Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Insight into Structure-Activity Relationship of New Compounds for Breast Cancer Treatment

Author(s): Lu Li* and Qiangsheng Zhang*

Volume 23, Issue 25, 2023

Published on: 05 October, 2023

Page: [2373 - 2393] Pages: 21

DOI: 10.2174/0115680266253686230921054429

Price: $65

conference banner
Abstract

Background: Breast cancer has always been a vicious disease that threatens female health. Although the existing surgery, radiotherapy, chemotherapy, and kinase-targeted drugs have achieved certain effects, there are still many shortcomings. Novel compounds used to treat breast cancer, particularly TNBC, are eagerly being discovered.

Methods: More than 100 novel compounds that show anti-breast cancer growth were compiled from public databases. The compound design strategies, structure-activity relationship research, and activity evaluation methods have also been reviewed.

Results: These novel anti-breast cancer compounds can be divided into mechanisms of action: kinase inhibitors, epigenetic inhibitors, dual inhibitors, degraders, metal complexes, etc. The design strategies mainly include conformational constraint, scaffold-hopping, merging key pharmacophores, etc. Structure-activity relationship studies of these new compounds mainly focus on increasing activity, improving selectivity, increasing membrane permeability, reducing toxicity, improving pharmacokinetic properties, etc.

Conclusion: Through the structural optimization of kinase inhibitors, microtubule-targeted drugs, and metal complexes, it is expected to obtain more advantageous breast cancer treatment drugs. It cannot be ignored that epigenetic inhibitors, dual inhibitors and degraders may bring new breast cancer treatment strategies.

Graphical Abstract

[1]
Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2022. CA Cancer J. Clin., 2022, 72(6), 524-541.
[http://dx.doi.org/10.3322/caac.21754] [PMID: 36190501]
[2]
Swain, S.M.; Shastry, M.; Hamilton, E. Targeting HER2-positive breast cancer: Advances and future directions. Nat. Rev. Drug Discov., 2023, 22(2), 101-126.
[http://dx.doi.org/10.1038/s41573-022-00579-0] [PMID: 36344672]
[3]
Jaiswal, P.; Tripathi, V.; Nayak, A.; Kataria, S.; Lukashevich, V.; Das, A.K.; Parmar, H.S. A Molecular Link Between Diabetes and Breast Cancer: Therapeutic Potential of Repurposing Incretin-based Therapies for Breast Cancer. Curr. Cancer Drug Targets, 2021, 21(10), 829-848.
[http://dx.doi.org/10.2174/1568009621666210901101851] [PMID: 34468298]
[4]
Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet, 2021, 397(10286), 1750-1769.
[http://dx.doi.org/10.1016/S0140-6736(20)32381-3] [PMID: 33812473]
[5]
Lemke, G. Biology of the TAM Receptors. Cold Spring Harb. Perspect. Biol., 2013, 5(11), a009076.
[http://dx.doi.org/10.1101/cshperspect.a009076] [PMID: 24186067]
[6]
Davra, V.; Kimani, S.; Calianese, D.; Birge, R. Ligand Activation of TAM Family Receptors-Implications for Tumor Biology and Therapeutic Response. Cancers (Basel), 2016, 8(12), 107.
[http://dx.doi.org/10.3390/cancers8120107] [PMID: 27916840]
[7]
Chan, S.; Zhang, Y.; Wang, J.; Yu, Q.; Peng, X.; Zou, J.; Zhou, L.; Tan, L.; Duan, Y.; Zhou, Y.; Hur, H.; Ai, J.; Wang, Z.; Ren, X.; Zhang, Z.; Ding, K. Discovery of 3-Aminopyrazole Derivatives as New Potent and Orally Bioavailable AXL Inhibitors. J. Med. Chem., 2022, 65(22), 15374-15390.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01346] [PMID: 36358010]
[8]
Jingwen, B.; Yaochen, L.; Guojun, Z. Cell cycle regulation and anticancer drug discovery. Cancer Biol. Med., 2017, 14(4), 348-362.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0033] [PMID: 29372101]
[9]
Laderian, B.; Fojo, T. CDK4/6 Inhibition as a therapeutic strategy in breast cancer: Palbociclib, ribociclib, and abemaciclib. Semin. Oncol., 2017, 44(6), 395-403.
[http://dx.doi.org/10.1053/j.seminoncol.2018.03.006] [PMID: 29935901]
[10]
Sánchez-Martínez, C.; Lallena, M.J.; Sanfeliciano, S.G.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015–2019). Bioorg. Med. Chem. Lett., 2019, 29(20), 126637.
[http://dx.doi.org/10.1016/j.bmcl.2019.126637] [PMID: 31477350]
[11]
Susanti, N.M.P.; Tjahjono, D.H. Cyclin-Dependent Kinase 4 and 6 Inhibitors in Cell Cycle Dysregulation for Breast Cancer Treatment. Molecules, 2021, 26(15), 4462.
[http://dx.doi.org/10.3390/molecules26154462] [PMID: 34361615]
[12]
Chen, W.; Ji, M.; Cheng, H.; Zheng, M.; Xia, F.; Min, W.; Yang, H.; Wang, X.; Wang, L.; Cao, L.; Yuan, K.; Yang, P. Discovery, Optimization, and Evaluation of Selective CDK4/6 Inhibitors for the Treatment of Breast Cancer. J. Med. Chem., 2022, 65(22), 15102-15122.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00947] [PMID: 36350721]
[13]
Sabbah, D.A.; Hajjo, R.; Sweidan, K. Review on Epidermal Growth Factor Receptor (EGFR) Structure, Signaling Pathways, Interactions, and Recent Updates of EGFR Inhibitors. Curr. Top. Med. Chem., 2020, 20(10), 815-834.
[http://dx.doi.org/10.2174/1568026620666200303123102] [PMID: 32124699]
[14]
Singh, D.; Kumar Attri, B.; Kaur Gill, R.; Bariwal, J. Review on EGFR Inhibitors: Critical Updates. Mini Rev. Med. Chem., 2016, 16(14), 1134-1166.
[http://dx.doi.org/10.2174/1389557516666160321114917] [PMID: 26996617]
[15]
Masuda, H.; Zhang, D.; Bartholomeusz, C.; Doihara, H.; Hortobagyi, G.N.; Ueno, N.T. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res. Treat., 2012, 136(2), 331-345.
[http://dx.doi.org/10.1007/s10549-012-2289-9] [PMID: 23073759]
[16]
Aliwaini, S.; Abu Thaher, B.; Al-Masri, I.; Shurrab, N.; El-Kurdi, S.; Schollmeyer, D.; Qeshta, B.; Ghunaim, M.; Csuk, R.; Laufer, S.; Kaiser, L.; Deigner, H.P. Design, Synthesis and Biological Evaluation of Novel Pyrazolo[1,2,4]triazolopyrimidine Derivatives as Potential Anticancer Agents. Molecules, 2021, 26(13), 4065.
[http://dx.doi.org/10.3390/molecules26134065] [PMID: 34279406]
[17]
Ghedini, G.C.; Ronca, R.; Presta, M.; Giacomini, A. Future applications of FGF/FGFR inhibitors in cancer. Expert Rev. Anticancer Ther., 2018, 18(9), 861-872.
[http://dx.doi.org/10.1080/14737140.2018.1491795] [PMID: 29936878]
[18]
Ornitz, D.M.; Itoh, N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol., 2015, 4(3), 215-266.
[http://dx.doi.org/10.1002/wdev.176] [PMID: 25772309]
[19]
Hedrick, E.; Li, X.; Safe, S. Penfluridol Represses Integrin Expression in Breast Cancer through Induction of Reactive Oxygen Species and Downregulation of Sp Transcription Factors. Mol. Cancer Ther., 2017, 16(1), 205-216.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0451] [PMID: 27811009]
[20]
Ranjan, A.; German, N.; Mikelis, C.; Srivenugopal, K.; Srivastava, S.K. Penfluridol induces endoplasmic reticulum stress leading to autophagy in pancreatic cancer. Tumour Biol., 2017, 39(6)
[http://dx.doi.org/10.1177/1010428317705517] [PMID: 28618969]
[21]
Ashraf-Uz-Zaman, M.; Shahi, S.; Akwii, R.; Sajib, M.S.; Farshbaf, M.J.; Kallem, R.R.; Putnam, W.; Wang, W.; Zhang, R.; Alvina, K.; Trippier, P.C.; Mikelis, C.M.; German, N.A. Design, synthesis and structure-activity relationship study of novel urea compounds as FGFR1 inhibitors to treat metastatic triple-negative breast cancer. Eur. J. Med. Chem., 2021, 209, 112866.
[http://dx.doi.org/10.1016/j.ejmech.2020.112866] [PMID: 33039722]
[22]
Zhong, Z.; Shi, L.; Fu, T.; Huang, J.; Pan, Z. Discovery of Novel 7-Azaindole Derivatives as Selective Covalent Fibroblast Growth Factor Receptor 4 Inhibitors for the Treatment of Hepatocellular Carcinoma. J. Med. Chem., 2022, 65(10), 7278-7295.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00255] [PMID: 35549181]
[23]
Loewith, R.; Jacinto, E.; Wullschleger, S.; Lorberg, A.; Crespo, J.L.; Bonenfant, D.; Oppliger, W.; Jenoe, P.; Hall, M.N. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell, 2002, 10(3), 457-468.
[http://dx.doi.org/10.1016/S1097-2765(02)00636-6] [PMID: 12408816]
[24]
Hsu, P.P.; Kang, S.A.; Rameseder, J.; Zhang, Y.; Ottina, K.A.; Lim, D.; Peterson, T.R.; Choi, Y.; Gray, N.S.; Yaffe, M.B.; Marto, J.A.; Sabatini, D.M. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science, 2011, 332(6035), 1317-1322.
[http://dx.doi.org/10.1126/science.1199498] [PMID: 21659604]
[25]
Baldo, P.; Cecco, S.; Giacomin, E.; Lazzarini, R.; Ros, B.; Marastoni, S. mTOR pathway and mTOR inhibitors as agents for cancer therapy. Curr. Cancer Drug Targets, 2008, 8(8), 647-665.
[http://dx.doi.org/10.2174/156800908786733513] [PMID: 19075588]
[26]
Xu, T.; Zhang, J.; Yang, C.; Pluta, R.; Wang, G.; Ye, T.; Ouyang, L. Identification and optimization of 3-bromo-N’-(4-hydroxybenzylidene)-4-methylbenzohydrazide derivatives as mTOR inhibitors that induce autophagic cell death and apoptosis in triple-negative breast cancer. Eur. J. Med. Chem., 2021, 219, 113424.
[http://dx.doi.org/10.1016/j.ejmech.2021.113424]
[27]
Thorpe, L.M.; Yuzugullu, H.; Zhao, J.J. PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer, 2015, 15(1), 7-24.
[http://dx.doi.org/10.1038/nrc3860] [PMID: 25533673]
[28]
Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol., 2010, 11(5), 329-341.
[http://dx.doi.org/10.1038/nrm2882] [PMID: 20379207]
[29]
Hanan, E.J.; Braun, M.G.; Heald, R.A.; MacLeod, C.; Chan, C.; Clausen, S.; Edgar, K.A.; Eigenbrot, C.; Elliott, R.; Endres, N.; Friedman, L.S.; Gogol, E.; Gu, X.H.; Thibodeau, R.H.; Jackson, P.S.; Kiefer, J.R.; Knight, J.D.; Nannini, M.; Narukulla, R.; Pace, A.; Pang, J.; Purkey, H.E.; Salphati, L.; Sampath, D.; Schmidt, S.; Sideris, S.; Song, K.; Sujatha-Bhaskar, S.; Ultsch, M.; Wallweber, H.; Xin, J.; Yeap, S.; Young, A.; Zhong, Y.; Staben, S.T. Discovery of GDC-0077 (Inavolisib), a Highly Selective Inhibitor and Degrader of Mutant PI3Kα. J. Med. Chem., 2022, 65(24), 16589-16621.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01422] [PMID: 36455032]
[30]
Archambault, V.; Lépine, G.; Kachaner, D. Understanding the Polo Kinase machine. Oncogene, 2015, 34(37), 4799-4807.
[http://dx.doi.org/10.1038/onc.2014.451] [PMID: 25619835]
[31]
Zhao, Y.; Wang, X. PLK4: a promising target for cancer therapy. J. Cancer Res. Clin. Oncol., 2019, 145(10), 2413-2422.
[http://dx.doi.org/10.1007/s00432-019-02994-0] [PMID: 31492983]
[32]
Sun, Y.; Sun, Y.; Wang, L.; Wu, T.; Yin, W.; Wang, J.; Xue, Y.; Qin, Q.; Sun, Y.; Yang, H.; Zhao, D.; Cheng, M. Design, synthesis, and biological evaluation of novel pyrazolo [3,4-d]pyrimidine derivatives as potent PLK4 inhibitors for the treatment of TRIM37-amplified breast cancer. Eur. J. Med. Chem., 2022, 238, 114424.
[http://dx.doi.org/10.1016/j.ejmech.2022.114424] [PMID: 35576702]
[33]
Attwood, M.M.; Fabbro, D.; Sokolov, A.V.; Knapp, S.; Schiöth, H.B. Trends in kinase drug discovery: Targets, indications and inhibitor design. Nat. Rev. Drug Discov., 2021, 20(11), 839-861.
[http://dx.doi.org/10.1038/s41573-021-00252-y] [PMID: 34354255]
[34]
Huang, L.; Jiang, S.; Shi, Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). J. Hematol. Oncol., 2020, 13(1), 143.
[http://dx.doi.org/10.1186/s13045-020-00977-0] [PMID: 33109256]
[35]
Roskoski, R., Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol. Res., 2023, 187, 106552.
[http://dx.doi.org/10.1016/j.phrs.2022.106552] [PMID: 36403719]
[36]
Padeken, J.; Methot, S.P.; Gasser, S.M. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat. Rev. Mol. Cell Biol., 2022, 23(9), 623-640.
[http://dx.doi.org/10.1038/s41580-022-00483-w] [PMID: 35562425]
[37]
Cao, H.; Li, L.; Yang, D.; Zeng, L.; Yewei, X.; Yu, B.; Liao, G.; Chen, J. Recent progress in histone methyltransferase (G9a) inhibitors as anticancer agents. Eur. J. Med. Chem., 2019, 179, 537-546.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.072] [PMID: 31276898]
[38]
Liu, F.; Barsyte-Lovejoy, D.; Allali-Hassani, A.; He, Y.; Herold, J.M.; Chen, X.; Yates, C.M.; Frye, S.V.; Brown, P.J.; Huang, J.; Vedadi, M.; Arrowsmith, C.H.; Jin, J. Optimization of cellular activity of G9a inhibitors 7-aminoalkoxy-quinazolines. J. Med. Chem., 2011, 54(17), 6139-6150.
[http://dx.doi.org/10.1021/jm200903z] [PMID: 21780790]
[39]
Zhang, J.; Yao, D.; Jiang, Y.; Huang, J.; Yang, S.; Wang, J. Synthesis and biological evaluation of benzimidazole derivatives as the G9a Histone Methyltransferase inhibitors that induce autophagy and apoptosis of breast cancer cells. Bioorg. Chem., 2017, 72, 168-181.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.005] [PMID: 28460359]
[40]
Xu, X.; Zhao, J.; Xu, Z.; Peng, B.; Huang, Q.; Arnold, E.; Ding, J. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J. Biol. Chem., 2004, 279(32), 33946-33957.
[http://dx.doi.org/10.1074/jbc.M404298200] [PMID: 15173171]
[41]
Sharma, H. Development of Novel Therapeutics Targeting Isocitrate Dehydrogenase Mutations in Cancer. Curr. Top. Med. Chem., 2018, 18(6), 505-524.
[http://dx.doi.org/10.2174/1568026618666180518091144] [PMID: 29773061]
[42]
Gross, S.; Cairns, R.A.; Minden, M.D.; Driggers, E.M.; Bittinger, M.A.; Jang, H.G.; Sasaki, M.; Jin, S.; Schenkein, D.P.; Su, S.M.; Dang, L.; Fantin, V.R.; Mak, T.W. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J. Exp. Med., 2010, 207(2), 339-344.
[http://dx.doi.org/10.1084/jem.20092506] [PMID: 20142433]
[43]
Dang, L.; White, D.W.; Gross, S.; Bennett, B.D.; Bittinger, M.A.; Driggers, E.M.; Fantin, V.R.; Jang, H.G.; Jin, S.; Keenan, M.C.; Marks, K.M.; Prins, R.M.; Ward, P.S.; Yen, K.E.; Liau, L.M.; Rabinowitz, J.D.; Cantley, L.C.; Thompson, C.B.; Vander Heiden, M.G.; Su, S.M. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 2009, 462(7274), 739-744.
[http://dx.doi.org/10.1038/nature08617] [PMID: 19935646]
[44]
Zheng, B.; Yao, Y.; Liu, Z.; Deng, L.; Anglin, J.L.; Jiang, H.; Prasad, B.V.V.; Song, Y. Crystallographic Investigation and Selective Inhibition of Mutant Isocitrate Dehydrogenase. ACS Med. Chem. Lett., 2013, 4(6), 542-546.
[http://dx.doi.org/10.1021/ml400036z] [PMID: 23795241]
[45]
Liu, Z.; Yao, Y.; Kogiso, M.; Zheng, B.; Deng, L.; Qiu, J.J.; Dong, S.; Lv, H.; Gallo, J.M.; Li, X.N.; Song, Y. Inhibition of cancer-associated mutant isocitrate dehydrogenases: Synthesis, structure-activity relationship, and selective antitumor activity. J. Med. Chem., 2014, 57(20), 8307-8318.
[http://dx.doi.org/10.1021/jm500660f] [PMID: 25271760]
[46]
Bhat, K.P.; Ümit Kaniskan, H.; Jin, J.; Gozani, O. Epigenetics and beyond: Targeting writers of protein lysine methylation to treat disease. Nat. Rev. Drug Discov., 2021, 20(4), 265-286.
[http://dx.doi.org/10.1038/s41573-020-00108-x] [PMID: 33469207]
[47]
Sterling, J.; Menezes, S.V.; Abbassi, R.H.; Munoz, L. Histone lysine demethylases and their functions in cancer. Int. J. Cancer, 2021, 148(10), 2375-2388.
[http://dx.doi.org/10.1002/ijc.33375] [PMID: 33128779]
[48]
Zhang, S.; Liu, M.; Yao, Y.; Yu, B.; Liu, H. Targeting LSD1 for acute myeloid leukemia (AML) treatment. Pharmacol. Res., 2021, 164, 105335.
[http://dx.doi.org/10.1016/j.phrs.2020.105335] [PMID: 33285227]
[49]
Wang, B.; Liu, H.M.; Zheng, Y-C.; Liu, Y-J.; Gao, Y. An Update of Lysine Specific Demethylase 1 Inhibitor: A Patent Review (2016-2020). Recent Patents Anticancer Drug Discov., 2022, 17(1), 9-25.
[http://dx.doi.org/10.2174/1574892816666210728125224] [PMID: 34323202]
[50]
Menna, M.; Fiorentino, F.; Marrocco, B.; Lucidi, A.; Tomassi, S.; Cilli, D.; Romanenghi, M.; Cassandri, M.; Pomella, S.; Pezzella, M.; Del Bufalo, D.; Zeya Ansari, M.S.; Tomašević, N.; Mladenović, M.; Viviano, M.; Sbardella, G.; Rota, R.; Trisciuoglio, D.; Minucci, S.; Mattevi, A.; Rotili, D.; Mai, A. Novel non-covalent LSD1 inhibitors endowed with anticancer effects in leukemia and solid tumor cellular models. Eur. J. Med. Chem., 2022, 237, 114410.
[http://dx.doi.org/10.1016/j.ejmech.2022.114410] [PMID: 35525212]
[51]
Guccione, E.; Richard, S. The regulation, functions and clinical relevance of arginine methylation. Nat. Rev. Mol. Cell Biol., 2019, 20(10), 642-657.
[http://dx.doi.org/10.1038/s41580-019-0155-x] [PMID: 31350521]
[52]
Kaniskan, H.Ü.; Martini, M.L.; Jin, J. Inhibitors of Protein Methyltransferases and Demethylases. Chem. Rev., 2018, 118(3), 989-1068.
[http://dx.doi.org/10.1021/acs.chemrev.6b00801] [PMID: 28338320]
[53]
Smith, E.; Zhou, W.; Shindiapina, P.; Sif, S.; Li, C.; Baiocchi, R.A. Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy. Expert Opin. Ther. Targets, 2018, 22(6), 527-545.
[http://dx.doi.org/10.1080/14728222.2018.1474203] [PMID: 29781349]
[54]
Price, O.M.; Hevel, J.M. Toward Understanding Molecular Recognition between PRMTs and their Substrates. Curr. Protein Pept. Sci., 2020, 21(7), 713-724.
[http://dx.doi.org/10.2174/1389203721666200124143145] [PMID: 31976831]
[55]
Eram, M.S.; Shen, Y.; Szewczyk, M.M.; Wu, H.; Senisterra, G.; Li, F.; Butler, K.V.; Kaniskan, H.Ü.; Speed, B.A.; dela Seña, C.; Dong, A.; Zeng, H.; Schapira, M.; Brown, P.J.; Arrowsmith, C.H.; Barsyte-Lovejoy, D.; Liu, J.; Vedadi, M.; Jin, J. A Potent, Selective, and Cell-Active Inhibitor of Human Type I Protein Arginine Methyltransferases. ACS Chem. Biol., 2016, 11(3), 772-781.
[http://dx.doi.org/10.1021/acschembio.5b00839] [PMID: 26598975]
[56]
Wu, Q.; Nie, D.Y.; Ba-alawi, W.; Ji, Y.; Zhang, Z.; Cruickshank, J.; Haight, J.; Ciamponi, F.E.; Chen, J.; Duan, S.; Shen, Y.; Liu, J.; Marhon, S.A.; Mehdipour, P.; Szewczyk, M.M.; Dogan-Artun, N.; Chen, W.; Zhang, L.X.; Deblois, G.; Prinos, P.; Massirer, K.B.; Barsyte-Lovejoy, D.; Jin, J.; De Carvalho, D.D.; Haibe-Kains, B.; Wang, X.; Cescon, D.W.; Lupien, M.; Arrowsmith, C.H. PRMT inhibition induces a viral mimicry response in triple-negative breast cancer. Nat. Chem. Biol., 2022, 18(8), 821-830.
[http://dx.doi.org/10.1038/s41589-022-01024-4] [PMID: 35578032]
[57]
Zhang, Q.; Cao, J.; Zhang, Y.; Bi, Z.; Feng, Q.; Yu, L.; Li, L. Design, synthesis and evaluation of antitumor activity of selective PRMT6 inhibitors. Eur. J. Med. Chem., 2023, 247, 115032.
[http://dx.doi.org/10.1016/j.ejmech.2022.115032] [PMID: 36566712]
[58]
Ndubaku, C.; Tsui, V. Inhibiting the deubiquitinating enzymes (DUBs). J. Med. Chem., 2015, 58(4), 1581-1595.
[http://dx.doi.org/10.1021/jm501061a] [PMID: 25364867]
[59]
Islam, M.T.; Chen, F.; Chen, H. The oncogenic role of ubiquitin specific peptidase (USP8) and its signaling pathways targeting for cancer therapeutics. Arch. Biochem. Biophys., 2021, 701, 108811.
[http://dx.doi.org/10.1016/j.abb.2021.108811] [PMID: 33600786]
[60]
Tian, Y.; Liu, K.; Liu, R.; Qiu, Z.; Xu, Y.; Wei, W.; Xu, X.; Wang, J.; Ding, H.; Li, Z.; Bian, J. Discovery of Potent Small-Molecule USP8 Inhibitors for the Treatment of Breast Cancer through Regulating ERα Expression. J. Med. Chem., 2022, 65(13), 8914-8932.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00013] [PMID: 35786929]
[61]
Park, J.W.; Han, J.W. Targeting epigenetics for cancer therapy. Arch. Pharm. Res., 2019, 42(2), 159-170.
[http://dx.doi.org/10.1007/s12272-019-01126-z] [PMID: 30806885]
[62]
Michalak, E.M.; Burr, M.L.; Bannister, A.J.; Dawson, M.A. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol., 2019, 20(10), 573-589.
[http://dx.doi.org/10.1038/s41580-019-0143-1] [PMID: 31270442]
[63]
Mohammad, H.P.; Barbash, O.; Creasy, C.L. Targeting epigenetic modifications in cancer therapy: Erasing the roadmap to cancer. Nat. Med., 2019, 25(3), 403-418.
[http://dx.doi.org/10.1038/s41591-019-0376-8] [PMID: 30842676]
[64]
Su, M.; Gong, X.; Liu, F. An update on the emerging approaches for histone deacetylase (HDAC) inhibitor drug discovery and future perspectives. Expert Opin. Drug Discov., 2021, 16(7), 745-761.
[http://dx.doi.org/10.1080/17460441.2021.1877656] [PMID: 33530771]
[65]
Lu, Y.; Li, C.M.; Wang, Z.; Ross, C.R., II; Chen, J.; Dalton, J.T.; Li, W.; Miller, D.D. Discovery of 4-substituted methoxybenzoyl-aryl-thiazole as novel anticancer agents: Synthesis, biological evaluation, and structure-activity relationships. J. Med. Chem., 2009, 52(6), 1701-1711.
[http://dx.doi.org/10.1021/jm801449a] [PMID: 19243174]
[66]
Belkina, A.C.; Denis, G.V. BET domain co-regulators in obesity, inflammation and cancer. Nat. Rev. Cancer, 2012, 12(7), 465-477.
[http://dx.doi.org/10.1038/nrc3256] [PMID: 22722403]
[67]
Rosner, M.; Hengstschläger, M. Targeting epigenetic readers in cancer. N. Engl. J. Med., 2012, 367(18), 1764-1765.
[http://dx.doi.org/10.1056/NEJMc1211175] [PMID: 23113498]
[68]
Stathis, A.; Bertoni, F. BET Proteins as Targets for Anticancer Treatment. Cancer Discov., 2018, 8(1), 24-36.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0605] [PMID: 29263030]
[69]
Pinkerneil, M.; Hoffmann, M.J.; Schulz, W.A.; Niegisch, G. HDACs and HDAC Inhibitors in Urothelial Carcinoma - Perspectives for an Antineoplastic Treatment. Curr. Med. Chem., 2017, 24(37), 4151-4165.
[PMID: 28078999]
[70]
Mody, D.; Bouckaert, J.; Savvides, S.N.; Gupta, V. Rational Design and Development of HDAC Inhibitors for Breast Cancer Treatment. Curr. Pharm. Des., 2021, 27(45), 4610-4629.
[http://dx.doi.org/10.2174/1381612827666210917143953] [PMID: 34533439]
[71]
Mietton, F.; Ferri, E.; Champleboux, M.; Zala, N.; Maubon, D.; Zhou, Y.; Harbut, M.; Spittler, D.; Garnaud, C.; Courçon, M.; Chauvel, M.; d’Enfert, C.; Kashemirov, B.A.; Hull, M.; Cornet, M.; McKenna, C.E.; Govin, J.; Petosa, C. Selective BET bromodomain inhibition as an antifungal therapeutic strategy. Nat. Commun., 2017, 8(1), 15482.
[http://dx.doi.org/10.1038/ncomms15482] [PMID: 28516956]
[72]
Huang, Y.; Liu, N.; Pan, Z.; Li, Z.; Sheng, C. BET–HDAC Dual Inhibitors for Combinational Treatment of Breast Cancer and Concurrent Candidiasis. J. Med. Chem., 2023, 66(2), 1239-1253.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01191] [PMID: 36622852]
[73]
Chang, X.; Sun, D.; Shi, D.; Wang, G.; Chen, Y.; Zhang, K.; Tan, H.; Liu, J.; Liu, B.; Ouyang, L. Design, synthesis, and biological evaluation of quinazolin-4(3H)-one derivatives co-targeting poly(ADP-ribose) polymerase-1 and bromodomain containing protein 4 for breast cancer therapy. Acta Pharm. Sin. B, 2021, 11(1), 156-180.
[http://dx.doi.org/10.1016/j.apsb.2020.06.003] [PMID: 33532187]
[74]
Shu, S.; Wu, H.J.; Ge, J.Y.; Zeid, R.; Harris, I.S.; Jovanović, B.; Murphy, K.; Wang, B.; Qiu, X.; Endress, J.E.; Reyes, J.; Lim, K.; Font-Tello, A.; Syamala, S.; Xiao, T.; Reddy Chilamakuri, C.S.; Papachristou, E.K.; D’Santos, C.; Anand, J.; Hinohara, K.; Li, W.; McDonald, T.O.; Luoma, A.; Modiste, R.J.; Nguyen, Q.D.; Michel, B.; Cejas, P.; Kadoch, C.; Jaffe, J.D.; Wucherpfennig, K.W.; Qi, J.; Liu, X.S.; Long, H.; Brown, M.; Carroll, J.S.; Brugge, J.S.; Bradner, J.; Michor, F.; Polyak, K. Synthetic Lethal and Resistance Interactions with BET Bromodomain Inhibitors in Triple-Negative Breast Cancer. Mol. Cell, 2020, 78(6), 1096-1113.e8.
[http://dx.doi.org/10.1016/j.molcel.2020.04.027] [PMID: 32416067]
[75]
Lam, F.C.; Kong, Y.W.; Huang, Q.; Vu Han, T.L.; Maffa, A.D.; Kasper, E.M.; Yaffe, M.B. BRD4 prevents the accumulation of R-loops and protects against transcription–replication collision events and DNA damage. Nat. Commun., 2020, 11(1), 4083.
[http://dx.doi.org/10.1038/s41467-020-17503-y] [PMID: 32796829]
[76]
Muñoz-Gámez, J.A.; Martín-Oliva, D.; Aguilar-Quesada, R.; Cañuelo, A.; Nuñez, M.I.; Valenzuela, M.T.; RUIZ de ALMODÓVAR, J.M.; de MURCIA, G.; Oliver, F.J. PARP inhibition sensitizes p53-deficient breast cancer cells to doxorubicin-induced apoptosis. Biochem. J., 2005, 386(1), 119-125.
[http://dx.doi.org/10.1042/BJ20040776] [PMID: 15456408]
[77]
Cao, X.; Wu, K.; Chen, M.; Peng, X.; Li, Y.; Tang, G.; Peng, J. Recent Progress in the Research on Benzimidazole PARP-1 Inhibitors. Mini Rev. Med. Chem., 2022, 22(19), 2438-2462.
[http://dx.doi.org/10.2174/1389557522666220321150700] [PMID: 35319364]
[78]
Zhang, J.; Yang, C.; Tang, P.; Chen, J.; Zhang, D.; Li, Y.; Yang, G.; Liu, Y.; Zhang, Y.; Wang, Y.; Liu, J.; Ouyang, L. Discovery of 4-Hydroxyquinazoline Derivatives as Small Molecular BET/PARP1 Inhibitors That Induce Defective Homologous Recombination and Lead to Synthetic Lethality for Triple-Negative Breast Cancer Therapy. J. Med. Chem., 2022, 65(9), 6803-6825.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00135] [PMID: 35442700]
[79]
Kim, K.H.; Roberts, C.W.M. Targeting EZH2 in cancer. Nat. Med., 2016, 22(2), 128-134.
[http://dx.doi.org/10.1038/nm.4036] [PMID: 26845405]
[80]
Zhang, Q.; Yang, H.; Feng, Q.; Cao, J.; Zhang, Y.; Li, L.; Yu, L. Focus on the classical and non-classical functions of EZH2: Guide the development of inhibitors and degraders. Pharmacol. Res., 2022, 178, 106159.
[http://dx.doi.org/10.1016/j.phrs.2022.106159] [PMID: 35259482]
[81]
Margueron, R.; Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature, 2011, 469(7330), 343-349.
[http://dx.doi.org/10.1038/nature09784] [PMID: 21248841]
[82]
Huang, X.; Yan, J.; Zhang, M.; Wang, Y.; Chen, Y.; Fu, X.; Wei, R.; Zheng, X.; Liu, Z.; Zhang, X.; Yang, H.; Hao, B.; Shen, Y.; Su, Y.; Cong, X.; Huang, M.; Tan, M.; Ding, J.; Geng, M. Targeting Epigenetic Crosstalk as a Therapeutic Strategy for EZH2-Aberrant Solid Tumors. Cell, 2018, 175(1), 186-199.e19.
[http://dx.doi.org/10.1016/j.cell.2018.08.058] [PMID: 30220457]
[83]
Huang, N.; Liao, P.; Zuo, Y.; Zhang, L.; Jiang, R. Design, Synthesis, and Biological Evaluation of a Potent Dual EZH2–BRD4 Inhibitor for the Treatment of Some Solid Tumors. J. Med. Chem., 2023, 66(4), 2646-2662.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01607] [PMID: 36774555]
[84]
Lu, D.; Wang, C.; Qu, L.; Yin, F.; Li, S.; Luo, H.; Zhang, Y.; Liu, X.; Chen, X.; Luo, Z.; Cui, N.; Kong, L.; Wang, X. Histone Deacetylase and Enhancer of Zeste Homologue 2 Dual Inhibitors Presenting a Synergistic Effect for the Treatment of Hematological Malignancies. J. Med. Chem., 2022, 65(19), 12838-12859.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00673] [PMID: 36153841]
[85]
Anderson, W.F.; Chatterjee, N.; Ershler, W.B.; Brawley, O.W. Estrogen receptor breast cancer phenotypes in the Surveillance, Epidemiology, and End Results database. Breast Cancer Res. Treat., 2002, 76(1), 27-36.
[http://dx.doi.org/10.1023/A:1020299707510] [PMID: 12408373]
[86]
Jones, M.E.; van Leeuwen, F.E.; Hoogendoorn, W.E.; Mourits, M.J.E.; Hollema, H.; van Boven, H.; Press, M.F.; Bernstein, L.; Swerdlow, A.J. Endometrial cancer survival after breast cancer in relation to tamoxifen treatment: Pooled results from three countries. Breast Cancer Res., 2012, 14(3), R91.
[http://dx.doi.org/10.1186/bcr3206] [PMID: 22691381]
[87]
Abdelmalek, C.M.; Hu, Z.; Kronenberger, T.; Küblbeck, J.; Kinnen, F.J.M.; Hesse, S.S.; Malik, A.; Kudolo, M.; Niess, R.; Gehringer, M.; Zender, L.; Witt-Enderby, P.A.; Zlotos, D.P.; Laufer, S.A. Gefitinib-Tamoxifen Hybrid Ligands as Potent Agents against Triple-Negative Breast Cancer. J. Med. Chem., 2022, 65(6), 4616-4632.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01646] [PMID: 35286086]
[88]
Gryder, B.E.; Rood, M.K.; Johnson, K.A.; Patil, V.; Raftery, E.D.; Yao, L.P.D.; Rice, M.; Azizi, B.; Doyle, D.F.; Oyelere, A.K. Histone deacetylase inhibitors equipped with estrogen receptor modulation activity. J. Med. Chem., 2013, 56(14), 5782-5796.
[http://dx.doi.org/10.1021/jm400467w] [PMID: 23786452]
[89]
Jiang, Z.; Li, W.; Hu, X.; Zhang, Q.; Sun, T.; Cui, S.; Wang, S.; Ouyang, Q.; Yin, Y.; Geng, C.; Tong, Z.; Cheng, Y.; Pan, Y.; Sun, Y.; Wang, H.; Ouyang, T.; Gu, K.; Feng, J.; Wang, X.; Wang, S.; Liu, T.; Gao, J.; Cristofanilli, M.; Ning, Z.; Lu, X. Tucidinostat plus exemestane for postmenopausal patients with advanced, hormone receptor-positive breast cancer (ACE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol., 2019, 20(6), 806-815.
[http://dx.doi.org/10.1016/S1470-2045(19)30164-0] [PMID: 31036468]
[90]
Munster, P.N.; Thurn, K.T.; Thomas, S.; Raha, P.; Lacevic, M.; Miller, A.; Melisko, M.; Ismail-Khan, R.; Rugo, H.; Moasser, M.; Minton, S.E. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br. J. Cancer, 2011, 104(12), 1828-1835.
[http://dx.doi.org/10.1038/bjc.2011.156] [PMID: 21559012]
[91]
Luo, G.; Lin, X.; Ren, S.; Wu, S.; Wang, X.; Ma, L.; Xiang, H. Development of novel tetrahydroisoquinoline-hydroxamate conjugates as potent dual SERDs/HDAC inhibitors for the treatment of breast cancer. Eur. J. Med. Chem., 2021, 226, 113870.
[http://dx.doi.org/10.1016/j.ejmech.2021.113870] [PMID: 34610548]
[92]
Varshney, D.; Spiegel, J.; Zyner, K.; Tannahill, D.; Balasubramanian, S. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 459-474.
[http://dx.doi.org/10.1038/s41580-020-0236-x] [PMID: 32313204]
[93]
Maiti, A.; Qi, Q.; Peng, X.; Yan, L.; Takabe, K.; Hait, N. Class I histone deacetylase inhibitor suppresses vasculogenic mimicry by enhancing the expression of tumor suppressor and anti-angiogenesis genes in aggressive human TNBC cells. Int. J. Oncol., 2019, 55(1), 116-130.
[http://dx.doi.org/10.3892/ijo.2019.4796] [PMID: 31059004]
[94]
Hu, M.H.; Wu, T.Y.; Huang, Q.; Jin, G. New substituted quinoxalines inhibit triple-negative breast cancer by specifically downregulating the c-MYC transcription. Nucleic Acids Res., 2019, 47(20), 10529-10542.
[http://dx.doi.org/10.1093/nar/gkz835] [PMID: 31584090]
[95]
Jiang, X.C.; Tu, F.H.; Wei, L.Y.; Wang, B.Z.; Yuan, H.; Yuan, J.M.; Rao, Y.; Huang, S.L.; Li, Q.J.; Ou, T.M.; Wang, H.G.; Tan, J.H.; Chen, S.B.; Huang, Z.S. Discovery of a Novel G-Quadruplex and Histone Deacetylase (HDAC) Dual-Targeting Agent for the Treatment of Triple-Negative Breast Cancer. J. Med. Chem., 2022, 65(18), 12346-12366.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01058] [PMID: 36053318]
[96]
Matalkah, F.; Martin, E.; Zhao, H.; Agazie, Y.M. SHP2 acts both upstream and downstream of multiple receptor tyrosine kinases to promote basal-like and triple-negative breast cancer. Breast Cancer Res., 2016, 18(1), 2.
[http://dx.doi.org/10.1186/s13058-015-0659-z] [PMID: 26728598]
[97]
Sausgruber, N.; Coissieux, M-M.; Britschgi, A.; Wyckoff, J.; Aceto, N.; Leroy, C.; Stadler, M.B.; Voshol, H.; Bonenfant, D.; Bentires-Alj, M. Tyrosine phosphatase SHP2 increases cell motility in triple-negative breast cancer through the activation of SRC-family kinases. Oncogene, 2015, 34(17), 2272-2278.
[http://dx.doi.org/10.1038/onc.2014.170] [PMID: 24931162]
[98]
Braal, C.L.; Jongbloed, E.M.; Wilting, S.M.; Mathijssen, R.H.J.; Koolen, S.L.W.; Jager, A. Inhibiting CDK4/6 in Breast Cancer with Palbociclib, Ribociclib, and Abemaciclib: Similarities and Differences. Drugs, 2021, 81(3), 317-331.
[http://dx.doi.org/10.1007/s40265-020-01461-2] [PMID: 33369721]
[99]
Álvarez-Fernández, M.; Malumbres, M. Mechanisms of Sensitivity and Resistance to CDK4/6 Inhibition. Cancer Cell, 2020, 37(4), 514-529.
[http://dx.doi.org/10.1016/j.ccell.2020.03.010] [PMID: 32289274]
[100]
Chen, X.; Shu, C.; Li, W.; Hou, Q.; Luo, G.; Yang, K.; Wu, X. Discovery of a Novel Src Homology-2 Domain Containing Protein Tyrosine Phosphatase-2 (SHP2) and Cyclin-Dependent Kinase 4 (CDK4) Dual Inhibitor for the Treatment of Triple-Negative Breast Cancer. J. Med. Chem., 2022, 65(9), 6729-6747.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00063] [PMID: 35447031]
[101]
Liu, M.; Gao, S.; Liang, T.; Qiu, X.; Yang, X.; Fang, H.; Hou, X. Discovery of Novel Src Homology-2 Domain-Containing Phosphatase 2 and Histone Deacetylase Dual Inhibitors with Potent Antitumor Efficacy and Enhanced Antitumor Immunity. J. Med. Chem., 2022, 65(18), 12200-12218.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00866] [PMID: 36097406]
[102]
Bensch, G.; Prenner, B.M. Combination therapy: Appropriate for everyone? J. Asthma, 2003, 40(4), 431-444.
[http://dx.doi.org/10.1081/JAS-120018783] [PMID: 12870839]
[103]
Stanković, T.; Dinić, J.; Podolski-Renić, A.; Musso, L.; Burić, S.S.; Dallavalle, S.; Pešić, M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr. Med. Chem., 2019, 26(33), 6074-6106.
[http://dx.doi.org/10.2174/0929867325666180607094856] [PMID: 29874992]
[104]
Zhang, Y.X.; Knyazev, P.G.; Cheburkin, Y.V.; Sharma, K.; Knyazev, Y.P.; Őrfi, L.; Szabadkai, I.; Daub, H.; Kéri, G.; Ullrich, A. AXL is a potential target for therapeutic intervention in breast cancer progression. Cancer Res., 2008, 68(6), 1905-1915.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2661] [PMID: 18339872]
[105]
Zajac, O.; Leclere, R.; Nicolas, A.; Meseure, D.; Marchio, C.; Vincent-Salomon, A.; Roman-Roman, S.; Schoumacher, M.; Dubois, T. AXL Controls Directed Migration of Mesenchymal Triple-Negative Breast Cancer Cells. Cells, 2020, 9(1), 247.
[106]
Tan, L.; Zhang, Z.; Gao, D.; Luo, J.; Tu, Z.C.; Li, Z.; Peng, L.; Ren, X.; Ding, K. 4-Oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as New Axl Kinase Inhibitors. J. Med. Chem., 2016, 59(14), 6807-6825.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00608] [PMID: 27379978]
[107]
He, R.; Song, Z.; Bai, Y.; He, S.; Huang, J.; Wang, Y.; Zhou, F.; Huang, W.; Guo, J.; Wang, Z.; Tu, Z.C.; Ren, X.; Zhang, Z.; Xu, J.; Ding, K. Discovery of AXL Degraders with Improved Potencies in Triple-Negative Breast Cancer (TNBC) Cells. J. Med. Chem., 2023, 66(3), 1873-1891.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01682] [PMID: 36695404]
[108]
Yang, J.; Chang, Y.; Tien, J.C.Y.; Wang, Z.; Zhou, Y.; Zhang, P.; Huang, W.; Vo, J.; Apel, I.J.; Wang, C.; Zeng, V.Z.; Cheng, Y.; Li, S.; Wang, G.X.; Chinnaiyan, A.M.; Ding, K. Discovery of a Highly Potent and Selective Dual PROTAC Degrader of CDK12 and CDK13. J. Med. Chem., 2022, 65(16), 11066-11083.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00384] [PMID: 35938508]
[109]
Ma, A.; Stratikopoulos, E.; Park, K.S.; Wei, J.; Martin, T.C.; Yang, X.; Schwarz, M.; Leshchenko, V.; Rialdi, A.; Dale, B.; Lagana, A.; Guccione, E.; Parekh, S.; Parsons, R.; Jin, J. Discovery of a first-in-class EZH2 selective degrader. Nat. Chem. Biol., 2020, 16(2), 214-222.
[http://dx.doi.org/10.1038/s41589-019-0421-4] [PMID: 31819273]
[110]
Wang, C.; Chen, X.; Liu, X.; Lu, D.; Li, S.; Qu, L.; Yin, F.; Luo, H.; Zhang, Y.; Luo, Z.; Cui, N.; Kong, L.; Wang, X. Discovery of precision targeting EZH2 degraders for triple-negative breast cancer. Eur. J. Med. Chem., 2022, 238, 114462.
[http://dx.doi.org/10.1016/j.ejmech.2022.114462] [PMID: 35623249]
[111]
Wandinger, S.K.; Richter, K.; Buchner, J. The Hsp90 chaperone machinery. J. Biol. Chem., 2008, 283(27), 18473-18477.
[http://dx.doi.org/10.1074/jbc.R800007200] [PMID: 18442971]
[112]
Liu, Q.; Tu, G.; Hu, Y.; Jiang, Q.; Liu, J.; Lin, S.; Yu, Z.; Li, G.; Wu, X.; Tang, Y.; Huang, X.; Xu, J.; Liu, Y.; Wu, L. Discovery of BP3 as an efficacious proteolysis targeting chimera (PROTAC) degrader of HSP90 for treating breast cancer. Eur. J. Med. Chem., 2022, 228, 114013.
[http://dx.doi.org/10.1016/j.ejmech.2021.114013] [PMID: 34864330]
[113]
Radu, M.; Semenova, G.; Kosoff, R.; Chernoff, J. PAK signalling during the development and progression of cancer. Nat. Rev. Cancer, 2014, 14(1), 13-25.
[http://dx.doi.org/10.1038/nrc3645] [PMID: 24505617]
[114]
Dummler, B.; Ohshiro, K.; Kumar, R.; Field, J. Pak protein kinases and their role in cancer. Cancer Metastasis Rev., 2009, 28(1-2), 51-63.
[http://dx.doi.org/10.1007/s10555-008-9168-1] [PMID: 19165420]
[115]
Chow, H.Y.; Karchugina, S.; Groendyke, B.J.; Toenjes, S.; Hatcher, J.; Donovan, K.A.; Fischer, E.S.; Abalakov, G.; Faezov, B.; Dunbrack, R.; Gray, N.S.; Chernoff, J. Development and Utility of a PAK1-Selective Degrader. J. Med. Chem., 2022, 65(23), 15627-15641.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00756] [PMID: 36416208]
[116]
Guan, J.; Zhou, W.; Hafner, M.; Blake, R.A.; Chalouni, C.; Chen, I.P.; De Bruyn, T.; Giltnane, J.M.; Hartman, S.J.; Heidersbach, A.; Houtman, R.; Ingalla, E.; Kategaya, L.; Kleinheinz, T.; Li, J.; Martin, S.E.; Modrusan, Z.; Nannini, M.; Oeh, J.; Ubhayakar, S.; Wang, X.; Wertz, I.E.; Young, A.; Yu, M.; Sampath, D.; Hager, J.H.; Friedman, L.S.; Daemen, A.; Metcalfe, C. Therapeutic Ligands Antagonize Estrogen Receptor Function by Impairing Its Mobility. Cell, 2019, 178(4), 949-963.e18.
[http://dx.doi.org/10.1016/j.cell.2019.06.026] [PMID: 31353221]
[117]
Downton, T.; Zhou, F.; Segara, D.; Jeselsohn, R.; Lim, E. Oral Selective Estrogen Receptor Degraders (SERDs) in Breast Cancer: Advances, Challenges, and Current Status. Drug Des. Devel. Ther., 2022, 16, 2933-2948.
[http://dx.doi.org/10.2147/DDDT.S380925] [PMID: 36081610]
[118]
Hernando, C.; Ortega-Morillo, B.; Tapia, M.; Moragón, S.; Martínez, M.T.; Eroles, P.; Garrido-Cano, I.; Adam-Artigues, A.; Lluch, A.; Bermejo, B.; Cejalvo, J.M. Oral Selective Estrogen Receptor Degraders (SERDs) as a Novel Breast Cancer Therapy: Present and Future from a Clinical Perspective. Int. J. Mol. Sci., 2021, 22(15), 7812.
[http://dx.doi.org/10.3390/ijms22157812] [PMID: 34360578]
[119]
Tria, G.S.; Abrams, T.; Baird, J.; Burks, H.E.; Firestone, B.; Gaither, L.A.; Hamann, L.G.; He, G.; Kirby, C.A.; Kim, S.; Lombardo, F.; Macchi, K.J.; McDonnell, D.P.; Mishina, Y.; Norris, J.D.; Nunez, J.; Springer, C.; Sun, Y.; Thomsen, N.M.; Wang, C.; Wang, J.; Yu, B.; Tiong-Yip, C.L.; Peukert, S. Discovery of LSZ102, a Potent, Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) for the Treatment of Estrogen Receptor Positive Breast Cancer. J. Med. Chem., 2018, 61(7), 2837-2864.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01682] [PMID: 29562737]
[120]
Lu, Z.; Cao, Y.; Zhang, D.; Meng, X.; Guo, B.; Kong, D.; Yang, Y. Discovery of Thieno[2,3- e ]indazole Derivatives as Novel Oral Selective Estrogen Receptor Degraders with Highly Improved Antitumor Effect and Favorable Druggability. J. Med. Chem., 2022, 65(7), 5724-5750.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00008] [PMID: 35357160]
[121]
Guenette, R.G.; Yang, S.W.; Min, J.; Pei, B.; Potts, P.R. Target and tissue selectivity of PROTAC degraders. Chem. Soc. Rev., 2022, 51(14), 5740-5756.
[http://dx.doi.org/10.1039/D2CS00200K] [PMID: 35587208]
[122]
Békés, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Discov., 2022, 21(3), 181-200.
[http://dx.doi.org/10.1038/s41573-021-00371-6] [PMID: 35042991]
[123]
Arora, P.; Singh, M.; Singh, V.; Bhatia, S.; Arora, S. PROTACs in Treatment of Cancer: A Review. Mini Rev. Med. Chem., 2021, 21(16), 2347-2360.
[http://dx.doi.org/10.2174/1389557521666210226150740] [PMID: 33634757]
[124]
Roy, S.; Westmaas, J.A.; Hagen, K.D.; van Wezel, G.P.; Reedijk, J. Platinum(II) compounds with chelating ligands based on pyridine and pyrimidine: DNA and protein binding studies. J. Inorg. Biochem., 2009, 103(9), 1288-1297.
[http://dx.doi.org/10.1016/j.jinorgbio.2009.07.003] [PMID: 19664824]
[125]
Liu, X.M.; Li, Z.; Xie, X.R.; Wang, J.Q.; Qiao, X.; Qiao, X.; Xie, C.Z.; Xu, J.Y. Combination of DNA Damage, Autophagy, and ERK Inhibition: Novel Evodiamine-Inspired Multi-Action Pt(IV) Prodrugs with High-Efficiency and Low-Toxicity Antitumor Activity. J. Med. Chem., 2023, 66(3), 1852-1872.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01660] [PMID: 36715603]
[126]
Pan, Z.Y.; Ling, Y.Y.; Zhang, H.; Hao, L.; Tan, C.P.; Mao, Z.W. Pt(IV)-Deferasirox Prodrug Combats DNA Damage Repair by Regulating RNA N 6 -Methyladenosine Methylation. J. Med. Chem., 2022, 65(21), 14692-14700.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01224] [PMID: 36353870]
[127]
Zhang, M.; Li, L.; Li, S.; Liu, Z.; Zhang, N.; Sun, B.; Wang, Z.; Jia, D.; Liu, M.; Wang, Q. Development of Clioquinol Platinum(IV) Conjugates as Autophagy-Targeted Antimetastatic Agents. J. Med. Chem., 2023, 66(5), 3393-3410.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01895] [PMID: 36891739]
[128]
Rahman, F.U.; Bhatti, M.Z.; Ali, A.; Duong, H.Q.; Zhang, Y.; Ji, X.; Lin, Y.; Wang, H.; Li, Z.T.; Zhang, D.W. Dimetallic Ru(II) arene complexes appended on bis-salicylaldimine induce cancer cell death and suppress invasion via p53-dependent signaling. Eur. J. Med. Chem., 2018, 157, 1480-1490.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.054] [PMID: 30282320]
[129]
Gurgul, I.; Janczy-Cempa, E.; Mazuryk, O.; Lekka, M.; Łomzik, M.; Suzenet, F.; Gros, P.C.; Brindell, M. Inhibition of Metastasis by Polypyridyl Ru(II) Complexes through Modification of Cancer Cell Adhesion – in vitro Functional and Molecular Studies. J. Med. Chem., 2022, 65(15), 10459-10470.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00580] [PMID: 35895090]
[130]
Yuan, C.; Wang, Z.; Wang, Z.; Liu, W.; Li, G.; Meng, J.; Wu, R.; Wu, Q.; Wang, J.; Mei, W. Novel Chiral Ru(II) Complexes as Potential c-myc G-quadruplex DNA Stabilizers Inducing DNA Damage to Suppress Triple-Negative Breast Cancer Progression. Int. J. Mol. Sci., 2022, 24(1), 203.
[http://dx.doi.org/10.3390/ijms24010203] [PMID: 36613647]
[131]
Banerjee, S.; Banerjee, S. Metal-based Complexes as Potential Anti-cancer Agents. Anticancer. Agents Med. Chem., 2022, 22(15), 2684-2707.
[http://dx.doi.org/10.2174/1871520622666220331085144] [PMID: 35362388]
[132]
Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88, 102925.
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[133]
Dixit, R.; Petry, S. The life of a microtubule. Mol. Biol. Cell, 2018, 29(6), 689.
[http://dx.doi.org/10.1091/mbc.E17-11-0677] [PMID: 29535173]
[134]
Naaz, F.; Haider, M.R.; Shafi, S.; Yar, M.S. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur. J. Med. Chem., 2019, 171, 310-331.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.025] [PMID: 30953881]
[135]
Zhang, Q.; Hu, X.; Wan, G.; Wang, J.; Li, L.; Wu, X.; Liu, Z.; Yu, L. Discovery of 3-(((9H-purin-6-yl)amino)methyl)-4,6-dimethylpyridin-2(1H)-one derivatives as novel tubulin polymerization inhibitors for treatment of cancer. Eur. J. Med. Chem., 2019, 184, 111728.
[http://dx.doi.org/10.1016/j.ejmech.2019.111728]
[136]
Lin, S.; Du, T.; Zhang, J.; Wu, D.; Tian, H.; Zhang, K.; Jiang, L.; Lu, D.; Sheng, L.; Li, Y.; Ji, M.; Chen, X.; Xu, H. Optimization of Benzamide Derivatives as Potent and Orally Active Tubulin Inhibitors Targeting the Colchicine Binding Site. J. Med. Chem., 2022, 65(24), 16372-16391.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01208] [PMID: 36511661]
[137]
Tan, L.; Wu, C.; Zhang, J.; Yu, Q.; Wang, X.; Zhang, L.; Ge, M.; Wang, Z.; Ouyang, L.; Wang, Y. Design, Synthesis, and Biological Evaluation of Heterocyclic-Fused Pyrimidine Chemotypes Guided by X-ray Crystal Structure with Potential Antitumor and Anti-multidrug Resistance Efficacy Targeting the Colchicine Binding Site. J. Med. Chem., 2023, 66(5), 3588-3620.
[http://dx.doi.org/10.1021/acs.jmedchem.2c02115] [PMID: 36802449]
[138]
Zhong, H.; Zhao, M.; Wu, C.; Zhang, J.; Chen, L.; Sun, J. Development of oxoisoaporphine derivatives with topoisomerase I inhibition and reversal of multidrug resistance in breast cancer MCF-7/ADR cells. Eur. J. Med. Chem., 2022, 235, 114300.
[http://dx.doi.org/10.1016/j.ejmech.2022.114300] [PMID: 35339100]
[139]
Rani, P.; Chahal, S.; Kumar, R.; Mayank; Kumar, P.; Negi, A.; Singh, R.; Kumar, S.; Kataria, R.; Joshi, G.; Sindhu, J. Electro-organic synthesis of C-5 sulfenylated amino uracils: Optimization and exploring topoisomerase-I based anti-cancer profile. Bioorg. Chem., 2023, 138, 106660.
[http://dx.doi.org/10.1016/j.bioorg.2023.106660] [PMID: 37320914]
[140]
Guan, Y.F.; Liu, X.J.; Yuan, X.Y.; Liu, W.B.; Li, Y.R.; Yu, G.X.; Tian, X.Y.; Zhang, Y.B.; Song, J.; Li, W.; Zhang, S.Y. Design, Synthesis, and Anticancer Activity Studies of Novel Quinoline-Chalcone Derivatives. Molecules, 2021, 26(16), 4899.
[http://dx.doi.org/10.3390/molecules26164899] [PMID: 34443487]
[141]
Tavallaei, O.; Heidarian, M.; Marzbany, M.; Aliabadi, A. Cytotoxicity and pro-apoptosis activity of synthetic 1,3-thiazole incorporated phthalimide derivatives on cancer cells. Iran. J. Basic Med. Sci., 2021, 24(5), 604-614.
[PMID: 34249261]
[142]
Liu, Y.; Chen, Y.; Jiang, J.; Chu, X.; Guo, Q.; Zhao, L.; Feng, F.; Liu, W.; Zhang, X.; He, S.; Yang, P.; Fang, P.; Sun, H. Development of highly potent and specific AKR1C3 inhibitors to restore the chemosensitivity of drug-resistant breast cancer. Eur. J. Med. Chem., 2023, 247, 115013.
[http://dx.doi.org/10.1016/j.ejmech.2022.115013] [PMID: 36566714]
[143]
Byun, W.S.; Lim, H.; Hong, J.; Bae, E.S.; Lee, S.B.; Kim, Y.; Lee, J.; Lee, S.K.; Hong, S. Design, Synthesis, and Biological Activity of Marinacarboline Analogues as STAT3 Pathway Inhibitors for Docetaxel-Resistant Triple-Negative Breast Cancer. J. Med. Chem., 2023, 66(4), 3106-3133.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01115] [PMID: 36786551]
[144]
Zhang, J.; Xu, K.; Yang, F.; Qiu, Y.; Li, J.; Li, J.; Wang, W.; Tan, G.; Zou, Z.; Kang, F. Design, synthesis and evaluation of nitric oxide releasing derivatives of 2,4-diaminopyrimidine as novel FAK inhibitors for intervention of metastatic triple-negative breast cancer. Eur. J. Med. Chem., 2023, 250, 115192.
[http://dx.doi.org/10.1016/j.ejmech.2023.115192] [PMID: 36801517]
[145]
Wang, J.; Gao, T.; Ma, Y.; Zhang, Y.; Yi, Y.; Yan, F.; Cheng, Z.; Yu, Y.; Li, J.; Chen, Z.; Ding, W.; Ma, Z. Discovery of unglycosylated indolocarbazoles as ROCK2 isoform-selective inhibitors for the treatment of breast cancer metastasis. Eur. J. Med. Chem., 2023, 250, 115181.
[http://dx.doi.org/10.1016/j.ejmech.2023.115181] [PMID: 36764122]
[146]
Zhang, Q.; Chen, X.; Cao, J.; Yang, W.; Wan, G.; Feng, Q.; Zhou, S.; Yang, H.; Wang, N.; Liu, Z.; Xiao, H.; Zhu, Y.; Yu, L. Discovery of a Novel Covalent EZH2 Inhibitor Based on Tazemetostat Scaffold for the Treatment of Ovarian Cancer. J. Med. Chem., 2023, 66(3), 1725-1741.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01370] [PMID: 36692394]
[147]
Zhang, B.; Zhu, C.; Chan, A.S.C.; Lu, G. Discovery of a first-in-class Aurora A covalent inhibitor for the treatment of triple negative breast cancer. Eur. J. Med. Chem., 2023, 256, 115457.
[http://dx.doi.org/10.1016/j.ejmech.2023.115457] [PMID: 37207533]
[148]
Sun, Y.; Xue, Y.; Sun, P.; Mu, S.; Liu, H.; Sun, Y.; Wang, L.; Wang, J.; Wu, T.; Yin, W.; Qin, Q.; Sun, Y.; Liu, N.; Wang, H.; Yang, H.; Zhao, D.; Cheng, M. Discovery of the First Potent, Selective, and in vivo Efficacious Polo-like Kinase 4 Proteolysis Targeting Chimera Degrader for the Treatment of TRIM37 -Amplified Breast Cancer. J. Med. Chem., 2023, 66(12), 8200-8221.
[http://dx.doi.org/10.1021/acs.jmedchem.3c00505] [PMID: 37279162]
[149]
Xie, B.; Yin, Z.; Hu, Z.; Lv, J.; Du, C.; Deng, X.; Huang, Y.; Li, Q.; Huang, J.; Liang, K.; Zhou, H.B.; Dong, C. Discovery of a Novel Class of PROTACs as Potent and Selective Estrogen Receptor α Degraders to Overcome Endocrine-Resistant Breast Cancer in vitro and in vivo. J. Med. Chem., 2023, 66(10), 6631-6651.
[http://dx.doi.org/10.1021/acs.jmedchem.2c02032] [PMID: 37161783]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy