Review Article

miRNA as an Ultimate and Emerging Diagnostic Approach for the Detection of Alzheimer’s Disease

Author(s): Mukul Jain*, Shrishti Agarwal, Aarzu Rana, Ankit Tiwari and Nil Patil

Volume 12, Issue 3, 2023

Published on: 06 October, 2023

Page: [189 - 204] Pages: 16

DOI: 10.2174/0122115366243970230925061819

Price: $65

Abstract

Alzheimer's disease is a prevalent neurodegenerative disorder primarily affecting elderly individuals, characterized by cognitive decline and dysfunction in the nervous system. The disease is hallmarked by the presence of neurofibrillary tangles and amyloid-β plaques. Approximately 10.7% of the global population aged 65 and above suffer from Alzheimer's disease, and this number is projected to rise significantly in the foreseeable future. By the year 2050, the worldwide prevalence is estimated to reach 139 million cases, compared to the current 55 million cases. The identification of reliable biomarkers that can facilitate the diagnosis and prognosis of Alzheimer's disease is crucial. MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules that play a significant role in mRNA regulation and protein level maintenance through mRNA degradation. Over the past decade, researchers have primarily focused on elucidating the functions and expression patterns of miRNAs in various diseases, including Alzheimer's disease, to uncover their potential as diagnostic biomarkers. This review emphasizes the potential of miRNAs as diagnostic biomarkers for Alzheimer's disease and explores their roles and therapeutic possibilities. MiRNAs possess several features that make them ideal biomarkers, including their ability to be easily detected in body fluids. Moreover, the extraction process is minimally invasive, as miRNAs can be readily extracted. Advances in technology have facilitated the integration of miRNAs into micro-assays, enhancing the reliability and utility of miRNAs as diagnostic biomarkers for Alzheimer's disease.

Graphical Abstract

[1]
Vishnoi A, Rani S. MiRNA Biogenesis and Regulation of Diseases: An Overview. Methods Mol Biol 2017; 1509: 1-10.
[http://dx.doi.org/10.1007/978-1-4939-6524-3_1] [PMID: 27826912]
[2]
Goiato M, Freitas E, dos Santos D, de Medeiros R, Sonego M. Acrylic Resin Cytotoxicity for Denture Base: Literature Review. Adv Clin Exp Med 2015; 24(4): 679-86.
[http://dx.doi.org/10.17219/acem/33009] [PMID: 26469114]
[3]
Miya Shaik M, Tamargo I, Abubakar M, Kamal M, Greig N, Gan S. The Role of microRNAs in Alzheimer’s Disease and Their Therapeutic Potentials. Genes (Basel) 2018; 9(4): 174.
[http://dx.doi.org/10.3390/genes9040174] [PMID: 29561798]
[4]
Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs’ Action through miRNA Editing. Int J Mol Sci 2019; 20(24): 6249.
[http://dx.doi.org/10.3390/ijms20246249] [PMID: 31835747]
[5]
Kumar S, Reddy PH. Are circulating microRNAs peripheral biomarkers for Alzheimer’s disease? Biochim Biophys Acta Mol Basis Dis 2016; 1862(9): 1617-27.
[http://dx.doi.org/10.1016/j.bbadis.2016.06.001] [PMID: 27264337]
[6]
Iorio MV, Croce CM. MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012; 4(3): 143-59.
[http://dx.doi.org/10.1002/emmm.201100209] [PMID: 22351564]
[7]
Condrat CE, Thompson DC, Barbu MG, et al. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020; 9(2): 276.
[http://dx.doi.org/10.3390/cells9020276] [PMID: 31979244]
[8]
Shin VY, Chu KM. MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J Gastroenterol 2014; 20(30): 10432-9.
[http://dx.doi.org/10.3748/wjg.v20.i30.10432] [PMID: 25132759]
[9]
Roser AE, Caldi Gomes L, Schünemann J, Maass F, Lingor P. Circulating miRNAs as Diagnostic Biomarkers for Parkinson’s Disease. Front Neurosci 2018; 12: 625.
[http://dx.doi.org/10.3389/fnins.2018.00625] [PMID: 30233304]
[10]
Varesi A, Carrara A, Pires VG, et al. Blood-Based Biomarkers for Alzheimer’s Disease Diagnosis and Progression: An Overview. Cells 2022; 11(8): 1367.
[http://dx.doi.org/10.3390/cells11081367] [PMID: 35456047]
[11]
Xiao B, Guo J, Miao Y, et al. Detection of miR-106a in gastric carcinoma and its clinical significance. Clin Chim Acta 2009; 400(1-2): 97-102.
[http://dx.doi.org/10.1016/j.cca.2008.10.021] [PMID: 18996365]
[12]
Ji Q, Hao X, Meng Y, et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer 2008; 8(1): 266.
[http://dx.doi.org/10.1186/1471-2407-8-266] [PMID: 18803879]
[13]
Hashimoto Y, Akiyama Y, Otsubo T, Shimada S, Yuasa Y. Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis 2010; 31(5): 777-84.
[http://dx.doi.org/10.1093/carcin/bgq013] [PMID: 20080834]
[14]
Li B, Shi XB, Nori D, et al. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate 2011; 71(6): 567-74.
[http://dx.doi.org/10.1002/pros.21272] [PMID: 20878953]
[15]
Fabris L, Ceder Y, Chinnaiyan AM, et al. The Potential of MicroRNAs as Prostate Cancer Biomarkers. Eur Urol 2016; 70(2): 312-22.
[http://dx.doi.org/10.1016/j.eururo.2015.12.054] [PMID: 26806656]
[16]
Lu L, Xue X, Lan J, et al. MicroRNA-29a upregulates MMP2 in oral squamous cell carcinoma to promote cancer invasion and anti-apoptosis. Biomed Pharmacother 2014; 68(1): 13-9.
[http://dx.doi.org/10.1016/j.biopha.2013.10.005] [PMID: 24210072]
[17]
Wang T, Ren Y, Liu R, et al. miR-195-5p Suppresses the Proliferation, Migration, and Invasion of Oral Squamous Cell Carcinoma by Targeting TRIM14. BioMed Res Int 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/7378148] [PMID: 29204446]
[18]
Liu CJ, Shen WG, Peng SY, et al. miR-134 induces oncogenicity and metastasis in head and neck carcinoma through targeting WWOX gene. Int J Cancer 2014; 134(4): 811-21.
[http://dx.doi.org/10.1002/ijc.28358] [PMID: 23824713]
[19]
An F, Gong G, Wang Y, Bian M, Yu L, Wei C. MiR-124 acts as a target for Alzheimer’s disease by regulating BACE1. Oncotarget 2017; 8(69): 114065-71.
[http://dx.doi.org/10.18632/oncotarget.23119] [PMID: 29371969]
[20]
Zhang Y, Li Q, Liu C, et al. MiR-214-3p attenuates cognition defects via the inhibition of autophagy in SAMP8 mouse model of sporadic Alzheimer’s disease. Neurotoxicology 2016; 56: 139-49.
[http://dx.doi.org/10.1016/j.neuro.2016.07.004] [PMID: 27397902]
[21]
Han L, Zhou Y, Zhang R, et al. MicroRNA Let-7f-5p Promotes Bone Marrow Mesenchymal Stem Cells Survival by Targeting Caspase-3 in Alzheimer Disease Model. Front Neurosci 2018; 12: 333.
[http://dx.doi.org/10.3389/fnins.2018.00333] [PMID: 29872375]
[22]
Hoss AG, Kartha VK, Dong X, et al. MicroRNAs located in the Hox gene clusters are implicated in huntington’s disease pathogenesis. PLoS Genet 2014; 10(2): e1004188.
[http://dx.doi.org/10.1371/journal.pgen.1004188] [PMID: 24586208]
[23]
Dong X, Cong S. MicroRNAs in Huntington’s Disease: Diagnostic Biomarkers or Therapeutic Agents? Front Cell Neurosci 2021; 15: 705348.
[http://dx.doi.org/10.3389/fncel.2021.705348] [PMID: 34421543]
[24]
Ghatak S, Raha S. Beta catenin is regulated by its subcellular distribution and mutant huntingtin status in Huntington’s disease cell STHdhQ111/HdhQ111. Biochem Biophys Res Commun 2018; 503(1): 359-64.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.034] [PMID: 29894684]
[25]
Nematian SE, Mamillapalli R, Kadakia TS, Majidi Zolbin M, Moustafa S, Taylor HS. Systemic Inflammation Induced by microRNAs: Endometriosis-Derived Alterations in Circulating microRNA 125b-5p and Let-7b-5p Regulate Macrophage Cytokine Production. J Clin Endocrinol Metab 2018; 103(1): 64-74.
[http://dx.doi.org/10.1210/jc.2017-01199] [PMID: 29040578]
[26]
Dai L, Lou W, Zhu J, Zhou X, Di W. MiR-199a inhibits the angiogenic potential of endometrial stromal cells under hypoxia by targeting HIF-1α/VEGF pathway. Int J Clin Exp Pathol 2015; 8(5): 4735-44.
[PMID: 26191163]
[27]
Graham A, Falcone T, Nothnick WB. The expression of microRNA-451 in human endometriotic lesions is inversely related to that of macrophage migration inhibitory factor (MIF) and regulates MIF expression and modulation of epithelial cell survival. Hum Reprod 2015; 30(3): 642-52.
[http://dx.doi.org/10.1093/humrep/dev005] [PMID: 25637622]
[28]
Gennari L, Bianciardi S, Merlotti D. MicroRNAs in bone diseases. Osteoporos Int 2017; 28(4): 1191-213.
[http://dx.doi.org/10.1007/s00198-016-3847-5] [PMID: 27904930]
[29]
Dell’Aversana C, Giorgio C, D’Amato L, et al. miR-194-5p/BCLAF1 deregulation in AML tumorigenesis. Leukemia 2017; 31(11): 2315-25.
[http://dx.doi.org/10.1038/leu.2017.64] [PMID: 28216661]
[30]
Ferreira AF, Moura LG, Tojal I, et al. ApoptomiRs expression modulated by BCR–ABL is linked to CML progression and imatinib resistance. Blood Cells Mol Dis 2014; 53(1-2): 47-55.
[http://dx.doi.org/10.1016/j.bcmd.2014.02.008] [PMID: 24629639]
[31]
Hu N, Chen L, Wang C, Zhao H. MALAT1 knockdown inhibits proliferation and enhances cytarabine chemosensitivity by upregulating miR-96 in acute myeloid leukemia cells. Biomed Pharmacother 2019; 112: 108720.
[http://dx.doi.org/10.1016/j.biopha.2019.108720] [PMID: 30970520]
[32]
Akao Y, Kumazaki M, Shinohara H, et al. Impairment of K‐Ras signaling networks and increased efficacy of epidermal growth factor receptor inhibitors by a novel synthetic miR‐143. Cancer Sci 2018; 109(5): 1455-67.
[http://dx.doi.org/10.1111/cas.13559] [PMID: 29498789]
[33]
Wu Y, Song Y, Xiong Y, et al. MicroRNA-21 (Mir-21) Promotes Cell Growth and Invasion by Repressing Tumor Suppressor PTEN in Colorectal Cancer. Cell Physiol Biochem 2017; 43(3): 945-58.
[http://dx.doi.org/10.1159/000481648] [PMID: 28957811]
[34]
Gao J, Li N, Dong Y, et al. miR-34a-5p suppresses colorectal cancer metastasis and predicts recurrence in patients with stage II/III colorectal cancer. Oncogene 2015; 34(31): 4142-52.
[http://dx.doi.org/10.1038/onc.2014.348] [PMID: 25362853]
[35]
Lv S, Wang W, Wang H, Zhu Y, Lei C. PPARγ activation serves as therapeutic strategy against bladder cancer via inhibiting PI3K-Akt signaling pathway. BMC Cancer 2019; 19(1): 204.
[http://dx.doi.org/10.1186/s12885-019-5426-6] [PMID: 30845932]
[36]
Chen H, Pan H, Qian Y, Zhou W, Liu X. MiR-25-3p promotes the proliferation of triple negative breast cancer by targeting BTG2. Mol Cancer 2018; 17(1): 4.
[http://dx.doi.org/10.1186/s12943-017-0754-0] [PMID: 29310680]
[37]
Liu X, Tang H, Chen J, et al. MicroRNA-101 inhibits cell progression and increases paclitaxel sensitivity by suppressing MCL-1 expression in human triple-negative breast cancer. Oncotarget 2015; 6(24): 20070-83.
[http://dx.doi.org/10.18632/oncotarget.4039] [PMID: 26036638]
[38]
Wang Q, Han CL, Wang KL, et al. Integrated analysis of exosomal lncRNA and mRNA expression profiles reveals the involvement of lnc‐MKRN2‐42:1 in the pathogenesis of Parkinson’s disease. CNS Neurosci Ther 2020; 26(5): 527-37.
[http://dx.doi.org/10.1111/cns.13277] [PMID: 31814304]
[39]
Wang R, Yao J, Gong F, et al. miR‐29c‐3p regulates TET2 expression and inhibits autophagy process in Parkinson’s disease models. Genes Cells 2021; 26(9): 684-97.
[http://dx.doi.org/10.1111/gtc.12877] [PMID: 34086379]
[40]
Doxakis E. Post-transcriptional Regulation of α-Synuclein Expression by mir-7 and mir-153. J Biol Chem 2010; 285(17): 12726-34.
[http://dx.doi.org/10.1074/jbc.M109.086827] [PMID: 20106983]
[41]
Kabaria S, Choi DC, Chaudhuri AD, Mouradian MM, Junn E. Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson’s disease. FEBS Lett 2015; 589(3): 319-25.
[http://dx.doi.org/10.1016/j.febslet.2014.12.014] [PMID: 25541488]
[42]
Tatsuguchi M, Seok HY, Callis TE, et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 2007; 42(6): 1137-41.
[http://dx.doi.org/10.1016/j.yjmcc.2007.04.004] [PMID: 17498736]
[43]
He L, Hannon GJ. MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5(7): 522-31.
[http://dx.doi.org/10.1038/nrg1379] [PMID: 15211354]
[44]
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006; 34(90001): D140-4.
[http://dx.doi.org/10.1093/nar/gkj112] [PMID: 16381832]
[45]
Roy S, Soh JH, Gao Z. A microfluidic-assisted microarray for ultrasensitive detection of miRNA under an optical microscope. Lab Chip 2011; 11(11): 1886-94.
[http://dx.doi.org/10.1039/c0lc00638f ] [PMID: 21526238]
[46]
Hunt EA, Broyles D, Head T, Deo SK. MicroRNA Detection: Current Technology and Research Strategies. Annu Rev Anal Chem (Palo Alto, Calif) 2015; 8(1): 217-37.
[http://dx.doi.org/10.1146/annurev-anchem-071114-040343] [PMID: 25973944]
[47]
Kiko T, Nakagawa K, Tsuduki T, Furukawa K, Arai H, Miyazawa T. MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J Alzheimers Dis 2014; 39(2): 253-9.
[http://dx.doi.org/10.3233/JAD-130932] [PMID: 24157723]
[48]
Li W, Ruan K. MicroRNA detection by microarray. Anal Bioanal Chem 2009; 394(4): 1117-24.
[http://dx.doi.org/10.1007/s00216-008-2570-2] [PMID: 19132354]
[49]
Ueno T, Funatsu T. Label-free quantification of microRNAs using ligase-assisted sandwich hybridization on a DNA microarray. PLoS One 2014; 9(3): e90920.
[http://dx.doi.org/10.1371/journal.pone.0090920 ] [PMID: 24614340]
[50]
Qu X, Jin H, Liu Y, Sun Q. Strand Displacement Amplification Reaction on Quantum Dot-Encoded Silica Bead for Visual Detection of Multiplex MicroRNAs. Anal Chem 2018; 90(5): 3482-9.
[http://dx.doi.org/10.1021/acs.analchem.7b05235] [PMID: 29431426]
[51]
Wen Y, Xu Y, Mao X, et al. DNAzyme-based rolling-circle amplification DNA machine for ultrasensitive analysis of microRNA in Drosophila larva. Anal Chem 2012; 84(18): 7664-9.
[http://dx.doi.org/10.1021/ac300616z] [PMID: 22928468]
[52]
Chen A, Ma S, Zhuo Y, Chai Y, Yuan R. In Situ Electrochemical Generation of Electrochemiluminescent Silver Naonoclusters on Target-Cycling Synchronized Rolling Circle Amplification Platform for MicroRNA Detection. Anal Chem 2016; 88(6): 3203-10.
[http://dx.doi.org/10.1021/acs.analchem.5b04578] [PMID: 26885698]
[53]
Du W, Lv M, Li J, Yu R, Jiang J. A ligation-based loop-mediated isothermal amplification (ligation-LAMP) strategy for highly selective microRNA detection. Chem Commun (Camb) 2016; 52(86): 12721-4.
[http://dx.doi.org/10.1039/C6CC06160E] [PMID: 27722302]
[54]
Park KW, Batule BS, Kang KS, Park KS, Park HG. Rapid and ultrasensitive detection of microRNA by target-assisted isothermal exponential amplification coupled with poly (thymine)-templated fluorescent copper nanoparticles. Nanotechnology 2016; 27(42): 425502.
[http://dx.doi.org/10.1088/0957-4484/27/42/425502] [PMID: 27622680]
[55]
Xu Y, Wang Y, Liu S, et al. Ultrasensitive and rapid detection of miRNA with three-way junction structure-based trigger-assisted exponential enzymatic amplification. Biosens Bioelectron 2016; 81: 236-41.
[http://dx.doi.org/10.1016/j.bios.2016.02.034] [PMID: 26954789]
[56]
Yan J, Li Z, Liu C, Cheng Y. Simple and sensitive detection of microRNAs with ligase chain reaction. Chem Commun (Camb) 2010; 46(14): 2432-4.
[http://dx.doi.org/10.1039/b923521c] [PMID: 20379549]
[57]
Vilian ATE, Dinesh B, Kang SM, Krishnan UM, Huh YS, Han YK. Recent advances in molybdenum disulfide-based electrode materials for electroanalytical applications. Mikrochim Acta 2019; 186(3): 203.
[http://dx.doi.org/10.1007/s00604-019-3287-y] [PMID: 30796594]
[58]
Tavallaie R, McCarroll JM. Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood. Nat Nanotechnol 2018; 13: 1066.
[http://dx.doi.org/10.1038/s41565-018-0232-x] [PMID: 30150634]
[59]
Zhang N, Shi XM, Guo HQ, et al. Gold nanoparticle couples with entropy-driven toehold-mediated DNA strand displacement reaction on magnetic beads: Toward ultrasensitive energy-transfer-based photoelectrochemical detection of miRNA-141 in real blood sample. Anal Chem 2018; 90(20): 11892-8.
[http://dx.doi.org/10.1021/acs.analchem.8b01966 ] [PMID: 30229657]
[60]
Tang S, Qi T, Yao Y, et al. Magnetic three-phase single-drop microextraction for rapid amplification of the signals of DNA and microRNA analysis. Anal Chem 2020; 92(18): 12290-6.
[http://dx.doi.org/10.1021/acs.analchem.0c01936 ] [PMID: 32812418]
[61]
Huang CC, Kuo YH, Chen YS, Lee GB. An Integrated Microfluidic System for Early Diagnosis of Breast Cancer in Liquid Biopsy by Using Microrna and FET Biosensors
[http://dx.doi.org/10.1109/MEMS51782.2021.9375235]
[62]
Ramshani Z, Zhang C, Richards K, et al. Extracellular vesicle microRNA quantification from plasma using an integrated microfluidic device. Commun Biol 2019; 2(1): 189.
[http://dx.doi.org/10.1038/s42003-019-0435-1] [PMID: 31123713]
[63]
Shamsi MH, Choi K, Ng AHC, Chamberlain MD, Wheeler AR. Electrochemiluminescence on digital microfluidics for microRNA analysis. Biosens Bioelectron 2016; 77: 845-52.
[http://dx.doi.org/10.1016/j.bios.2015.10.036] [PMID: 26516684]
[64]
Gao X, Xu H, Baloda M, et al. Visual detection of microRNA with lateral flow nucleic acid biosensor. Biosens Bioelectron 2014; 54: 578-84.
[http://dx.doi.org/10.1016/j.bios.2013.10.055] [PMID: 24333569]
[65]
Lee J, Na HK, Lee S, Kim WK. Advanced graphene oxide-based paper sensor for colorimetric detection of miRNA. Mikrochim Acta 2022; 189(1): 35.
[http://dx.doi.org/10.1007/s00604-021-05140-1] [PMID: 34940914]
[66]
Murphy MJ. Artificial neural networks to emulate and compensate breathing motion during radiation therapyMachine Learning in Radiation Oncology. Cham: Springer 2015; pp. 203-23.
[http://dx.doi.org/10.1007/978-3-319-18305-3_11]
[67]
Deo RC. Machine learning in medicine. Circulation 2015; 132(20): 1920-30.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.001593] [PMID: 26572668]
[68]
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542(7639): 1150-8.
[69]
Liu J, Wang X, Cheng Y, Zhang L. Tumor gene expression data classification via sample expansion-based deep learning. Oncotarget 2017; 8(65): 109646-60.
[http://dx.doi.org/10.18632/oncotarget.22762] [PMID: 29312636]
[70]
Rahimy E. Deep learning applications in ophthalmology. Curr Opin Ophthalmol 2018; 29(3): 254-60.
[http://dx.doi.org/10.1097/ICU.0000000000000470 ] [PMID: 29528860]
[71]
Huang C, Mezencev R, McDonald JF, Vannberg F. Open source machine-learning algorithms for the prediction of optimal cancer drug therapies. PLoS One 2017; 12(10): e0186906.
[http://dx.doi.org/10.1371/journal.pone.0186906] [PMID: 29073279]
[72]
Paolini A, Baldassarre A, Bruno SP, et al. Improving the diagnostic potential of extracellular miRNAs coupled to multiomics data by exploiting the power of artificial intelligence. Front Microbiol 2022; 13: 888414.
[http://dx.doi.org/10.3389/fmicb.2022.888414] [PMID: 35756065]
[73]
El Naqa I, Murphy MJ. What Is Machine Learning?Machine Learning in Radiation Oncology. Heidelberg: Springer 2015; pp. 3-11.
[74]
Ludwig N, Fehlmann T, Kern F, et al. Machine learning to detect Alzheimer’s disease from circulating non-coding RNAs. Genomics Proteomics Bioinformatics 2019; 17(4): 430-40.
[http://dx.doi.org/10.1016/j.gpb.2019.09.004] [PMID: 31809862]
[75]
Ma X, Chen L, Yang Y, et al. An artificial intelligent signal amplification system for in vivo detection of miRNA. Front Bioeng Biotechnol 2019; 7: 330.
[http://dx.doi.org/10.3389/fbioe.2019.00330] [PMID: 31824932]
[76]
Felli C, Baldassarre A, Uva P, et al. Circulating microRNAs as novel non-invasive biomarkers of paediatric celiac disease and adherence to gluten-free diet. EBioMedicine 2022; 76: 103851.
[http://dx.doi.org/10.1016/j.ebiom.2022.103851] [PMID: 35151110]
[77]
Cheng Y, Dong L, Zhang J, Zhao Y, Li Z. Recent advances in microRNA detection. Analyst (Lond) 2018; 143(8): 1758-74.
[http://dx.doi.org/10.1039/C7AN02001E] [PMID: 29560992]
[78]
Petrou L, Ladame S. Correction: On-chip miRNA extraction platforms: Recent technological advances and implications for next generation point-of-care nucleic acid tests. Lab Chip 2022; 22(18): 3567.
[http://dx.doi.org/10.1039/D2LC90079C] [PMID: 36000710]
[79]
Hsieh CH, Chen WM, Hsieh YS, et al. A novel multi-gene detection platform for the analysis of miRNA expression. Scientific Rep 2018; 8(10684)
[http://dx.doi.org/10.1038/s41598-018-29146-7]
[80]
Porsteinsson AP, Isaacson RS, Knox S, Sabbagh MN, Rubino I. Diagnosis of early alzheimer’s disease: Clinical practice in 2021. J Prev Alzheimers Dis 2021; 8(3): 371-86.
[PMID: 34101796]
[81]
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019; 14: 5541-54.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[82]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6): 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[83]
Drummond E, Pires G, MacMurray C, et al. Phosphorylated tau interactome in the human Alzheimer’s disease brain. Brain 2020; 143(9): 2803-17.
[http://dx.doi.org/10.1093/brain/awaa223] [PMID: 32812023]
[84]
Fiore R, Khudayberdiev S, Saba R, Schratt G. MicroRNA function in the nervous system. Prog Mol Biol Transl Sci 2011; 102: 47-100.
[http://dx.doi.org/10.1016/B978-0-12-415795-8.00004-0 ] [PMID: 21846569]
[85]
Goodall EF, Heath PR, Bandmann O, Kirby J, Shaw PJ. Neuronal dark matter: The emerging role of microRNAs in neurodegeneration. Front Cell Neurosci 2013; 7: 178.
[http://dx.doi.org/10.3389/fncel.2013.00178] [PMID: 24133413]
[86]
Lee CY, Ryu IS, Ryu JH, Cho HJ. miRNAs as therapeutic tools in Alzheimer’s disease. Int J Mol Sci 2021; 22(23): 13012.
[http://dx.doi.org/10.3390/ijms222313012] [PMID: 34884818]
[87]
Binukumar BK, Pant HC. Candidate Bio-Markers of Alzheimer’s DiseaseUnderstanding alzheimer’s disease. London: IntechOpen Limited 2013.
[http://dx.doi.org/10.5772/55069]
[88]
Wang WX, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008; 28(5): 1213-23.
[http://dx.doi.org/10.1523/JNEUROSCI.5065-07.2008 ] [PMID: 18234899]
[89]
Smith PY, Delay C, Girard J, et al. MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy. Hum Mol Genet 2011; 20(20): 4016-24.
[http://dx.doi.org/10.1093/hmg/ddr330] [PMID: 21807765]
[90]
Yang G, Song Y, Zhou X, et al. MicroRNA-29c targets β-site amyloid precursor protein-cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo. Mol Med Rep 2015; 12(2): 3081-8.
[http://dx.doi.org/10.3892/mmr.2015.3728] [PMID: 25955795]
[91]
Zovoilis A, Agbemenyah HY, Agis-Balboa RC, et al. microRNA-34c is a novel target to treat dementias. EMBO J 2011; 30(20): 4299-308.
[http://dx.doi.org/10.1038/emboj.2011.327] [PMID: 21946562]
[92]
Wang P, Hou J, Lin L, et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol 2010; 185(10): 6226-33.
[http://dx.doi.org/10.4049/jimmunol.1000491] [PMID: 20937844]
[93]
Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 1989; 3(4): 519-26.
[http://dx.doi.org/10.1016/0896-6273(89)90210-9] [PMID: 2484340]
[94]
Aamodt EJ, Williams RC Jr. Microtubule-associated proteins connect microtubules and neurofilaments in vitro. Biochemistry 1984; 23(25): 6023-31.
[http://dx.doi.org/10.1021/bi00320a019] [PMID: 6543144]
[95]
González-Billault C, Engelke M, Jiménez-Mateos EM, Wandosell F, Cáceres A, Avila J. Participation of structural microtubule-associated proteins (MAPs) in the development of neuronal polarity. J Neurosci Res 2002; 67(6): 713-9.
[http://dx.doi.org/10.1002/jnr.10161] [PMID: 11891784]
[96]
Wood JG, Zinsmeister P. Immunohistochemical evidence for reorganization of tau in the plaques and tangles in Alzheimer’s dissease. Histochem J 1989; 21(11): 659-62.
[http://dx.doi.org/10.1007/BF01002486] [PMID: 2511165]
[97]
Iqbal K, Liu F, Gong CX, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 2010; 7(8): 656-64.
[http://dx.doi.org/10.2174/156720510793611592 ] [PMID: 20678074]
[98]
Ma X, Liu L, Meng J. RETRACTED: MicroRNA-125b promotes neurons cell apoptosis and Tau phosphorylation in Alzheimer’s disease. Neurosci Lett 2017; 661: 57-62.
[http://dx.doi.org/10.1016/j.neulet.2017.09.043] [PMID: 28947385]
[99]
Ghasemi-Kasman M, Shojaei A, Gol M, Moghadamnia AA, Baharvand H, Javan M. miR-302/367-induced neurons reduce behavioral impairment in an experimental model of Alzheimer’s disease. Mol Cell Neurosci 2018; 86: 50-7.
[http://dx.doi.org/10.1016/j.mcn.2017.11.012] [PMID: 29174617]
[100]
Wang H, Liu J, Zong Y, et al. miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer’s disease targets TGF-β type II receptor. Brain Res 2010; 1357: 166-74.
[http://dx.doi.org/10.1016/j.brainres.2010.08.023] [PMID: 20709030]
[101]
Bala S, Marcos M, Kodys K, et al. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor α (TNFα) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 2011; 286(2): 1436-44.
[http://dx.doi.org/10.1074/jbc.M110.145870] [PMID: 21062749]
[102]
O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 2007; 104(5): 1604-9.
[http://dx.doi.org/10.1073/pnas.0610731104] [PMID: 17242365]
[103]
Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 2007; 27(3): 435-48.
[http://dx.doi.org/10.1016/j.molcel.2007.07.015] [PMID: 17679093]
[104]
Louw AM, Kolar MK, Novikova LN, et al. Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury. Nanomedicine 2016; 12(3): 643-53.
[http://dx.doi.org/10.1016/j.nano.2015.10.011] [PMID: 26582736]
[105]
Chamberlain KA, Sheng ZH. Mechanisms for the maintenance and regulation of axonal energy supply. J Neurosci Res 2019; 97(8): 897-913.
[http://dx.doi.org/10.1002/jnr.24411] [PMID: 30883896]
[106]
Gowda P, Reddy PH, Kumar S. Deregulated mitochondrial microRNAs in Alzheimer’s disease: Focus on synapse and mitochondria. Ageing Res Rev 2022; 73: 101529.
[http://dx.doi.org/10.1016/j.arr.2021.101529] [PMID: 34813976]
[107]
Lungu G, Stoica G, Ambrus A. MicroRNA profiling and the role of microRNA-132 in neurodegeneration using a rat model. Neurosci Lett 2013; 553: 153-8.
[http://dx.doi.org/10.1016/j.neulet.2013.08.001] [PMID: 23973300]
[108]
Kim YJ, Kim SH, Park Y, et al. miR-16-5p is upregulated by amyloid β deposition in Alzheimer’s disease models and induces neuronal cell apoptosis through direct targeting and suppression of BCL-2. Exp Gerontol 2020; 136: 110954.
[http://dx.doi.org/10.1016/j.exger.2020.110954] [PMID: 32320719]
[109]
Hébert SS, Sergeant N, Buée L. MicroRNAs and the Regulation of Tau Metabolism. Int J Alzheimers Dis 2012; 2012: 406561.
[http://dx.doi.org/10.1155/2012/406561]
[110]
Parsi S, Smith PY, Goupil C, Dorval V, Hébert SS. Preclinical evaluation of miR-15/107 family members as multifactorial drug targets for Alzheimer’s disease. Mol Ther Nucleic Acids 2015; 4(10): e256.
[http://dx.doi.org/10.1038/mtna.2015.33] [PMID: 26440600]
[111]
Hébert SS, Horré K, Nicolaï L, et al. MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis 2009; 33(3): 422-8.
[http://dx.doi.org/10.1016/j.nbd.2008.11.009] [PMID: 19110058]
[112]
Mairet-Coello G, Courchet J, Pieraut S, Courchet V, Maximov A, Polleux F. The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through Tau phosphorylation. Neuron 2013; 78(1): 94-108.
[http://dx.doi.org/10.1016/j.neuron.2013.02.003] [PMID: 23583109]
[113]
Jiao Y, Kong L, Yao Y, et al. Osthole decreases beta amyloid levels through up-regulation of miR-107 in Alzheimer’s disease. Neuropharmacology 2016; 108: 332-44.
[http://dx.doi.org/10.1016/j.neuropharm.2016.04.046 ] [PMID: 27143098]
[114]
Hébert SS, Horré K, Nicolaï L, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci USA 2008; 105(17): 6415-20.
[http://dx.doi.org/10.1073/pnas.0710263105] [PMID: 18434550]
[115]
Cogswell JP, Ward J, Taylor IA, et al. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 2008; 14(1): 27-41.
[http://dx.doi.org/10.3233/JAD-2008-14103] [PMID: 18525125]
[116]
Gong J, Zhang J-P, Li B, et al. MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene 2013; 32(25): 3071-9.
[http://dx.doi.org/10.1038/onc.2012.318] [PMID: 22824797]
[117]
Zhao Y, Bhattacharjee S, Jones BM, Hill J, Dua P, Lukiw WJ. Regulation of neurotropic signaling by the inducible, NF-kB-sensitive miRNA-125b in Alzheimer’s disease (AD) and in primary human neuronal-glial (HNG) cells. Mol Neurobiol 2014; 50(1): 97-106.
[http://dx.doi.org/10.1007/s12035-013-8595-3] [PMID: 24293102]
[118]
Santa-Maria I, Alaniz ME, Renwick N, et al. Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. J Clin Invest 2015; 125(2): 681-6.
[http://dx.doi.org/10.1172/JCI78421] [PMID: 25574843]
[119]
Shin D, Shin JY, McManus MT, Ptácek LJ, Fu YH. Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann Neurol 2009; 66(6): 843-57.
[http://dx.doi.org/10.1002/ana.21927] [PMID: 20035504]
[120]
Hu YK, Wang X, Li L, Du YH, Ye HT, Li CY. MicroRNA-98 induces an Alzheimer’s disease-like disturbance by targeting insulin-like growth factor 1. Neurosci Bull 2013; 29(6): 745-51.
[http://dx.doi.org/10.1007/s12264-013-1348-5] [PMID: 23740209]
[121]
Chen FZ, Zhao Y, Chen HZ. MicroRNA-98 reduces amyloid β-protein production and improves oxidative stress and mitochondrial dysfunction through the Notch signaling pathway via HEY2 in Alzheimer’s disease mice. Int J Mol Med 2019; 43(1): 91-102.
[PMID: 30365070]
[122]
Turner RS, Stubbs T, Davies DA, Albensi BC. Potential New Approaches for Diagnosis of Alzheimer’s Disease and Related Dementias. Front Neurol 2020; 11: 496.
[http://dx.doi.org/10.3389/fneur.2020.00496] [PMID: 32582013]
[123]
Curtaz CJ, Schmitt C, Blecharz-Lang KG, Roewer N, Wöckel A, Burek M. Circulating MicroRNAs and Blood-Brain-Barrier Function in Breast Cancer Metastasis. Curr Pharm Des 2020; 26(13): 1417-27.
[http://dx.doi.org/10.2174/1381612826666200316151720 ] [PMID: 32175838]
[124]
Andjus P. Kosanović M, Milićević K, et al. Extracellular vesicles as innovative tool for diagnosis, regeneration and protection against neurological damage. Int J Mol Sci 2020; 21(18): 6859.
[http://dx.doi.org/10.3390/ijms21186859] [PMID: 32962107]
[125]
Graner MW. Roles of extracellular vesicles in high-grade gliomas: Tiny particles with outsized influence. Annu Rev Genomics Hum Genet 2019; 20(1): 331-57.
[http://dx.doi.org/10.1146/annurev-genom-083118-015324 ] [PMID: 30978305]
[126]
Feng M, Zhao J, Wang L, Liu J. Upregulated Expression of Serum Exosomal microRNAs as Diagnostic Biomarkers of Lung Adenocarcinoma. Ann Clin Lab Sci 2018; 48(6): 712-8.
[PMID: 30610040]
[127]
Higa GS, de Sousa E, Walter LT, Kinjo ER, Resende RR, Kihara AH. MicroRNAs in neuronal communication. Mol Neurobiol 2014; 49(3): 1309-26.
[PMID: 24385256]
[128]
Batool A, Hill TDM, Nguyen NT, et al. Altered Biogenesis and MicroRNA Content of Hippocampal Exosomes Following Experimental Status Epilepticus. Front Neurosci 2020; 13: 1404.
[http://dx.doi.org/10.3389/fnins.2019.01404] [PMID: 32009885]
[129]
Tomasetti M, Lee W, Santarelli L, Neuzil J. Exosome-derived microRNAs in cancer metabolism: Possible implications in cancer diagnostics and therapy. Exp Mol Med 2017; 49(1): e285.
[http://dx.doi.org/10.1038/emm.2016.153] [PMID: 28104913]
[130]
Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: Small particle, big player. J Hematol Oncol 2015; 8(1): 83.
[http://dx.doi.org/10.1186/s13045-015-0181-x] [PMID: 26156517]
[131]
Lugli G, Cohen AM, Bennett DA, et al. Plasma Exosomal miRNAs in Persons with and without Alzheimer Disease: Altered expression and prospects for biomarkers. PLoS One 2015; 10(10): e0139233.
[http://dx.doi.org/10.1371/journal.pone.0139233] [PMID: 26426747]
[132]
Rani A, O’Shea A, Ianov L, Cohen RA, Woods AJ, Foster TC. miRNA in circulating microvesicles as biomarkers for age-related cognitive decline. Front Aging Neurosci 2017; 9: 323.
[http://dx.doi.org/10.3389/fnagi.2017.00323] [PMID: 29046635]
[133]
Gámez-Valero A, Campdelacreu J, Vilas D, et al. Exploratory study on microRNA profiles from plasma-derived extracellular vesicles in Alzheimer’s disease and dementia with Lewy bodies. Transl Neurodegener 2019; 8(1): 31.
[http://dx.doi.org/10.1186/s40035-019-0169-5] [PMID: 31592314]
[134]
Barbagallo C, Mostile G, Baglieri G, et al. Specific Signatures of Serum miRNAs as Potential Biomarkers to Discriminate Clinically Similar Neurodegenerative and Vascular-Related Diseases. Cell Mol Neurobiol 2020; 40(4): 531-46.
[http://dx.doi.org/10.1007/s10571-019-00751-y] [PMID: 31691877]
[135]
Yang TT, Liu CG, Gao SC, Zhang Y, Wang PC. The Serum Exosome Derived MicroRNA-135a, -193b, and -384 Were Potential Alzheimer’s Disease Biomarkers. Biomed Environ Sci 2018; 31(2): 87-96.
[PMID: 29606187]
[136]
Cheng L, Doecke JD, Sharples RA, et al. Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry 2015; 20(10): 1188-96.
[http://dx.doi.org/10.1038/mp.2014.127] [PMID: 25349172]
[137]
Wei H, Xu Y, Xu W, et al. Serum exosomal mir-223 serves as a potential diagnostic and prognostic biomarker for dementia. Neuroscience 2018; 379: 167-76.
[http://dx.doi.org/10.1016/j.neuroscience.2018.03.016 ] [PMID: 29559383]
[138]
Kumar P, Dezso Z, MacKenzie C, et al. Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One 2013; 8(7): e69807.
[http://dx.doi.org/10.1371/journal.pone.0069807] [PMID: 23922807]
[139]
Sørensen SS, Nygaard AB, Christensen T. miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia – an exploratory study. Transl Neurodegener 2016; 5(1): 6.
[http://dx.doi.org/10.1186/s40035-016-0053-5] [PMID: 26981236]
[140]
Schipper HM, Maes OC, Chertkow HM, Wang E. MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Bio 2007; 1: GRSB.S361.
[http://dx.doi.org/10.4137/GRSB.S361] [PMID: 19936094]
[141]
Xing H, Guo S, Zhang Y, Zheng Z, Wang H. Upregulation of microRNA-206 enhances lipopolysaccharide-induced inflammation and release of amyloid-β by targeting insulin-like growth factor 1 in microglia. Mol Med Rep 2016; 14(2): 1357-64.
[http://dx.doi.org/10.3892/mmr.2016.5369] [PMID: 27277332]
[142]
Wu HZY, Thalamuthu A, Cheng L, et al. Differential blood miRNA expression in brain amyloid imaging-defined Alzheimer’s disease and controls. Alzheimers Res Ther 2020; 12(1): 59.
[http://dx.doi.org/10.1186/s13195-020-00627-0] [PMID: 32414413]
[143]
Satoh J, Kino Y, Niida S. MicroRNA-Seq Data Analysis Pipeline to Identify Blood Biomarkers for Alzheimer’s Disease from Public Data. Biomark Insights 2015; 10: BMI.S25132.
[http://dx.doi.org/10.4137/BMI.S25132] [PMID: 25922570]
[144]
Galimberti D, Villa C, Fenoglio C, et al. Circulating miRNAs as potential biomarkers in Alzheimer’s disease. J Alzheimers Dis 2014; 42(4): 1261-7.
[http://dx.doi.org/10.3233/JAD-140756] [PMID: 25024331]
[145]
Tan L, Yu JT, Tan MS, et al. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J Alzheimers Dis 2014; 40(4): 1017-27.
[http://dx.doi.org/10.3233/JAD-132144] [PMID: 24577456]
[146]
Rode MP, Silva AH, Cisilotto J, Rosolen D, Creczynski-Pasa TB. miR-425-5p as an exosomal biomarker for metastatic prostate cancer. Cell Signal 2021; 87: 110113.
[http://dx.doi.org/10.1016/j.cellsig.2021.110113] [PMID: 34371055]
[147]
Lu Y, Wu X, Wang J. Correlation of miR-425-5p and IL-23 with pancreatic cancer. Oncol Lett 2019; 17(5): 4595-9.
[http://dx.doi.org/10.3892/ol.2019.10099] [PMID: 30944648]
[148]
Rao D, Guan S, Huang J, Chang Q, Duan S. miR-425-5p Acts as a Molecular Marker and Promoted Proliferation, Migration by Targeting RNF11 in Hepatocellular Carcinoma. BioMed Res Int 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/6530973] [PMID: 33123581]
[149]
Crippa V, Sau D, Rusmini P, et al. The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 2010; 19(17): 3440-56.
[http://dx.doi.org/10.1093/hmg/ddq257] [PMID: 20570967]
[150]
Yuan J, Wu Y, Li L, Liu C. MicroRNA-425-5p promotes tau phosphorylation and cell apoptosis in Alzheimer’s disease by targeting heat shock protein B8. J Neural Transm (Vienna) 2020; 127(3): 339-46.
[http://dx.doi.org/10.1007/s00702-019-02134-5] [PMID: 31919655]
[151]
Li Q, Li X, Wang L, Zhang Y, Chen L. miR-98-5p Acts as a Target for Alzheimer’s Disease by Regulating Aβ Production Through Modulating SNX6 Expression. J Mol Neurosci 2016; 60(4): 413-20.
[http://dx.doi.org/10.1007/s12031-016-0815-7] [PMID: 27541017]
[152]
Mahmoudi E, Cairns MJ. MiR-137: An important player in neural development and neoplastic transformation. Mol Psychiatry 2017; 22(1): 44-55.
[http://dx.doi.org/10.1038/mp.2016.150] [PMID: 27620842]
[153]
He D, Tan J, Zhang J. miR-137 attenuates Aβ-induced neurotoxicity through inactivation of NF-κB pathway by targeting TNFAIP1 in Neuro2a cells. Biochem Biophys Res Commun 2017; 490(3): 941-7.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.144] [PMID: 28655611]
[154]
Cao B, Wang T, Qu Q, Kang T, Yang Q. Long Noncoding RNA SNHG1 Promotes Neuroinflammation in Parkinson’s Disease via Regulating miR-7/NLRP3 Pathway. Neuroscience 2018; 388: 118-27.
[http://dx.doi.org/10.1016/j.neuroscience.2018.07.019 ] [PMID: 30031125]
[155]
Wang H, Lu B, Chen J. Knockdown of lncRNA SNHG1 attenuated Aβ25-35-inudced neuronal injury via regulating KREMEN1 by acting as a ceRNA of miR-137 in neuronal cells. Biochem Biophys Res Commun 2019; 518(3): 438-44.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.033] [PMID: 31447119]
[156]
Daschil N, Obermair GJ, Flucher BE, et al. CaV1.2 calcium channel expression in reactive astrocytes is associated with the formation of amyloid-β plaques in an Alzheimer’s disease mouse model. J Alzheimers Dis 2013; 37(2): 439-51.
[http://dx.doi.org/10.3233/JAD-130560] [PMID: 23948887]
[157]
Jiang Y, Xu B, Chen J, et al. Micro-RNA-137 Inhibits Tau Hyperphosphorylation in Alzheimer’s Disease and Targets the CACNA1C Gene in Transgenic Mice and Human Neuroblastoma SH-SY5Y Cells. Med Sci Monit 2018; 24: 5635-44.
[http://dx.doi.org/10.12659/MSM.908765] [PMID: 30102687]
[158]
Dehghani R, Rahmani F, Rezaei N. MicroRNA in Alzheimer’s disease revisited: Implications for major neuropathological mechanisms. Rev Neurosci 2018; 29(2): 161-82.
[http://dx.doi.org/10.1515/revneuro-2017-0042] [PMID: 28941357]
[159]
Wang M, Zhu P. MRWMDA: A novel framework to infer miRNA-disease associations. Biosystems 2021; 199: 104292.
[http://dx.doi.org/10.1016/j.biosystems.2020.104292 ] [PMID: 33221377]
[160]
Siegel SR, Mackenzie J, Chaplin G, Jablonski NG, Griffiths L. Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep 2012; 39(5): 6219-25.
[http://dx.doi.org/10.1007/s11033-011-1441-7] [PMID: 22231906]
[161]
Schramedei K, Mörbt N, Pfeifer G, et al. MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4. Oncogene 2011; 30(26): 2975-85.
[http://dx.doi.org/10.1038/onc.2011.15] [PMID: 21317927]
[162]
Lehmann SM, Krüger C, Park B, et al. An unconventional role for miRNA: Let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 2012; 15(6): 827-35.
[http://dx.doi.org/10.1038/nn.3113] [PMID: 22610069]
[163]
Ghidoni R, Benussi L, Paterlini A, Albertini V, Binetti G, Emanuele E. Cerebrospinal fluid biomarkers for Alzheimer’s disease: The present and the future. Neurodegener Dis 2011; 8(6): 413-20.
[http://dx.doi.org/10.1159/000327756] [PMID: 21709402]
[164]
Humpel C. Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 2011; 29(1): 26-32.
[http://dx.doi.org/10.1016/j.tibtech.2010.09.007 ] [PMID: 20971518]
[165]
Stoicea N, Du A, Lakis DC, Tipton C, Arias-Morales CE, Bergese SD. The MiRNA Journey from Theory to Practice as a CNS Biomarker. Front Genet 2016; 7: 11.
[http://dx.doi.org/10.3389/fgene.2016.00011] [PMID: 26904099]
[166]
Cloutier F, Marrero A, O’Connell C, Morin PJ Jr. MicroRNAs as potential circulating biomarkers for amyotrophic lateral sclerosis. J Mol Neurosci 2015; 56(1): 102-12.
[http://dx.doi.org/10.1007/s12031-014-0471-8 ] [PMID: 25433762]
[167]
Anoop A, Singh PK, Jacob RS, Maji SK. CSF biomarkers for Alzheimer’s disease diagnosis. Int J Alzheimers Dis 2010; 2010: 1-12.
[http://dx.doi.org/10.4061/2010/606802] [PMID: 20721349]
[168]
Ho PTB, Clark IM, Le LTT. MicroRNA-based diagnosis and therapy. Int J Mol Sci 2022; 23(13): 7167.
[http://dx.doi.org/10.3390/ijms23137167 ] [PMID: 35806173]
[169]
Basavaraju M, de Lencastre A. Alzheimer’s disease: Presence and role of microRNAs. Biomol Concepts 2016; 7(4): 241-52.
[http://dx.doi.org/10.1515/bmc-2016-0014 ] [PMID: 27505094]
[170]
Miglione A, Raucci A, Amato J, et al. Printed Electrochemical Strip for the Detection of miRNA-29a: A Possible Biomarker Related to Alzheimer’s Disease. Anal Chem 2022; 94(45): 15558-63.
[http://dx.doi.org/10.1021/acs.analchem.2c03542 ] [PMID: 36318963]
[171]
Kong H, Yin F, He F, et al. The Effect of miR-132, miR-146a, and miR-155 on MRP8/TLR4-Induced Astrocyte-Related Inflammation. J Mol Neurosci 2015; 57(1): 28-37.
[http://dx.doi.org/10.1007/s12031-015-0574-x ] [PMID: 25957996]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy