): 656-66.
[PMID: 24391386]
[14]
Miao Z, Nucci G, Amin N, et al. Pharmacokinetics, metabolism, and excretion of the antidiabetic agent ertugliflozin (PF-04971729) in healthy male subjects. Drug Metab Dispos 2013; 41(2): 445-56.
[http://dx.doi.org/10.1124/dmd.112.049551] [PMID: 23169609]
[15]
White JR Jr. Empagliflozin, an SGLT2 inhibitor for the treatment of type 2 diabetes mellitus: A review of the evidence. Ann Pharmacother 2015; 49(5): 582-98.
[http://dx.doi.org/10.1177/1060028015573564] [PMID: 25712444]
[16]
Markham A. Remogliflozin Etabonate: First global approval. Drugs 2019; 79(10): 1157-61.
[http://dx.doi.org/10.1007/s40265-019-01150-9] [PMID: 31201711]
[17]
Poole RM, Dungo RT. Ipragliflozin: First global approval. Drugs 2014; 74(5): 611-7.
[http://dx.doi.org/10.1007/s40265-014-0204-x] [PMID: 24668021]
[18]
Markham A, Elkinson S. Luseogliflozin: First global approval. Drugs 2014; 74(8): 945-50.
[http://dx.doi.org/10.1007/s40265-014-0230-8] [PMID: 24848756]
[19]
Poole RM, Prossler JE. Tofogliflozin: first global approval. Drugs 2014; 74(8): 939-44.
[http://dx.doi.org/10.1007/s40265-014-0229-1] [PMID: 24848755]
[20]
Yong X, Wen A, Liu X, et al. Pharmacokinetics and pharmacodynamics of henagliflozin, a sodium glucose co-transporter 2 inhibitor, in Chinese patients with type 2 diabetes mellitus. Clin Drug Investig 2016; 36(3): 195-202.
[http://dx.doi.org/10.1007/s40261-015-0366-7] [PMID: 26692004]
[21]
Halvorsen YDC, Walford GA, Massaro J, Aftring RP, Freeman MW. A 96‐week, multinational, randomized, double‐blind, parallel‐group, clinical trial evaluating the safety and effectiveness of bexagliflozin as a monotherapy for adults with type 2 diabetes. Diabetes Obes Metab 2019; 21(11): 2496-504.
[http://dx.doi.org/10.1111/dom.13833] [PMID: 31297965]
[22]
Kaur K, Kaur P, Mittal A, Nayak SK, Khatik GL. Design and molecular docking studies of novel antimicrobial peptides using autodock molecular docking software. Asian J Pharm Clin Res 2017; 10(16): 28-31.
[http://dx.doi.org/10.22159/ajpcr.2017.v10s4.21332]
[23]
Chaurasiya S, Kaur P, Nayak SK, Khatik GL. Virtual Screening for Identification of Novel Potent EGFR Inhibitors Through AutoDock Vina Molecular Modeling Software. J Chem Pharm Res 2016; 8: 353-60.
[24]
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2009; 31(2): NA.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[25]
Energy Minimizations Were Performed MM2 Interface Program on Chem3D Ultra 160, and Structures Were Drawn by ChemDraw Ultra 160,. Cambridge Soft 1985.
[26]
Abramson JF. Crystal structure of sodium/sugar symporter with bound galactose from Vibrio parahaemolyticus. Available from: https://www.rcsb.org/structure/3DH4 (Accessed on: May 7, 2019).
[27]
Lazar Toxicity Prediction Available from: https://lazar.in-silico.ch/predict (Accessed on: January 21, 2023).
[28]
Swiss ADME Prediction Available from: http://www.swissadme.ch/index.php (Accessed on: January 21, 2023).
[29]
Razzaghi-Asl N, Sepehri S, Ebadi A, Miri R, Shahabipour S. Molecular docking and quantum mechanical studies on biflavonoid structures as BACE-1 inhibitors. Struct Chem 2015; 26(2): 607-21.
[http://dx.doi.org/10.1007/s11224-014-0523-2]
[30]
da Silva-Junior EF, Barcellos Franca PH, Ribeiro FF, et al. Molecular docking studies applied to a dataset of cruzain inhibitors. Curr Computeraided Drug Des 2018; 14(1): 68-78.
[http://dx.doi.org/10.2174/1573409913666170519112758] [PMID: 28523999]
[31]
Kumar S, Khatik GL, Mittal A. In silico Molecular docking study to search new SGLT2 inhibitor based on Dioxabicyclo[3.2.1] Octane scaffold. Curr Computeraided Drug Des 2020; 16(2): 145-54.
[http://dx.doi.org/10.2174/1573409914666181019165821] [PMID: 30345926]
[32]
Mittal A, Sharma S. 1,2,4 Triazoles and 1,2,4 Oxadiazoles Scaffold as SGLT2 Inhibitors: Molecular docking and ADMET studies. Lett Drug Des Discov 2023; 20(11): 1799-811.
[http://dx.doi.org/10.2174/1570180819666220610142359]
[33]
Yuan S, Chan HCS, Hu Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip Rev Comput Mol Sci 2017; 7(2): e1298.
[http://dx.doi.org/10.1002/wcms.1298]
[34]
Design, L Pharmacophore and Ligand-Based Design with Biovia Discovery Studio®. 2014.
[35]
Jejurikar BL, Rohane SH. Drug Designing in Discovery Studio. Asian J Res Chem 2021; 14(2): 135-8.
[36]
Li AR, Zhang J, Greenberg J, Lee T, Liu J. Discovery of non-glucoside SGLT2 inhibitors. Bioorg Med Chem Lett 2011; 21(8): 2472-5.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.056] [PMID: 21398124]
[37]
Caldwell G, Yan Z, Tang W, Dasgupta M, Hasting B. ADME optimization and toxicity assessment in early- and late-phase drug discovery. Curr Top Med Chem 2009; 9(11): 965-80.
[http://dx.doi.org/10.2174/156802609789630929] [PMID: 19747120]
[38]
Fatima S, Gupta P, Sharma S, Sharma A, Agarwal SM. ADMET profiling of geographically diverse phytochemical using chemoinformatic tools. Future Med Chem 2020; 12(1): 69-87.
[http://dx.doi.org/10.4155/fmc-2019-0206] [PMID: 31793338]
[39]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(1–3): 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[40]
Ghaleb A, Aouidate A, Bouachrine M, Lakhlifi T, Sbai A. In Silico exploration of aryl halides analogues as checkpointkinase 1 inhibitors by using 3D QSAR, molecular docking study,and ADMET screening. Adv Pharm Bull 2019; 9(1): 84-92.
[http://dx.doi.org/10.15171/apb.2019.011] [PMID: 31011562]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy