Review Article

Small Non-coding RNA in Plants: From Basic Science to Innovative Applications

Author(s): Giulia Tarquini* and Erika Cione*

Volume 12, Issue 3, 2023

Published on: 12 June, 2023

Page: [177 - 188] Pages: 12

DOI: 10.2174/2211536612666230410094424

Price: $65

conference banner
Abstract

Plants possess an arsenal of different classes of small RNAs (sRNAs) of variable size, which play a regulatory role in a multitude of physiological and pathological processes via transcriptional or post-transcriptional gene silencing. The hard challenges that agriculture will face in the next few decades, such as an increasing demand for agrifood production related to the global increase in population, have stimulated the development of innovative biotechnological approaches in agriculture. In this regard, the use of artificial sRNAs has already been exploited successfully for many purposes, including control of severe plant diseases, improvement of genetic and agronomic traits of cultivated species, and increasing the nutritional value of plant foodstuffs. This strategy relies on the application of synthetic sRNA molecules to induce specific physiological responses by triggering appropriate RNA silencing pathways. This review contextualizes the use of artificial sRNAs in consideration of the huge diversity of RNA silencing mechanisms in plants. Additionally, the discussion also examines microRNAs from edible plants and exosome-like vesicles, also known as plant-derived edible nanoparticles (ENPs), which themselves can act as micronutrients.

Graphical Abstract

[1]
Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. The global burden of pathogens and pests on major food crops. Nat Ecol Evol 2019; 3(3): 430-9.
[http://dx.doi.org/10.1038/s41559-018-0793-y] [PMID: 30718852]
[2]
Niu D, Hamby R, Sanchez JN, Cai Q, Yan Q, Jin H. RNAs - a new frontier in crop protection. Curr Opin Biotechnol 2021; 70: 204-12.
[http://dx.doi.org/10.1016/j.copbio.2021.06.005] [PMID: 34217122]
[3]
Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018; 360(6390): 739-42.
[http://dx.doi.org/10.1126/science.aap7999] [PMID: 29773744]
[4]
Wang M, Thomas N, Jin H. Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Curr Opin Plant Biol 2017; 38: 133-41.
[http://dx.doi.org/10.1016/j.pbi.2017.05.003] [PMID: 28570950]
[5]
Cai Q, He B, Kogel KH, Jin H. Cross-kingdom RNA trafficking and environmental RNAi - nature’s blueprint for modern crop protection strategies. Curr Opin Microbiol 2018; 46: 58-64.
[http://dx.doi.org/10.1016/j.mib.2018.02.003] [PMID: 29549797]
[6]
Baulcombe D. RNA silencing in plants. Nature 2004; 431(7006): 356-63.
[http://dx.doi.org/10.1038/nature02874] [PMID: 15372043]
[7]
Knip M, Constantin ME, Thordal-Christensen H. Trans-kingdom cross-talk: Small RNAs on the move. PLoS Genet 2014; 10(9)e1004602
[http://dx.doi.org/10.1371/journal.pgen.1004602] [PMID: 25188222]
[8]
Weiberg A, Bellinger M, Jin H. Conversations between kingdoms: Small RNAs. Curr Opin Biotechnol 2015; 32: 207-15.
[http://dx.doi.org/10.1016/j.copbio.2014.12.025] [PMID: 25622136]
[9]
Huang CY, Wang H, Hu P, Hamby R, Jin H. Small RNAs – Big Players in Plant-Microbe Interactions. Cell Host Microbe 2019; 26(2): 173-82.
[http://dx.doi.org/10.1016/j.chom.2019.07.021] [PMID: 31415750]
[10]
Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants. Trends Genet 2006; 22(5): 268-80.
[http://dx.doi.org/10.1016/j.tig.2006.03.003] [PMID: 16567016]
[11]
Voinnet O. Non-cell autonomous RNA silencing. FEBS Lett 2005; 579(26): 5858-71.
[http://dx.doi.org/10.1016/j.febslet.2005.09.039] [PMID: 16242131]
[12]
Parameswaran P, Sklan E, Wilkins C, et al. Six RNA viruses and forty-one hosts: Viral small RNAs and modulation of small RNA repertoires in vertebrate and invertebrate systems. PLoS Pathog 2010; 6(2)e1000764
[http://dx.doi.org/10.1371/journal.ppat.1000764] [PMID: 20169186]
[13]
Maillard PV, Ciaudo C, Marchais A, et al. Antiviral RNA interference in mammalian cells. Science 2013; 342(6155): 235-8.
[http://dx.doi.org/10.1126/science.1241930] [PMID: 24115438]
[14]
Schuster S, Miesen P, van Rij RP. Antiviral RNAi in Insects and Mammals: Parallels and Differences. Viruses 2019; 11(5): 448.
[http://dx.doi.org/10.3390/v11050448] [PMID: 31100912]
[15]
Watson S, Knol L, Witteveldt J, Macias S. Crosstalk Between Mammalian Antiviral Pathways. Noncoding RNA 2019; 5(1): 29.
[http://dx.doi.org/10.3390/ncrna5010029] [PMID: 30909383]
[16]
Takahashi T, Ui-Tei K. Mutual Regulation of RNA Silencing and the IFN Response as an Antiviral Defense System in Mammalian Cells. Int J Mol Sci 2020; 21(4): 1348.
[http://dx.doi.org/10.3390/ijms21041348] [PMID: 32079277]
[17]
Huntzinger E, Izaurralde E. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12(2): 99-110.
[http://dx.doi.org/10.1038/nrg2936] [PMID: 21245828]
[18]
Bologna NG, Voinnet O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 2014; 65(1): 473-503.
[http://dx.doi.org/10.1146/annurev-arplant-050213-035728] [PMID: 24579988]
[19]
Morris KV, Mattick JS. The rise of regulatory RNA. Nat Rev Genet 2014; 15(6): 423-37.
[http://dx.doi.org/10.1038/nrg3722] [PMID: 24776770]
[20]
Henderson IR, Zhang X, Lu C, et al. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 2006; 38(6): 721-5.
[http://dx.doi.org/10.1038/ng1804] [PMID: 16699516]
[21]
Mi S, Cai T, Hu Y, et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 2008; 133(1): 116-27.
[http://dx.doi.org/10.1016/j.cell.2008.02.034] [PMID: 18342361]
[22]
Fang Y, Spector DL. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 2007; 17(9): 818-23.
[http://dx.doi.org/10.1016/j.cub.2007.04.005] [PMID: 17442570]
[23]
Burdisso P, Suarez IP, Bologna NG, Palatnik JF, Bersch B, Rasia RM. Second double-stranded RNA binding domain of dicer-like ribonuclease 1: Structural and biochemical characterization. Biochemistry 2012; 51(51): 10159-66.
[http://dx.doi.org/10.1021/bi301247r] [PMID: 23194006]
[24]
Vaucheret H, Fagard M. Transcriptional gene silencing in plants: Targets, inducers and regulators. Trends Genet 2001; 17(1): 29-35.
[http://dx.doi.org/10.1016/S0168-9525(00)02166-1] [PMID: 11163919]
[25]
Vaucheret H. Post-transcriptional small RNA pathways in plants: Mechanisms and regulations. Genes Dev 2006; 20(7): 759-71.
[http://dx.doi.org/10.1101/gad.1410506] [PMID: 16600909]
[26]
Voinnet O. Post-transcriptional RNA silencing in plant–microbe interactions: A touch of robustness and versatility. Curr Opin Plant Biol 2008; 11(4): 464-70.
[http://dx.doi.org/10.1016/j.pbi.2008.04.006] [PMID: 18583181]
[27]
Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJM. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 2000; 19(19): 5194-201.
[http://dx.doi.org/10.1093/emboj/19.19.5194] [PMID: 11013221]
[28]
Jones L, Hamilton AJ, Voinnet O, Thomas CL, Maule AJ, Baulcombe DC. RNA–DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 1999; 11(12): 2291-301.
[http://dx.doi.org/10.1105/tpc.11.12.2291] [PMID: 10590159]
[29]
Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 2000; 101(5): 543-53.
[http://dx.doi.org/10.1016/S0092-8674(00)80864-8] [PMID: 10850496]
[30]
Kørner CJ, Pitzalis N, Peña EJ, Erhardt M, Vazquez F, Heinlein M. Crosstalk between PTGS and TGS pathways in natural antiviral immunity and disease recovery. Nat Plants 2018; 4(3): 157-64.
[http://dx.doi.org/10.1038/s41477-018-0117-x] [PMID: 29497161]
[31]
Lopez-Gomollon S, Baulcombe DC. Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems. Nat Rev Mol Cell Biol 2022; 23(10): 645-62.
[http://dx.doi.org/10.1038/s41580-022-00496-5] [PMID: 35710830]
[32]
Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009; 136(4): 642-55.
[http://dx.doi.org/10.1016/j.cell.2009.01.035] [PMID: 19239886]
[33]
Maida Y, Masutomi K. RNA-dependent RNA polymerases in RNA silencing. Biol Chem 2011; 392(4): 299-304.
[http://dx.doi.org/10.1515/bc.2011.035] [PMID: 21294682]
[34]
Schwab R, Voinnet O. RNA silencing amplification in plants: Size matters. Proc Natl Acad Sci USA 2010; 107(34): 14945-6.
[http://dx.doi.org/10.1073/pnas.1009416107] [PMID: 20709960]
[35]
Baulcombe DC. Amplified Silencing. Science 2007; 315(5809): 199-200.
[http://dx.doi.org/10.1126/science.1138030] [PMID: 17218517]
[36]
Brosnan CA, Voinnet O. Cell-to-cell and long-distance siRNA movement in plants: Mechanisms and biological implications. Curr Opin Plant Biol 2011; 14(5): 580-7.
[http://dx.doi.org/10.1016/j.pbi.2011.07.011] [PMID: 21862389]
[37]
Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O. Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 2003; 22(17): 4523-33.
[http://dx.doi.org/10.1093/emboj/cdg431] [PMID: 12941703]
[38]
Choudhary S, Thakur S, Bhardwaj P. Molecular basis of transitivity in plant RNA silencing. Mol Biol Rep 2019; 46(4): 4645-60.
[http://dx.doi.org/10.1007/s11033-019-04866-9] [PMID: 31098805]
[39]
de Felippes FF, Waterhouse PM. The Whys and Wherefores of Transitivity in Plants. Front Plant Sci 2020; 11579376
[http://dx.doi.org/10.3389/fpls.2020.579376] [PMID: 32983223]
[40]
Agami R. RNAi and related mechanisms and their potential use for therapy. Curr Opin Chem Biol 2002; 6(6): 829-34.
[http://dx.doi.org/10.1016/S1367-5931(02)00378-2] [PMID: 12470738]
[41]
Morris CE, Géniaux G, Nédellec C, Sauvion N, Soubeyrand S. One Health concepts and challenges for surveillance, forecasting, and mitigation of plant disease beyond the traditional scope of crop production. Plant Pathol 2022; 71(1): 86-97.
[http://dx.doi.org/10.1111/ppa.13446]
[42]
Pimentel D, McNair S, Janecka J, et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 2001; 84(1): 1-20.
[http://dx.doi.org/10.1016/S0167-8809(00)00178-X]
[43]
Mezzetti B, Sweet JB, Smagghe G, et al. Advances and Challenges of RNAi Based Technologies for Plants - Volume 2. Front Plant Sci 2022; 168.
[44]
Limera C, Sabbadini S, Sweet JB, Mezzetti B. New biotechnological tools for the genetic improvement of major woody fruit species. Front Plant Sci 2017; 8: 1418.
[http://dx.doi.org/10.3389/fpls.2017.01418] [PMID: 28861099]
[45]
Rosa C, Kuo YW, Wuriyanghan H, Falk BW. RNA interference mechanisms and applications in plant pathology. Annu Rev Phytopathol 2018; 56(1): 581-610.
[http://dx.doi.org/10.1146/annurev-phyto-080417-050044] [PMID: 29979927]
[46]
Nowara D, Gay A, Lacomme C, et al. HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 2010; 22(9): 3130-41.
[http://dx.doi.org/10.1105/tpc.110.077040] [PMID: 20884801]
[47]
Guo J, Gao S, Lin Q, Wang H, Que Y, Xu L. Transgenic sugarcane resistant to sorghum mosaic virus based on coat protein gene silencing by RNA interference. BioMed Res Int 2015; 2015861907
[http://dx.doi.org/10.1155/2015/861907] [PMID: 25685813]
[48]
Cao X, Lu Y, Di D, et al. Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E. coli. PLoS One 2013; 8(4)e60829
[http://dx.doi.org/10.1371/journal.pone.0060829] [PMID: 23593318]
[49]
Sasaya T, Nakazono-Nagaoka E, Saika H, et al. Transgenic strategies to confer resistance against viruses in rice plants. Front Microbiol 2014; 4: 409.
[http://dx.doi.org/10.3389/fmicb.2013.00409] [PMID: 24454308]
[50]
Fahim M, Ayala-Navarrete L, Millar AA, Larkin PJ. Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus infection in transgenic wheat plants. Plant Biotechnol J 2010; 8(7): 821-34.
[http://dx.doi.org/10.1111/j.1467-7652.2010.00513.x] [PMID: 20374525]
[51]
Bai Y, Guo Z, Wang X, Bai D, Zhang W. Generation of double-virus-resistant marker-free transgenic potato plants. Prog Nat Sci 2009; 19(5): 543-8.
[http://dx.doi.org/10.1016/j.pnsc.2008.08.005]
[52]
Arif M, Azhar U, Arshad M, Zafar Y, Mansoor S, Asad S. Engineering broad-spectrum resistance against RNA viruses in potato. Transgenic Res 2012; 21(2): 303-11.
[http://dx.doi.org/10.1007/s11248-011-9533-7] [PMID: 21701953]
[53]
Chung BN, Yoon JY, Palukaitis P. Engineered resistance in potato against potato leafroll virus, potato virus A and potato virus Y. Virus Genes 2013; 47(1): 86-92.
[http://dx.doi.org/10.1007/s11262-013-0904-4] [PMID: 23526159]
[54]
Gao L, Ding X, Li K, et al. Characterization of Soybean mosaic virus resistance derived from inverted repeat-SMV-HC-Pro genes in multiple soybean cultivars. Theor Appl Genet 2015; 128(8): 1489-505.
[http://dx.doi.org/10.1007/s00122-015-2522-0] [PMID: 25930057]
[55]
Peng JC, Chen TC, Raja JAJ, et al. Broad-spectrum transgenic resistance against distinct tospovirus species at the genus level. PLoS One 2014; 9(5)e96073
[http://dx.doi.org/10.1371/journal.pone.0096073] [PMID: 24811071]
[56]
Fuentes A, Carlos N, Ruiz Y, et al. Field trial and molecular characterization of rnai-transgenic tomato plants that exhibit resistance to tomato yellow leaf curl geminivirus. Mol Plant Microbe Interact 2016; 29(3): 197-209.
[http://dx.doi.org/10.1094/MPMI-08-15-0181-R] [PMID: 26713353]
[57]
Wang MB, Abbott DC, Waterhouse PM. A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol 2000; 1(6): 347-56.
[http://dx.doi.org/10.1046/j.1364-3703.2000.00038.x] [PMID: 20572982]
[58]
Wang M, Jin H. Spray-induced gene silencing: A powerful innovative strategy for crop protection. Trends Microbiol 2017; 25(1): 4-6.
[http://dx.doi.org/10.1016/j.tim.2016.11.011] [PMID: 27923542]
[59]
Tenllado F, Díaz-Ruíz JR. Double-stranded RNA-mediated interference with plant virus infection. J Virol 2001; 75(24): 12288-97.
[http://dx.doi.org/10.1128/JVI.75.24.12288-12297.2001] [PMID: 11711619]
[60]
Koch A, Biedenkopf D, Furch A, et al. An RNAi-based control of fusarium graminearum infections through spraying of long dsrnas involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog 2016; 12(10)e1005901
[http://dx.doi.org/10.1371/journal.ppat.1005901] [PMID: 27737019]
[61]
Hu D, Chen ZY, Zhang C, Ganiger M. Reduction of Phakopsora pachyrhizi infection on soybean through host‐ and spray‐induced gene silencing. Mol Plant Pathol 2020; 21(6): 794-807.
[http://dx.doi.org/10.1111/mpp.12931] [PMID: 32196911]
[62]
Haile ZM, Gebremichael DE, Capriotti L, et al. Double-stranded RNA targeting dicer-like genes compromises the pathogenicity of plasmopara viticola on grapevine. Front Plant Sci 2021; 12667539
[http://dx.doi.org/10.3389/fpls.2021.667539] [PMID: 34084177]
[63]
Marcianò D, Ricciardi V, Marone Fassolo E, et al. RNAi of a putative grapevine susceptibility gene as a possible downy mildew control strategy. Front Plant Sci 2021; 12667319
[http://dx.doi.org/10.3389/fpls.2021.667319] [PMID: 34127927]
[64]
Bhat A, Ryu CM. Plant perceptions of extracellular DNA and RNA. Mol Plant 2016; 9(7): 956-8.
[http://dx.doi.org/10.1016/j.molp.2016.05.014] [PMID: 27262607]
[65]
Song XS, Gu KX, Duan XX, et al. Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing. Mol Plant Pathol 2018; 19(12): 2543-60.
[http://dx.doi.org/10.1111/mpp.12728] [PMID: 30027625]
[66]
Dubrovina AS, Kiselev KV. Exogenous RNAs for gene regulation and plant resistance. Int J Mol Sci 2019; 20(9): 2282.
[http://dx.doi.org/10.3390/ijms20092282] [PMID: 31072065]
[67]
Christiaens O, Petek M, Smagghe G, Taning CNT. The use of nanocarriers to improve the efficiency of rnai-based pesticides in agricultureNanopesticides. Springer 2020; pp. 49-68.
[http://dx.doi.org/10.1007/978-3-030-44873-8_3]
[68]
Das PR, Sherif SM. Application of exogenous dsrnas-induced rnai in agriculture: Challenges and triumphs. Front Plant Sci 2020; 11: 946.
[http://dx.doi.org/10.3389/fpls.2020.00946] [PMID: 32670336]
[69]
Davies WP. An historical perspective from the green revolution to the gene revolution. Nutr Rev 2003; 61(6 Pt 2): S124-34.
[http://dx.doi.org/10.1301/nr.2003.jun.S124-S134] [PMID: 12908744]
[70]
Negrutiu I, Cattoir-Reynearts A, Verbruggen I, Jacobs M. Lysine overproducer mutants with an altered dihydrodipicolinate synthase from protoplast culture of Nicotiana sylvestris (Spegazzini and Comes). Theor Appl Genet 1984; 68(68): 11-20.
[http://dx.doi.org/10.1007/BF00252303] [PMID: 24258937]
[71]
Frankard V, Ghislain M, Jacobs M. Two feedback-insensitive enzymes of the aspartate pathway in nicotiana sylvestris. Plant Physiol 1992; 99(4): 1285-93.
[http://dx.doi.org/10.1104/pp.99.4.1285] [PMID: 16669034]
[72]
Lee M. Genome projects and gene pools: New germplasm for plant breeding? Proc Natl Acad Sci 1998; 95(5): 2001-4.
[http://dx.doi.org/10.1073/pnas.95.5.2001] [PMID: 9482824]
[73]
Tang G, Galili G, Zhuang X. RNAi and microRNA: Breakthrough technologies for the improvement of plant nutritional value and metabolic engineering. Metabolomics 2007; 3(3): 357-69.
[http://dx.doi.org/10.1007/s11306-007-0073-3]
[74]
Roell MS, Zurbriggen MD. The impact of synthetic biology for future agriculture and nutrition. Curr Opin Biotechnol 2020; 61: 102-9.
[http://dx.doi.org/10.1016/j.copbio.2019.10.004] [PMID: 31812911]
[75]
Williams KC, Dunkin AC. Utilization of synthetic lysine by the growing pig. In: Proceedings of the Australian Society of Animal Production. Pergamon Press 1980; Vol.13: pp. 149-53.
[76]
Han IK, Lee JH. The role of synthetic amino acids in monogastric animal production - review -. Asian-Australas J Anim Sci 2000; 13(4): 543-60.
[http://dx.doi.org/10.5713/ajas.2000.543]
[77]
Pellett PL, Ghosh S. Lysine fortification: Past, present, and future. Food Nutr Bull 2004; 25(2): 107-13.
[http://dx.doi.org/10.1177/156482650402500201] [PMID: 15214255]
[78]
Toride Y. Lysine and Other Amino Acids for Feed: Production and Contribution to Protein Utilization in Animal Feeding. In: Food and Agriculture Organization of the United Nations. FAO 2004; p. 161-5.
[79]
Houmard NM, Mainville JL, Bonin CP, Huang S, Luethy MH, Malvar TM. High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnol J 2007; 5(5): 605-14.
[http://dx.doi.org/10.1111/j.1467-7652.2007.00265.x] [PMID: 17553105]
[80]
Rock CD. Trans-acting small interfering RNA4: Key to nutraceutical synthesis in grape development? Trends Plant Sci 2013; 18(11): 601-10.
[http://dx.doi.org/10.1016/j.tplants.2013.07.006] [PMID: 23993483]
[81]
Tang G, Galili G. Using RNAi to improve plant nutritional value: From mechanism to application. Trends Biotechnol 2004; 22(9): 463-9.
[http://dx.doi.org/10.1016/j.tibtech.2004.07.009] [PMID: 15331227]
[82]
Napoli C, Lemieux C, Jorgensen R. lntroduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes. Plant Cell 1990; 2(4): 279-89.
[http://dx.doi.org/10.2307/3869076] [PMID: 12354959]
[83]
Karchi H, Shaul O, Galili G. Lysine synthesis and catabolism are coordinately regulated during tobacco seed development. Proc Natl Acad Sci 1994; 91(7): 2577-81.
[http://dx.doi.org/10.1073/pnas.91.7.2577] [PMID: 8146157]
[84]
Khare T, Shriram V, Kumar V. RNAi technology: The role in development of abiotic stress-tolerant cropsBiochemical, Physiological and molecular avenues for combating abiotic stress tolerance in plants Amsterdem. Elsevier 2018; pp. 117-33.
[http://dx.doi.org/10.1016/B978-0-12-813066-7.00008-5]
[85]
Mat Jalaluddin NS, Othman RY, Harikrishna JA. Global trends in research and commercialization of exogenous and endogenous RNAi technologies for crops. Crit Rev Biotechnol 2019; 39(1): 67-78.
[http://dx.doi.org/10.1080/07388551.2018.1496064] [PMID: 30198341]
[86]
Hajong M, Devi NO, Debbarma M, Majumder D. Nanotechnology: An emerging tool for management of biotic stresses in plantsPlant Nanobionics. Cham: Springer 2019; pp. 299-335.
[http://dx.doi.org/10.1007/978-3-030-16379-2_11]
[87]
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredients. ACS Nano 2020; 14(3): 2678-701.
[http://dx.doi.org/10.1021/acsnano.0c00173] [PMID: 32125825]
[88]
Saleh MM, Mahmoud AS, Abbas HS, Abu-Ellail FF, Kotakonda M, Salem KF. Nanotechnological approaches for efficient delivery of plant ingredientsSustainable Agriculture Reviews 53. Cham: Springer 2021; pp. 247-86.
[http://dx.doi.org/10.1007/978-3-030-86876-5_11]
[89]
Lukasik A, Zielenkiewicz P. Plant MicroRNAs-novel players in natural medicine? Int J Mol Sci 2016; 18(1): 9.
[http://dx.doi.org/10.3390/ijms18010009] [PMID: 28025496]
[90]
Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: A look under the hood of miRISC. Nat Struct Mol Biol 2012; 19(6): 586-93.
[http://dx.doi.org/10.1038/nsmb.2296] [PMID: 22664986]
[91]
Tingö L, Ahlberg E, Johansson L, et al. Non-Coding RNAs in human breast milk: A systematic review. Front Immunol 2021; 12725323
[http://dx.doi.org/10.3389/fimmu.2021.725323] [PMID: 34539664]
[92]
Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. Cell Res 2012; 22(1): 107-26.
[http://dx.doi.org/10.1038/cr.2011.158] [PMID: 21931358]
[93]
Jiang M, Sang X, Hong Z. Beyond nutrients: Food-derived microRNAs provide cross-kingdom regulation. BioEssays 2012; 34(4): 280-4.
[http://dx.doi.org/10.1002/bies.201100181] [PMID: 22354805]
[94]
del Pozo-Acebo L, López de las Hazas MC, Margollés A, Dávalos A, García-Ruiz A. Eating microRNAs: Pharmacological opportunities for cross‐kingdom regulation and implications in host gene and gut microbiota modulation. Br J Pharmacol 2021; 178(11): 2218-45.
[http://dx.doi.org/10.1111/bph.15421] [PMID: 33644849]
[95]
Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19(1): 92-105.
[http://dx.doi.org/10.1101/gr.082701.108] [PMID: 18955434]
[96]
Philip A, Ferro VA, Tate RJ. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process. Mol Nutr Food Res 2015; 59(10): 1962-72.
[http://dx.doi.org/10.1002/mnfr.201500137] [PMID: 26147655]
[97]
Cione E, Zambrini ASV, Cannataro R. MicroRNAs and extracellular vesicles in milk: RNA-based micronutrients? J Nutr 2021; 151(6): 1378-9.
[http://dx.doi.org/10.1093/jn/nxab134] [PMID: 33979837]
[98]
Preethi KA, Sekar D. Dietary microRNAs: Current status and perspective in food science. J Food Biochem 2021; 45(7)e13827
[http://dx.doi.org/10.1111/jfbc.13827] [PMID: 34132408]
[99]
Zhang Y, Wiggins BE, Lawrence C, Petrick J, Ivashuta S, Heck G. Analysis of plant-derived miRNAs in animal small RNA datasets. BMC Genomics 2012; 13(1): 381.
[http://dx.doi.org/10.1186/1471-2164-13-381] [PMID: 22873950]
[100]
Witwer KW, McAlexander MA, Queen SE, Adams RJ. Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs. RNA Biol 2013; 10(7): 1080-6.
[http://dx.doi.org/10.4161/rna.25246] [PMID: 23770773]
[101]
Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr 2014; 144(10): 1495-500.
[http://dx.doi.org/10.3945/jn.114.196436] [PMID: 25122645]
[102]
Daka A, Peer D. RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev 2012; 64(13): 1508-21.
[http://dx.doi.org/10.1016/j.addr.2012.08.014] [PMID: 22975009]
[103]
Aquilano K, Ceci V, Gismondi A, et al. Adipocyte metabolism is improved by TNF receptor-targeting small RNAs identified from dried nuts. Commun Biol 2019; 2(1): 317.
[http://dx.doi.org/10.1038/s42003-019-0563-7] [PMID: 31453381]
[104]
Cavalieri D, Rizzetto L, Tocci N, et al. Plant microRNAs as novel immunomodulatory agents. Sci Rep 2016; 6(1): 25761.
[http://dx.doi.org/10.1038/srep25761] [PMID: 27167363]
[105]
Chen X, Wu R, Zhu Y, et al. Study on the inhibition of Mfn1 by plant-derived miR5338 mediating the treatment of BPH with rape bee pollen. BMC Complement Altern Med 2018; 18(1): 38.
[http://dx.doi.org/10.1186/s12906-018-2107-y] [PMID: 29382326]
[106]
Chin AR, Fong MY, Somlo G, et al. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 2016; 26(2): 217-28.
[http://dx.doi.org/10.1038/cr.2016.13] [PMID: 26794868]
[107]
Gismondi A, Nanni V, Monteleone V, Colao C, Di Marco G, Canini A. Plant miR171 modulates mTOR pathway in HEK293 cells by targeting GNA12. Mol Biol Rep 2021; 48(1): 435-49.
[http://dx.doi.org/10.1007/s11033-020-06070-6] [PMID: 33386590]
[108]
Hou D, He F, Ma L, et al. The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. J Nutr Biochem 2018; 57: 197-205.
[http://dx.doi.org/10.1016/j.jnutbio.2018.03.026] [PMID: 29751293]
[109]
Li M, Chen T, He JJ, et al. Plant MIR167e-5p inhibits enterocyte proliferation by targeting β-catenin. Cells 2019; 8(11): 1385-91.
[http://dx.doi.org/10.3390/cells8111385] [PMID: 31689969]
[110]
Li M, Chen T, Wang R, et al. Plant MIR156 regulates intestinal growth in mammals by targeting the Wnt/β-catenin pathway. Am J Physiol Cell Physiol 2019; 317(3): C434-48. b
[http://dx.doi.org/10.1152/ajpcell.00030.2019] [PMID: 31166713]
[111]
Liu J, Wang F, Weng Z, et al. Soybean-derived miRNAs specifically inhibit proliferation and stimulate apoptosis of human colonic Caco-2 cancer cells but not normal mucosal cells in culture. Genomics 2020; 112(5): 2949-58.
[http://dx.doi.org/10.1016/j.ygeno.2020.05.011] [PMID: 32407773]
[112]
Shen CB, Yu L, Gu YN, Wang S, Lu L. Inhibited expression of GATA-3 on Th2 cells transfect Astragalus-derived miR-396 of asthmatic mice in vivo. Chin J Immunol 2019; 35: 3001-7.
[http://dx.doi.org/10.1016/j.ygeno.2020.05.011]
[113]
Abla M, Sun H, Li Z, et al. Identification of miRNAs and their response to cold stress in Astragalus Membranaceus. Biomolecules 2019; 9(5): 182.
[http://dx.doi.org/10.3390/biom9050182] [PMID: 31083391]
[114]
Teng Y, Ren Y, Sayed M, et al. Plant-derived exosomal MicroRNAs shape the gut microbiota. Cell Host Microbe 2018; 24(5): 637-652.e8.
[http://dx.doi.org/10.1016/j.chom.2018.10.001] [PMID: 30449315]
[115]
Zhang S, Sang X, Hou D, et al. Plant-derived RNAi therapeutics: A strategic inhibitor of HBsAg. Biomaterials 2019; 210: 83-93.
[http://dx.doi.org/10.1016/j.biomaterials.2019.04.033] [PMID: 31078314]
[116]
Zhou LK, Zhou Z, Jiang XM, et al. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discov 2020; 6(1): 54.
[http://dx.doi.org/10.1038/s41421-020-00197-3] [PMID: 32802404]
[117]
Zhou Z, Li X, Liu J, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res 2015; 25(1): 39-49.
[http://dx.doi.org/10.1038/cr.2014.130] [PMID: 25287280]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy