Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Hydrazides as Potential HDAC Inhibitors: Structure-activity Relationships and Biological Implications

Author(s): Suvankar Banerjee, Sandip Kumar Baidya, Nilanjan Adhikari, Tarun Jha and Balaram Ghosh*

Volume 23, Issue 25, 2023

Published on: 15 May, 2023

Page: [2343 - 2372] Pages: 30

DOI: 10.2174/1568026623666230405124207

Price: $65

Abstract

Epigenetic modulations by HDACs are associated with multiple disease conditions. In this context, HDACs play vital roles in the progression of diseases including several cancers, neurodegenerative diseases, inflammatory diseases, and metabolic disorders. Though several HDAC inhibitors have been established as drug candidates, their usage has been restricted because of broad-spectrum inhibition, highly toxic character, and off-target adverse effects. Therefore, specific HDAC selectivity is essential to get rid of such adverse effects. Hydrazide-based compounds have already been proven to exert higher inhibitory efficacy and specific HDAC selectivity. In this article, the detailed structure-activity relationship (SAR) of the existing hydrazide-based HDAC inhibitors has been elucidated to gather crucial information that can be utilized further for the development of promising drug candidates for combating diverse diseases in the future.

Next »
Graphical Abstract

[1]
Halusková, J. Epigenetic studies in human diseases. Folia Biol., 2010, 56(3), 83-96.
[PMID: 20653993]
[2]
Moosavi, A.; Motevalizadeh, A.A. Role of epigenetics in biology and human diseases. Iran. Biomed. J., 2016, 20(5), 246-258.
[http://dx.doi.org/10.22045/ibj.2016.01] [PMID: 27377127]
[3]
Payne, C.J. Epigenetics and Epigenomics; IntechOpen: London, 2014.
[http://dx.doi.org/10.5772/57037]
[4]
Ruzicka, W.B. Epigenetic mechanisms in the pathophysiology of psychotic disorders. Harv. Rev. Psychiatry, 2015, 23(3), 212-222.
[http://dx.doi.org/10.1097/HRP.0000000000000048] [PMID: 25943315]
[5]
Banerjee, S.; Adhikari, N.; Amin, S.A.; Jha, T. Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview. Eur. J. Med. Chem., 2019, 164, 214-240.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.039] [PMID: 30594678]
[6]
Adhikari, N.; Jha, T.; Ghosh, B. Dissecting histone deacetylase 3 in multiple disease conditions: Selective inhibition as a promising therapeutic strategy. J. Med. Chem., 2021, 64(13), 8827-8869.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01676] [PMID: 34161101]
[7]
Ho, T.C.S.; Chan, A.H.Y.; Ganesan, A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J. Med. Chem., 2020, 63(21), 12460-12484.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00830] [PMID: 32608981]
[8]
Bertrand, P. Inside HDAC with HDAC inhibitors. Eur. J. Med. Chem., 2010, 45(6), 2095-2116.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.030] [PMID: 20223566]
[9]
Roche, J.; Bertrand, P. Inside HDACs with more selective HDAC inhibitors. Eur. J. Med. Chem., 2016, 121, 451-483.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.047] [PMID: 27318122]
[10]
Chuang, D.M.; Leng, Y.; Marinova, Z.; Kim, H.J.; Chiu, C.T. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci., 2009, 32(11), 591-601.
[http://dx.doi.org/10.1016/j.tins.2009.06.002] [PMID: 19775759]
[11]
Li, Y.; Lin, S.; Gu, Z.; Chen, L.; He, B. Zinc-dependent deacetylases (HDACs) as potential targets for treating Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2022, 76, 129015.
[http://dx.doi.org/10.1016/j.bmcl.2022.129015] [PMID: 36208870]
[12]
Dai, Y.; Wei, T.; Shen, Z.; Bei, Y.; Lin, H.; Dai, H. Classical HDACs in the regulation of neuroinflammation. Neurochem. Int., 2021, 150, 105182.
[http://dx.doi.org/10.1016/j.neuint.2021.105182] [PMID: 34509559]
[13]
Yang, F.F.; Hu, T.; Liu, J.Q.; Yu, X.Q.; Ma, L.Y. Histone deacetylases (HDACs) as the promising immunotherapeutic targets for hematologic cancer treatment. Eur. J. Med. Chem., 2023, 245(Pt 2), 114920.
[http://dx.doi.org/10.1016/j.ejmech.2022.114920] [PMID: 36399875]
[14]
Khan, N.M.; Haqqi, T.M. Epigenetics in osteoarthritis: Potential of HDAC inhibitors as therapeutics. Pharmacol. Res., 2018, 128, 73-79.
[http://dx.doi.org/10.1016/j.phrs.2017.08.007] [PMID: 28827187]
[15]
Shakespear, M.R.; Halili, M.A.; Irvine, K.M.; Fairlie, D.P.; Sweet, M.J. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol., 2011, 32(7), 335-343.
[http://dx.doi.org/10.1016/j.it.2011.04.001] [PMID: 21570914]
[16]
Kulthinee, S.; Yano, N.; Zhuang, S.; Wang, L.; Zhao, T.C. Critical functions of histone deacetylases (HDACs) in modulating inflammation associated with cardiovascular diseases. Pathophysiology, 2022, 29(3), 471-486.
[http://dx.doi.org/10.3390/pathophysiology29030038] [PMID: 35997393]
[17]
Herbein, G.; Wendling, D. Histone deacetylases in viral infections. Clin. Epigenetics, 2010, 1(1-2), 13-24.
[http://dx.doi.org/10.1007/s13148-010-0003-5] [PMID: 22704086]
[18]
Ghazy, E.; Abdelsalam, M.; Robaa, D.; Pierce, R.J.; Sippl, W. Histone deacetylase (HDAC) inhibitors for the treatment of Schistosomiasis. Pharmaceuticals., 2022, 15(1), 80.
[http://dx.doi.org/10.3390/ph15010080] [PMID: 35056137]
[19]
Andrews, K.T.; Haque, A.; Jones, M.K. HDAC inhibitors in parasitic diseases. Immunol. Cell Biol., 2012, 90(1), 66-77.
[http://dx.doi.org/10.1038/icb.2011.97] [PMID: 22124373]
[20]
Makkar, R.; Behl, T.; Arora, S. Role of HDAC inhibitors in diabetes mellitus. Curr. Res. Transl. Med., 2020, 68(2), 45-50.
[http://dx.doi.org/10.1016/j.retram.2019.08.001] [PMID: 31477543]
[21]
Zhang, L.; Zhang, J.; Jiang, Q.; Zhang, L.; Song, W. Zinc binding groups for histone deacetylase inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 714-721.
[http://dx.doi.org/10.1080/14756366.2017.1417274] [PMID: 29616828]
[22]
Popiołek, Ł. Hydrazide-hydrazones as potential antimicrobial agents: Overview of the literature since 2010. Med. Chem. Res., 2017, 26(2), 287-301.
[http://dx.doi.org/10.1007/s00044-016-1756-y] [PMID: 28163562]
[23]
Sztanke, M.; Sztanke, K. Biologically important hydrazide-containing fused azaisocytosines as antioxidant agents. Redox Rep., 2017, 22(6), 572-581.
[http://dx.doi.org/10.1080/13510002.2017.1364330] [PMID: 28812524]
[24]
Kajal, A.; Bala, S.; Sharma, N.; Kamboj, S.; Saini, V. Therapeutic potential of hydrazones as anti-inflammatory agents. Int. J. Med. Chem., 2014, 2014, 761030.
[http://dx.doi.org/10.1155/2014/761030] [PMID: 25383223]
[25]
LiverTox. Clinical and Research Information on Drug-Induced Liver Injury; Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2018. Bookshelf ID: NBK547852
[PMID: 31643176]
[26]
Pulya, S.; Patel, T.; Paul, M.; Adhikari, N.; Banerjee, S.; Routholla, G.; Biswas, S.; Jha, T.; Ghosh, B. Selective inhibition of histone deacetylase 3 by novel hydrazide based small molecules as therapeutic intervention for the treatment of cancer. Eur. J. Med. Chem., 2022, 238, 114470.
[http://dx.doi.org/10.1016/j.ejmech.2022.114470] [PMID: 35635949]
[27]
Shahgaldi, S.; Kahmini, F.R. A comprehensive review of Sirtuins: With a major focus on redox homeostasis and metabolism. Life Sci., 2021, 282, 119803.
[http://dx.doi.org/10.1016/j.lfs.2021.119803] [PMID: 34237310]
[28]
Sarkar, R.; Banerjee, S.; Amin, S.A.; Adhikari, N.; Jha, T. Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: A review. Eur. J. Med. Chem., 2020, 192, 112171.
[http://dx.doi.org/10.1016/j.ejmech.2020.112171] [PMID: 32163814]
[29]
Gupta, R.; Ambasta, R.K.; Kumar, P. Histone deacetylase in neuropathology. Adv. Clin. Chem., 2021, 104, 151-231.
[http://dx.doi.org/10.1016/bs.acc.2020.09.004] [PMID: 34462055]
[30]
Penney, J.; Tsai, L.H. Histone deacetylases in memory and cognition. Sci. Signal., 2014, 7(355), re12.
[http://dx.doi.org/10.1126/scisignal.aaa0069] [PMID: 25492968]
[31]
Amin, S.A.; Adhikari, N.; Kotagiri, S.; Jha, T.; Ghosh, B. Histone deacetylase 3 inhibitors in learning and memory processes with special emphasis on benzamides. Eur. J. Med. Chem., 2019, 166, 369-380.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.077] [PMID: 30735902]
[32]
Schultz, L.E.; Haltom, J.A.; Almeida, M.P.; Wierson, W.A.; Solin, S.L.; Weiss, T.J.; Helmer, J.A.; Sandquist, E.J.; Shive, H.R.; McGrail, M. Epigenetic regulators Rbbp4 and Hdac1 are overexpressed in a zebrafish model of RB1 embryonal brain tumor, and are required for neural progenitor survival and proliferation. Dis. Model. Mech., 2018, 11(6), dmm034124.
[http://dx.doi.org/10.1242/dmm.034124] [PMID: 29914980]
[33]
Kumar, V.; Kundu, S.; Singh, A.; Singh, S. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: Current targets and future perspective. Curr. Neuropharmacol., 2022, 20(1), 158-178.
[http://dx.doi.org/10.2174/1570159X19666210609160017] [PMID: 34151764]
[34]
Thomas, E.A.; D’Mello, S.R. Complex neuroprotective and neurotoxic effects of histone deacetylases. J. Neurochem., 2018, 145(2), 96-110.
[http://dx.doi.org/10.1111/jnc.14309] [PMID: 29355955]
[35]
Kim, J.Y.; Cho, H.; Yoo, J.; Kim, G.W.; Jeon, Y.H.; Lee, S.W.; Kwon, S.H. Pathological role of HDAC8: Cancer and beyond. Cells, 2022, 11(19), 3161.
[http://dx.doi.org/10.3390/cells11193161] [PMID: 36231123]
[36]
Millard, C.J.; Watson, P.J.; Fairall, L.; Schwabe, J.W.R. Targeting class I histone deacetylases in a “Complex” environment. Trends Pharmacol. Sci., 2017, 38(4), 363-377.
[http://dx.doi.org/10.1016/j.tips.2016.12.006] [PMID: 28139258]
[37]
Langley, B.; Gensert, J.; Beal, M.; Ratan, R. Remodeling chromatin and stress resistance in the central nervous system: Histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr. Drug Targets CNS Neurol. Disord., 2005, 4(1), 41-50.
[http://dx.doi.org/10.2174/1568007053005091] [PMID: 15723612]
[38]
Latypova, X.; Vincent, M.; Mollé, A.; Adebambo, O.A.; Fourgeux, C.; Khan, T.N.; Caro, A.; Rosello, M.; Orellana, C.; Niyazov, D.; Lederer, D.; Deprez, M.; Capri, Y.; Kannu, P.; Tabet, A.C.; Levy, J.; Aten, E.; den Hollander, N.; Splitt, M.; Walia, J.; Immken, L.L.; Stankiewicz, P.; McWalter, K.; Suchy, S.; Louie, R.J.; Bell, S.; Stevenson, R.E.; Rousseau, J.; Willem, C.; Retiere, C.; Yang, X.J.; Campeau, P.M.; Martinez, F.; Rosenfeld, J.A.; Le Caignec, C.; Küry, S.; Mercier, S.; Moradkhani, K.; Conrad, S.; Besnard, T.; Cogné, B.; Katsanis, N.; Bézieau, S.; Poschmann, J.; Davis, E.E.; Isidor, B. Haploinsufficiency of the Sin3/HDAC corepressor complex member SIN3B causes a syndromic intellectual disability/autism spectrum disorder. Am. J. Hum. Genet., 2021, 108(5), 929-941.
[http://dx.doi.org/10.1016/j.ajhg.2021.03.017] [PMID: 33811806]
[39]
Kozikowski, A.P.; Shen, S.; Pardo, M.; Tavares, M.T.; Szarics, D.; Benoy, V.; Zimprich, C.A.; Kutil, Z.; Zhang, G. Bařinka, C.; Robers, M.B.; Van Den Bosch, L.; Eubanks, J.H.; Jope, R.S. Brain penetrable histone deacetylase 6 inhibitor SW-100 ameliorates memory and learning impairments in a mouse model of fragile X syndrome. ACS Chem. Neurosci., 2019, 10(3), 1679-1695.
[http://dx.doi.org/10.1021/acschemneuro.8b00600] [PMID: 30511829]
[40]
Gray, S.G.; Dangond, F. Rationale for the use of histone deacetylase inhibitors as a dual therapeutic modality in multiple sclerosis. Epigenetics, 2006, 1(2), 67-75.
[http://dx.doi.org/10.4161/epi.1.2.2678] [PMID: 17998807]
[41]
Sadri-Vakili, G.; Cha, J.H. Histone deacetylase inhibitors: A novel therapeutic approach to Huntington’s disease (complex mechanism of neuronal death). Curr. Alzheimer Res., 2006, 3(4), 403-408.
[http://dx.doi.org/10.2174/156720506778249407] [PMID: 17017871]
[42]
Bodai, L.; Pallos, J.; Thompson, L.M.; Marsh, J.L. Altered protein acetylation in polyglutamine diseases. Curr. Med. Chem., 2003, 10(23), 2577-2587.
[http://dx.doi.org/10.2174/0929867033456530] [PMID: 14529472]
[43]
Weïwer, M.; Lewis, M.C.; Wagner, F.F.; Holson, E.B. Therapeutic potential of isoform selective HDAC inhibitors for the treatment of schizophrenia. Future Med. Chem., 2013, 5(13), 1491-1508.
[http://dx.doi.org/10.4155/fmc.13.141] [PMID: 24024943]
[44]
Bennett, S.A.; Tanaz, R.; Cobos, S.N.; Torrente, M.P. Epigenetics in amyotrophic lateral sclerosis: a role for histone post-translational modifications in neurodegenerative disease. Transl. Res., 2019, 204, 19-30.
[http://dx.doi.org/10.1016/j.trsl.2018.10.002] [PMID: 30391475]
[45]
Dunaway, L.S.; Pollock, J.S. HDAC1: An environmental sensor regulating endothelial function. Cardiovasc. Res., 2022, 118(8), 1885-1903.
[http://dx.doi.org/10.1093/cvr/cvab198] [PMID: 34264338]
[46]
Adcock, I.M.; Ito, K.; Barnes, P.J. Histone deacetylation: An important mechanism in inflammatory lung diseases. COPD, 2005, 2(4), 445-455.
[http://dx.doi.org/10.1080/15412550500346683] [PMID: 17147010]
[47]
Leus, N.G.J.; Zwinderman, M.R.H.; Dekker, F.J. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-κB-mediated inflammation. Curr. Opin. Chem. Biol., 2016, 33, 160-168.
[http://dx.doi.org/10.1016/j.cbpa.2016.06.019] [PMID: 27371876]
[48]
Buckland, J. HDAC and HDACi: Pathogenetic and mechanistic insights. Nat. Rev. Rheumatol., 2011, 7(12), 682.
[http://dx.doi.org/10.1038/nrrheum.2011.162] [PMID: 22009328]
[49]
Edwards, A.J.P.; Pender, S.L.F. Histone deacetylase inhibitors and their potential role in inflammatory bowel diseases. Biochem. Soc. Trans., 2011, 39(4), 1092-1095.
[http://dx.doi.org/10.1042/BST0391092] [PMID: 21787354]
[50]
Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol., 2009, 1(6), a001651.
[http://dx.doi.org/10.1101/cshperspect.a001651] [PMID: 20457564]
[51]
Wisastra, R.; Dekker, F. Inflammation, cancer and oxidative lipoxygenase activity are intimately linked. Cancers, 2014, 6(3), 1500-1521.
[http://dx.doi.org/10.3390/cancers6031500] [PMID: 25037020]
[52]
Kee, H.J.; Kim, I.; Jeong, M.H. Zinc-dependent histone deacetylases: Potential therapeutic targets for arterial hypertension. Biochem. Pharmacol., 2022, 202, 115111.
[http://dx.doi.org/10.1016/j.bcp.2022.115111] [PMID: 35640713]
[53]
Choi, J.; Park, S.; Kwon, T.K.; Sohn, S.I.; Park, K.M.; Kim, J.I. Role of the histone deacetylase inhibitor valproic acid in high-fat diet-induced hypertension via inhibition of HDAC1/angiotensin II axis. Int. J. Obes., 2017, 41(11), 1702-1709.
[http://dx.doi.org/10.1038/ijo.2017.166]
[54]
Xu, X.; Ha, C.H.; Wong, C.; Wang, W.; Hausser, A.; Pfizenmaier, K.; Olson, E.N.; McKinsey, T.A.; Jin, Z.G. Angiotensin II stimulates protein kinase D-dependent histone deacetylase 5 phosphorylation and nuclear export leading to vascular smooth muscle cell hypertrophy. Arterioscler. Thromb. Vasc. Biol., 2007, 27(11), 2355-2362.
[http://dx.doi.org/10.1161/ATVBAHA.107.151704] [PMID: 17823368]
[55]
Li, H.; Li, W.; Gupta, A.K.; Mohler, P.J.; Anderson, M.E.; Grumbach, I.M. Calmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy. Am. J. Physiol. Heart Circ. Physiol., 2010, 298(2), H688-H698.
[http://dx.doi.org/10.1152/ajpheart.01014.2009] [PMID: 20023119]
[56]
Xie, M.; Hill, J.A. HDAC-dependent ventricular remodeling. Trends Cardiovasc. Med., 2013, 23(6), 229-235.
[http://dx.doi.org/10.1016/j.tcm.2012.12.006] [PMID: 23499301]
[57]
Montgomery, R.L.; Davis, C.A.; Potthoff, M.J.; Haberland, M.; Fielitz, J.; Qi, X.; Hill, J.A.; Richardson, J.A.; Olson, E.N. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev., 2007, 21(14), 1790-1802.
[http://dx.doi.org/10.1101/gad.1563807] [PMID: 17639084]
[58]
Kee, H.J.; Kook, H. Roles and targets of class I and IIa histone deacetylases in cardiac hypertrophy. J. Biomed. Biotechnol., 2011, 2011, 928326.
[http://dx.doi.org/10.1155/2011/928326] [PMID: 21151616]
[59]
Cao, D.J.; Wang, Z.V.; Battiprolu, P.K.; Jiang, N.; Morales, C.R.; Kong, Y.; Rothermel, B.A.; Gillette, T.G.; Hill, J.A. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc. Natl. Acad. Sci., 2011, 108(10), 4123-4128.
[http://dx.doi.org/10.1073/pnas.1015081108] [PMID: 21367693]
[60]
Yoon, S.; Eom, G.H. HDAC and HDAC Inhibitor: From cancer to cardiovascular diseases. Chonnam Med. J., 2016, 52(1), 1-11.
[http://dx.doi.org/10.4068/cmj.2016.52.1.1] [PMID: 26865995]
[61]
Huang, M.; Zhang, J.; Yan, C.; Li, X.; Zhang, J.; Ling, R. Small molecule HDAC inhibitors: Promising agents for breast cancer treatment. Bioorg. Chem., 2019, 91, 103184.
[http://dx.doi.org/10.1016/j.bioorg.2019.103184] [PMID: 31408831]
[62]
Mariadason, J.M. HDACs and HDAC inhibitors in colon cancer. Epigenetics, 2008, 3(1), 28-37.
[http://dx.doi.org/10.4161/epi.3.1.5736] [PMID: 18326939]
[63]
Bär, S.I.; Pradhan, R.; Biersack, B.; Nitzsche, B.; Höpfner, M.; Schobert, R. New chimeric HDAC inhibitors for the treatment of colorectal cancer. Arch. Pharm., 2023, 356(2), 2200422.
[http://dx.doi.org/10.1002/ardp.202200422] [PMID: 36442846]
[64]
Rana, Z.; Diermeier, S.; Hanif, M.; Rosengren, R.J. Understanding failure and improving treatment using HDAC inhibitors for prostate cancer. Biomedicines, 2020, 8(2), 22.
[http://dx.doi.org/10.3390/biomedicines8020022] [PMID: 32019149]
[65]
Mamdani, H.; Jalal, S.I. Histone deacetylase inhibition in non-small cell lung cancer: Hype or hope? Front. Cell Dev. Biol., 2020, 8, 582370.
[http://dx.doi.org/10.3389/fcell.2020.582370] [PMID: 33163495]
[66]
Zhao, J.; Gray, S.G.; Greene, C.M.; Lawless, M.W. Unmasking the pathological and therapeutic potential of histone deacetylases for liver cancer. Expert Rev. Gastroenterol. Hepatol., 2019, 13(3), 247-256.
[http://dx.doi.org/10.1080/17474124.2019.1568870] [PMID: 30791763]
[67]
Fukumoto, T.; Park, P.H.; Wu, S.; Fatkhutdinov, N.; Karakashev, S.; Nacarelli, T.; Kossenkov, A.V.; Speicher, D.W.; Jean, S.; Zhang, L.; Wang, T.L.; Shih, I.M.; Conejo-Garcia, J.R.; Bitler, B.G.; Zhang, R. Repurposing pan-HDAC inhibitors for ARID1A-mutated ovarian cancer. Cell Rep., 2018, 22(13), 3393-3400.
[http://dx.doi.org/10.1016/j.celrep.2018.03.019] [PMID: 29590609]
[68]
Vitanza, N.A.; Biery, M.C.; Myers, C.; Ferguson, E.; Zheng, Y.; Girard, E.J.; Przystal, J.M.; Park, G.; Noll, A.; Pakiam, F.; Winter, C.A.; Morris, S.M.; Sarthy, J.; Cole, B.L.; Leary, S.E.S.; Crane, C.; Lieberman, N.A.P.; Mueller, S.; Nazarian, J.; Gottardo, R.; Brusniak, M.Y.; Mhyre, A.J.; Olson, J.M. Optimal therapeutic targeting by HDAC inhibition in biopsy-derived treatment-naïve diffuse midline glioma models. Neuro-oncol., 2021, 23(3), 376-386.
[http://dx.doi.org/10.1093/neuonc/noaa249] [PMID: 33130903]
[69]
Lernoux, M.; Schnekenburger, M.; Dicato, M.; Diederich, M. Epigenetic mechanisms underlying the therapeutic effects of HDAC inhibitors in chronic myeloid leukemia. Biochem. Pharmacol., 2020, 173, 113698.
[http://dx.doi.org/10.1016/j.bcp.2019.113698] [PMID: 31706847]
[70]
Mehrpouri, M.; Safaroghli-Azar, A. pourbagheri-Sigaroodi, A.; Momeny, M.; Bashash, D. Anti-leukemic effects of histone deacetylase (HDAC) inhibition in acute lymphoblastic leukemia (ALL) cells: Shedding light on mitigating effects of NF-κB and autophagy on panobinostat cytotoxicity. Eur. J. Pharmacol., 2020, 875, 173050.
[http://dx.doi.org/10.1016/j.ejphar.2020.173050] [PMID: 32142770]
[71]
Shimony, S.; Horowitz, N.; Ribakovsky, E.; Rozovski, U.; Avigdor, A.; Zloto, K.; Berger, T.; Avivi, I.; Perry, C.; Abadi, U.; Raanani, P.; Gafter-Gvili, A.; Gurion, R. Romidepsin treatment for relapsed or refractory peripheral and cutaneous T‐cell lymphoma: Real‐life data from a national multicenter observational study. Hematol. Oncol., 2019, 37(5), 569-577.
[http://dx.doi.org/10.1002/hon.2691] [PMID: 31674027]
[72]
Apuri, S.; Sokol, L. An overview of investigational Histone deacetylase inhibitors (HDACis) for the treatment of non-Hodgkin’s lymphoma. Expert Opin. Investig. Drugs, 2016, 25(6), 687-696.
[http://dx.doi.org/10.1517/13543784.2016.1164140] [PMID: 26954526]
[73]
San José-Enériz, E.; Gimenez-Camino, N.; Agirre, X.; Prosper, F. HDAC inhibitors in acute myeloid leukemia. Cancers, 2019, 11(11), 1794.
[http://dx.doi.org/10.3390/cancers11111794] [PMID: 31739588]
[74]
Lopez, A.T.; Bates, S.; Geskin, L. Current status of HDAC inhibitors in cutaneous T-cell lymphoma. Am. J. Clin. Dermatol., 2018, 19(6), 805-819.
[http://dx.doi.org/10.1007/s40257-018-0380-7] [PMID: 30173294]
[75]
Palamaris, K.; Moutafi, M.; Gakiopoulou, H.; Theocharis, S. Histone deacetylase (HDAC) inhibitors: A promising weapon to tackle therapy resistance in melanoma. Int. J. Mol. Sci., 2022, 23(7), 3660.
[http://dx.doi.org/10.3390/ijms23073660] [PMID: 35409020]
[76]
Liu, S.S.; Wu, F.; Jin, Y.M.; Chang, W.Q.; Xu, T.M. HDAC11: A rising star in epigenetics. Biomed. Pharmacother., 2020, 131, 110607.
[http://dx.doi.org/10.1016/j.biopha.2020.110607] [PMID: 32841898]
[77]
Lyu, X.; Hu, M.; Peng, J.; Zhang, X.; Sanders, Y.Y. HDAC inhibitors as antifibrotic drugs in cardiac and pulmonary fibrosis. Ther. Adv. Chronic Dis., 2019, 10, 2040622319862697.
[http://dx.doi.org/10.1177/2040622319862697] [PMID: 31367296]
[78]
Szyf, M. Epigenetic therapeutics in autoimmune disease. Clin. Rev. Allergy Immunol., 2010, 39(1), 62-77.
[http://dx.doi.org/10.1007/s12016-009-8172-8] [PMID: 19644776]
[79]
Adhikari, N.; Amin, S.A.; Jha, T. Selective and nonselective HDAC8 inhibitors: A therapeutic patent review. Pharm. Pat. Anal., 2018, 7(6), 259-276.
[http://dx.doi.org/10.4155/ppa-2018-0019] [PMID: 30632447]
[80]
DrugBank Database. https://go.drugbank.com/categories/DBCAT000469 (Accessed Jan 15, 2023).
[81]
McClure, J.J.; Li, X.; Chou, C.J. Advances and challenges of HDAC inhibitors in cancer therapeutics. Adv. Cancer Res., 2018, 138, 183-211.
[http://dx.doi.org/10.1016/bs.acr.2018.02.006] [PMID: 29551127]
[82]
Le Goff, G.; Ouazzani, J. Natural hydrazine-containing compounds: Biosynthesis, isolation, biological activities and synthesis. Bioorg. Med. Chem., 2014, 22(23), 6529-6544.
[http://dx.doi.org/10.1016/j.bmc.2014.10.011] [PMID: 25456382]
[83]
Farooq, M.; El-Faham, A.; Khattab, S.N.; Elkayal, A.M.; Ibrahim, M.F.; Taha, N.A.; Baabbad, A.; Wadaan, M.A.M.; Hamed, E.A. Biological screening of novel derivatives of valproic acid for anticancer and antiangiogenic properties. Asian Pac. J. Cancer Prev., 2014, 15(18), 7785-7792.
[http://dx.doi.org/10.7314/APJCP.2014.15.18.7785] [PMID: 25292064]
[84]
Wang, Y.; Stowe, R.L.; Pinello, C.E.; Tian, G.; Madoux, F.; Li, D.; Zhao, L.Y.; Li, J.L.; Wang, Y.; Wang, Y.; Ma, H.; Hodder, P.; Roush, W.R.; Liao, D. Identification of histone deacetylase inhibitors with benzoylhydrazide scaffold that selectively inhibit class I histone deacetylases. Chem. Biol., 2015, 22(2), 273-284.
[http://dx.doi.org/10.1016/j.chembiol.2014.12.015] [PMID: 25699604]
[85]
Goracci, L.; Deschamps, N.; Randazzo, G.M.; Petit, C.; Dos Santos Passos, C.; Carrupt, P.A.; Simões-Pires, C.; Nurisso, A. A rational approach for the identification of non-hydroxamate HDAC6-selective inhibitors. Sci. Rep., 2016, 6(1), 29086.
[http://dx.doi.org/10.1038/srep29086] [PMID: 27404291]
[86]
McClure, J.J.; Zhang, C.; Inks, E.S.; Peterson, Y.K.; Li, J.; Chou, C.J. Development of allosteric hydrazide-containing class I histone deacetylase inhibitors for use in acute myeloid leukemia. J. Med. Chem., 2016, 59(21), 9942-9959.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01385] [PMID: 27754681]
[87]
Li, X.; Peterson, Y.K.; Inks, E.S.; Himes, R.A.; Li, J.; Zhang, Y.; Kong, X.; Chou, C.J. Class I HDAC inhibitors display different antitumor mechanism in leukemia and prostatic cancer cells depending on their p53 status. J. Med. Chem., 2018, 61(6), 2589-2603.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00136] [PMID: 29499113]
[88]
Li, X.; Jiang, Y.; Peterson, Y.K.; Xu, T.; Himes, R.A.; Luo, X.; Yin, G.; Inks, E.S.; Dolloff, N.; Halene, S.; Chan, S.S.L.; Chou, C.J. Design of hydrazide-bearing HDACIs based on panobinostat and their p53 and FLT3-ITD dependency in antileukemia activity. J. Med. Chem., 2020, 63(10), 5501-5525.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00442] [PMID: 32321249]
[89]
Jiang, Y.; Xu, J.; Yue, K.; Huang, C.; Qin, M.; Chi, D.; Yu, Q.; Zhu, Y.; Hou, X.; Xu, T.; Li, M.; Chou, C.J.; Li, X. Potent hydrazide-based HDAC inhibitors with a superior pharmacokinetic profile for efficient treatment of acute myeloid leukemia in vivo. J. Med. Chem., 2022, 65(1), 285-302.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01472] [PMID: 34942071]
[90]
Yue, K.; Sun, S.; Jia, G.; Qin, M.; Hou, X.; Chou, C.J.; Huang, C.; Li, X. First-in-Class hydrazide-based HDAC6 selective inhibitor with potent oral anti-inflammatory activity by attenuating NLRP3 inflammasome activation. J. Med. Chem., 2022, 65(18), 12140-12162.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00853] [PMID: 36073117]
[91]
Kozlov, M.V.; Konduktorov, K.A.; Shcherbakova, A.S.; Kochetkov, S.N. Synthesis of N′-propylhydrazide analogs of hydroxamic inhibitors of histone deacetylases (HDACs) and evaluation of their impact on activities of HDACs and replication of hepatitis C virus (HCV). Bioorg. Med. Chem. Lett., 2019, 29(16), 2369-2374.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.006] [PMID: 31201063]
[92]
Son, S.I.; Cao, J.; Zhu, C.L.; Miller, S.P.; Lin, H. Activity-guided design of HDAC11-specific inhibitors. ACS Chem. Biol., 2019, 14(7), 1393-1397.
[http://dx.doi.org/10.1021/acschembio.9b00292] [PMID: 31264832]
[93]
Al-Sanea, M.M.; Gotina, L.; Mohamed, M.F.; Grace Thomas Parambi, D.; Gomaa, H.A.M.; Mathew, B.; Youssif, B.G.M.; Alharbi, K.S.; Elsayed, Z.M.; Abdelgawad, M.A.; Eldehna, W.M. Design, synthesis and biological evaluation of new HDAC1 and HDAC2 inhibitors endowed with ligustrazine as a novel cap moiety. Drug Des. Devel. Ther., 2020, 14, 497-508.
[http://dx.doi.org/10.2147/DDDT.S237957] [PMID: 32103894]
[94]
Chen, Y.; Zhang, L.; Zhang, L.; Jiang, Q.; Zhang, L. Discovery of indole-3-butyric acid derivatives as potent histone deacetylase inhibitors. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 425-436.
[http://dx.doi.org/10.1080/14756366.2020.1870457] [PMID: 33445997]
[95]
Sun, P.; Wang, J.; Khan, K.S.; Yang, W.; Ng, B.W.L.; Ilment, N.; Zessin, M.; Bülbül, E.F.; Robaa, D.; Erdmann, F.; Schmidt, M.; Romier, C.; Schutkowski, M.; Cheng, A.S.L.; Sippl, W. Development of alkylated hydrazides as highly potent and selective class I histone deacetylase inhibitors with T cell modulatory properties. J. Med. Chem., 2022, 65(24), 16313-16337.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01132] [PMID: 36449385]
[96]
Yang, L.; Zhang, W.; Qiu, Q.; Su, Z.; Tang, M.; Bai, P.; Si, W.; Zhu, Z.; Liu, Y.; Yang, J.; Kuang, S.; Liu, J.; Yan, W.; Shi, M.; Ye, H.; Yang, Z.; Chen, L. Discovery of a series of hydroxamic acid-based microtubule destabilizing agents with potent antitumor activity. J. Med. Chem., 2021, 64(20), 15379-15401.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01451] [PMID: 34648295]
[97]
Hui, Q.; Zhang, L.; Feng, J.; Zhang, L. Discovery of 2-phenylquinoline-4-carboxylic acid derivatives as novel histone deacetylase inhibitors. Front Chem., 2022, 10, 937225.
[http://dx.doi.org/10.3389/fchem.2022.937225] [PMID: 35910736]
[98]
Yue, K.; Qin, M.; Huang, C.; James Chou, C.; Jiang, Y.; Li, X. Comparison of three zinc binding groups for HDAC inhibitors - A potency, selectivity and enzymatic kinetics study. Bioorg. Med. Chem. Lett., 2022, 70, 128797.
[http://dx.doi.org/10.1016/j.bmcl.2022.128797] [PMID: 35580726]
[99]
Mohamed, M.F.A.; Youssif, B.G.M.; Shaykoon, M.S.A.; Abdelrahman, M.H.; Elsadek, B.E.M.; Aboraia, A.S.; Abuo-Rahma, G.E.D.A. Utilization of tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidinone as a cap moiety in design of novel histone deacetylase inhibitors. Bioorg. Chem., 2019, 91, 103127.
[http://dx.doi.org/10.1016/j.bioorg.2019.103127] [PMID: 31374527]
[100]
Xue, X.; Zhang, Y.; Liao, Y.; Sun, D.; Li, L.; Liu, Y.; Wang, Y.; Jiang, W.; Zhang, J.; Luan, Y.; Zhao, X. Design, synthesis and biological evaluation of dual HDAC and VEGFR inhibitors as multitargeted anticancer agents. Invest. New Drugs, 2022, 40(1), 10-20.
[http://dx.doi.org/10.1007/s10637-021-01169-4] [PMID: 34463890]
[101]
Liu, X.H.; Song, H.Y.; Zhang, J.X.; Han, B.C.; Wei, X.N.; Ma, X.H.; Cui, W.K.; Chen, Y.Z. Identifying novel type ZBGs and nonhydroxamate HDAC inhibitors through a SVM based virtual screening approach. Mol. Inform., 2010, 29(5), 407-420.
[http://dx.doi.org/10.1002/minf.200900014] [PMID: 27463196]
[102]
Stenzel, K.; Chakrabarti, A.; Melesina, J.; Hansen, F.K.; Lancelot, J.; Herkenhöhner, S.; Lungerich, B.; Marek, M.; Romier, C.; Pierce, R.J.; Sippl, W.; Jung, M.; Kurz, T. Isophthalic acid-based HDAC inhibitors as potent inhibitors of HDAC8 from Schistosoma mansoni. Arch. Pharm., 2017, 350(8), 1700096.
[http://dx.doi.org/10.1002/ardp.201700096] [PMID: 28639720]
[103]
Vasudevan, A.; Ji, Z.; Frey, R.R.; Wada, C.K.; Steinman, D.; Heyman, H.R.; Guo, Y.; Curtin, M.L.; Guo, J.; Li, J.; Pease, L.; Glaser, K.B.; Marcotte, P.A.; Bouska, J.J.; Davidsen, S.K.; Michaelides, M.R. Heterocyclic ketones as inhibitors of histone deacetylase. Bioorg. Med. Chem. Lett., 2003, 13(22), 3909-3913.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.007] [PMID: 14592473]
[104]
Farag, A.B.; Ewida, H.A.; Ahmed, M.S. Design, synthesis, and biological evaluation of novel amide and hydrazide based thioether analogs targeting Histone deacteylase (HDAC) enzymes. Eur. J. Med. Chem., 2018, 148, 73-85.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.011] [PMID: 29454918]
[105]
Tang, W.; Luo, T.; Greenberg, E.F.; Bradner, J.E.; Schreiber, S.L. Discovery of histone deacetylase 8 selective inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(9), 2601-2605.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.134] [PMID: 21334896]
[106]
Fass, D.M.; Reis, S.A.; Ghosh, B.; Hennig, K.M.; Joseph, N.F.; Zhao, W.N.; Nieland, T.J.F.; Guan, J.S.; Groves Kuhnle, C.E.; Tang, W.; Barker, D.D.; Mazitschek, R.; Schreiber, S.L.; Tsai, L.H.; Haggarty, S.J. Crebinostat: A novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. Neuropharmacology, 2013, 64, 81-96.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.043] [PMID: 22771460]
[107]
Ghosh, B.; Zhao, W.N.; Reis, S.A.; Patnaik, D.; Fass, D.M.; Tsai, L.H.; Mazitschek, R.; Haggarty, S.J. Dissecting structure-activity-relationships of crebinostat: Brain penetrant HDAC inhibitors for neuroepigenetic regulation. Bioorg. Med. Chem. Lett., 2016, 26(4), 1265-1271.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.022] [PMID: 26804233]
[108]
Hamoud, M.M.S.; Pulya, S.; Osman, N.A.; Bobde, Y.; Hassan, A.E.A.; Abdel-Fattah, H.A.; Ghosh, B.; Ghanim, A.M. Design, synthesis, and biological evaluation of novel nicotinamide derivatives as potential histone deacetylase-3 inhibitors. New J. Chem., 2020, 44(23), 9671-9683.
[http://dx.doi.org/10.1039/D0NJ01274B]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy